Table 1.

Summary of the thermophilic methanotroph surveys discussed in this review.

EnvironmentTemperatureaDetection methodsMaximum methane oxidation rateMethanotrophic genera identifiedReference/accession
Hydrothermal sediment, Guaymas Basin5–85°CMethane oxidation (anaerobic)25 pmol L−1 d−1NDKallmeyer and Boetius 2004
Hydrothermal vent, East Pacific Rise50–100°CpmoA PCRNDMethylothermusNercessian et al. 2005
Compost, Germany25–70°CMethane oxidation, cultivation98.4 µmol g−1 d−1MethylocaldumJäckel, Thummes and Kämpfer 2005
Compost, Belgium10–66°C16S rRNA gene qPCR with type I and type II specific primersNDType I methanotrophs (Gammaproteobacteria)Halet, Boon and Verstraete 2006
Hydrothermal sediment, Mid Atlantic Ridge44–91°CMetagenomics (16S rRNA gene) (EMP)NDCrenothrix, uncultured MethylococcaceaeBrazelton et al. 2010, ERP016395
Geothermal gas vents, Greece32–39°CMethane oxidation11.4 nmol g−1 d−1NDD'Alessandro et al. 2011
Hydrothermal sediment, Guaymas Basin4–70, 50°CMethane oxidation (anaerobic), 16S rRNA gene and mcrA PCR1.2 µmol g−1 d−1ANME-1, ANME-2cHoller, Widdel and Knittel 2011
Geothermal soil, New Zealand37–65°CMethane oxidation, DNA-SIP7.0 µmol g−1 d−1MethylacidiphilumSharp, Stott and Dunfield 2012
Hot springs, Kamchatka, Russia47–65°CpmoA and 16S rRNA gene qPCRNDMethylobacter, Methylomonas, MethylothermusKizilova et al. 2012
Hydrothermal vent, Taiwan49.5°CMetagenomics (MG-RAST)NDMethylomarinum, MethylomicrobiumMeyer et al. 2008, MGP19574
Geothermal soil, Italy33–83, 37–80°CpmoA PCR, methane oxidation2.4 µmol g−1 d−1Methylacidiphilum, Methylocaldum, Methylococcus, MethylocystisGagliano et al. 2014
Geothermal soil, New Zealand35–82, 37–65°CpmoA and 16S rRNA gene PCR, methane oxidation, DNA-SIP20.4 µmol g−1 d−1Methylacidimicrobium, MethylacidiphilumSharp et al. 2014b
Geothermal soil, Canada22–45°CMethane oxidation, DNA-SIP99 µmol g−1 d−1Methylocaldum, MethylocapsaSharp et al. 2014a
Hot springs, Kuril Islands, Russia44–99, 40–75°CpmoA and 16S rRNA gene qPCR, methane oxidation104 µmol L−1 d−1Methylobacter, Methylococcus, MethylothermusKizilova et al. 2014
Hydrothermal vents, Norwegian Sea<90°CMetagenomics, metatranscriptomics, metaproteomicsNDMethylobacterUrich et al. 2014
Hot spring, Yellowstone National Park (YNP), USA86°CnifH qRT-PCR (nitrogen fixation)NDMethylacidiphilumHamilton et al. 2014
Geothermal lake, YNP, USA62–66°CMetagenomics (pmoA), 16S rRNA gene PCRNDMethylothermusInskeep et al. 2015
Imperial Geyser microbial mats, YNP, USA64–75°CMetagenomics (16S rRNA gene) (EMP)NDMethylocaldum, MethylomonasThompson et al. 2017, ERP022167
Microbial mats, Rainbow Spring, YNP, USA42–90°CAssembled metagenomes (IMG/M)NDMethylacidiphilumChen et al. 2019
Joseph's Coat hot spring, YNP, USANDAssembled metagenomes (IMG/M)NDMethylacidiphilumChen et al. 2019
Microbial mat, Mushroom Spring, YNP, USA42–90°CAssembled metagenomes (IMG/M)NDMethylothermusChen et al. 2019
Microbial mat, hot spring, YNP, USA42–90°CAssembled metagenomes (IMG/M)NDMethylococcus, Methylocystis, MethylosinusChen et al. 2019
Hot spring sediment, YNP, USA42–90°CAssembled metagenomes (IMG/M)NDMethylacidiphilumChen et al. 2019
