Parameters at the end of the simulation, when Rshock∼ 10 000 km; α and Eexp are calculated using equations (5) and (6), respectively. Model L2.1 ended with Rshock= 3300 km. Note that the PNS wind contributes ∼50 per cent of the explosion energies listed below.
Model | vPNS (km s−1) | Eexp (1051 erg) | α |
L2.1 | −40 | 0.29 | 0.026 |
L2.15 | 212 | 0.69 | −0.25 |
L2.2 | −186 | 0.89 | 0.08 |
L2.25 | 315 | 0.69 | −0.23 |
L2.3 | −624 | 1.13 | 0.23 |
L2.35 | 194 | 1.28 | −0.06 |
L2.4 | 431 | 1.23 | −0.15 |
L2.5 | 276 | 0.99 | −0.10 |
Model | vPNS (km s−1) | Eexp (1051 erg) | α |
L2.1 | −40 | 0.29 | 0.026 |
L2.15 | 212 | 0.69 | −0.25 |
L2.2 | −186 | 0.89 | 0.08 |
L2.25 | 315 | 0.69 | −0.23 |
L2.3 | −624 | 1.13 | 0.23 |
L2.35 | 194 | 1.28 | −0.06 |
L2.4 | 431 | 1.23 | −0.15 |
L2.5 | 276 | 0.99 | −0.10 |
Parameters at the end of the simulation, when Rshock∼ 10 000 km; α and Eexp are calculated using equations (5) and (6), respectively. Model L2.1 ended with Rshock= 3300 km. Note that the PNS wind contributes ∼50 per cent of the explosion energies listed below.
Model | vPNS (km s−1) | Eexp (1051 erg) | α |
L2.1 | −40 | 0.29 | 0.026 |
L2.15 | 212 | 0.69 | −0.25 |
L2.2 | −186 | 0.89 | 0.08 |
L2.25 | 315 | 0.69 | −0.23 |
L2.3 | −624 | 1.13 | 0.23 |
L2.35 | 194 | 1.28 | −0.06 |
L2.4 | 431 | 1.23 | −0.15 |
L2.5 | 276 | 0.99 | −0.10 |
Model | vPNS (km s−1) | Eexp (1051 erg) | α |
L2.1 | −40 | 0.29 | 0.026 |
L2.15 | 212 | 0.69 | −0.25 |
L2.2 | −186 | 0.89 | 0.08 |
L2.25 | 315 | 0.69 | −0.23 |
L2.3 | −624 | 1.13 | 0.23 |
L2.35 | 194 | 1.28 | −0.06 |
L2.4 | 431 | 1.23 | −0.15 |
L2.5 | 276 | 0.99 | −0.10 |
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.