EnvironmentTemperatureaDetection methodsMaximum methane oxidation rateMethanotrophic genera identifiedReference/accession
Hydrothermal sediment, Guaymas Basin5–85°CMethane oxidation (anaerobic)25 pmol L−1 d−1NDKallmeyer and Boetius 2004
Hydrothermal vent, East Pacific Rise50–100°CpmoA PCRNDMethylothermusNercessian et al. 2005
Compost, Germany25–70°CMethane oxidation, cultivation98.4 µmol g−1 d−1MethylocaldumJäckel, Thummes and Kämpfer 2005
Compost, Belgium10–66°C16S rRNA gene qPCR with type I and type II specific primersNDType I methanotrophs (Gammaproteobacteria)Halet, Boon and Verstraete 2006
Hydrothermal sediment, Mid Atlantic Ridge44–91°CMetagenomics (16S rRNA gene) (EMP)NDCrenothrix, uncultured MethylococcaceaeBrazelton et al. 2010, ERP016395
Geothermal gas vents, Greece32–39°CMethane oxidation11.4 nmol g−1 d−1NDD'Alessandro et al. 2011
Hydrothermal sediment, Guaymas Basin4–70, 50°CMethane oxidation (anaerobic), 16S rRNA gene and mcrA PCR1.2 µmol g−1 d−1ANME-1, ANME-2cHoller, Widdel and Knittel 2011
Geothermal soil, New Zealand37–65°CMethane oxidation, DNA-SIP7.0 µmol g−1 d−1MethylacidiphilumSharp, Stott and Dunfield 2012
Hot springs, Kamchatka, Russia47–65°CpmoA and 16S rRNA gene qPCRNDMethylobacter, Methylomonas, MethylothermusKizilova et al. 2012
Hydrothermal vent, Taiwan49.5°CMetagenomics (MG-RAST)NDMethylomarinum, MethylomicrobiumMeyer et al. 2008, MGP19574
Geothermal soil, Italy33–83, 37–80°CpmoA PCR, methane oxidation2.4 µmol g−1 d−1Methylacidiphilum, Methylocaldum, Methylococcus, MethylocystisGagliano et al. 2014
Geothermal soil, New Zealand35–82, 37–65°CpmoA and 16S rRNA gene PCR, methane oxidation, DNA-SIP20.4 µmol g−1 d−1Methylacidimicrobium, MethylacidiphilumSharp et al. 2014b
Geothermal soil, Canada22–45°CMethane oxidation, DNA-SIP99 µmol g−1 d−1Methylocaldum, MethylocapsaSharp et al. 2014a
Hot springs, Kuril Islands, Russia44–99, 40–75°CpmoA and 16S rRNA gene qPCR, methane oxidation104 µmol L−1 d−1Methylobacter, Methylococcus, MethylothermusKizilova et al. 2014
Hydrothermal vents, Norwegian Sea<90°CMetagenomics, metatranscriptomics, metaproteomicsNDMethylobacterUrich et al. 2014
Hot spring, Yellowstone National Park (YNP), USA86°CnifH qRT-PCR (nitrogen fixation)NDMethylacidiphilumHamilton et al. 2014
Geothermal lake, YNP, USA62–66°CMetagenomics (pmoA), 16S rRNA gene PCRNDMethylothermusInskeep et al. 2015
Imperial Geyser microbial mats, YNP, USA64–75°CMetagenomics (16S rRNA gene) (EMP)NDMethylocaldum, MethylomonasThompson et al. 2017, ERP022167
Microbial mats, Rainbow Spring, YNP, USA42–90°CAssembled metagenomes (IMG/M)NDMethylacidiphilumChen et al. 2019
Joseph's Coat hot spring, YNP, USANDAssembled metagenomes (IMG/M)NDMethylacidiphilumChen et al. 2019
Microbial mat, Mushroom Spring, YNP, USA42–90°CAssembled metagenomes (IMG/M)NDMethylothermusChen et al. 2019
Microbial mat, hot spring, YNP, USA42–90°CAssembled metagenomes (IMG/M)NDMethylococcus, Methylocystis, MethylosinusChen et al. 2019
Hot spring sediment, YNP, USA42–90°CAssembled metagenomes (IMG/M)NDMethylacidiphilumChen et al. 2019
a

In situ temperature shown for molecular detection methods, and incubation temperatures for methane oxidation rates. ND, not determined; EMP, Earth Microbiome Project; MG-RAST, Metagenomic Rapid Annotations using Subsystems Technology; IMG/M, Integrated Microbial Genomes and Microbiomes.

Table 1.

Summary of the thermophilic methanotroph surveys discussed in this review.

EnvironmentTemperatureaDetection methodsMaximum methane oxidation rateMethanotrophic genera identifiedReference/accession
Hydrothermal sediment, Guaymas Basin5–85°CMethane oxidation (anaerobic)25 pmol L−1 d−1NDKallmeyer and Boetius 2004
Hydrothermal vent, East Pacific Rise50–100°CpmoA PCRNDMethylothermusNercessian et al. 2005
Compost, Germany25–70°CMethane oxidation, cultivation98.4 µmol g−1 d−1MethylocaldumJäckel, Thummes and Kämpfer 2005
Compost, Belgium10–66°C16S rRNA gene qPCR with type I and type II specific primersNDType I methanotrophs (Gammaproteobacteria)Halet, Boon and Verstraete 2006
Hydrothermal sediment, Mid Atlantic Ridge44–91°CMetagenomics (16S rRNA gene) (EMP)NDCrenothrix, uncultured MethylococcaceaeBrazelton et al. 2010, ERP016395
Geothermal gas vents, Greece32–39°CMethane oxidation11.4 nmol g−1 d−1NDD'Alessandro et al. 2011
Hydrothermal sediment, Guaymas Basin4–70, 50°CMethane oxidation (anaerobic), 16S rRNA gene and mcrA PCR1.2 µmol g−1 d−1ANME-1, ANME-2cHoller, Widdel and Knittel 2011
Geothermal soil, New Zealand37–65°CMethane oxidation, DNA-SIP7.0 µmol g−1 d−1MethylacidiphilumSharp, Stott and Dunfield 2012
Hot springs, Kamchatka, Russia47–65°CpmoA and 16S rRNA gene qPCRNDMethylobacter, Methylomonas, MethylothermusKizilova et al. 2012
Hydrothermal vent, Taiwan49.5°CMetagenomics (MG-RAST)NDMethylomarinum, MethylomicrobiumMeyer et al. 2008, MGP19574
Geothermal soil, Italy33–83, 37–80°CpmoA PCR, methane oxidation2.4 µmol g−1 d−1Methylacidiphilum, Methylocaldum, Methylococcus, MethylocystisGagliano et al. 2014
Geothermal soil, New Zealand35–82, 37–65°CpmoA and 16S rRNA gene PCR, methane oxidation, DNA-SIP20.4 µmol g−1 d−1Methylacidimicrobium, MethylacidiphilumSharp et al. 2014b
Geothermal soil, Canada22–45°CMethane oxidation, DNA-SIP99 µmol g−1 d−1Methylocaldum, MethylocapsaSharp et al. 2014a
Hot springs, Kuril Islands, Russia44–99, 40–75°CpmoA and 16S rRNA gene qPCR, methane oxidation104 µmol L−1 d−1Methylobacter, Methylococcus, MethylothermusKizilova et al. 2014
Hydrothermal vents, Norwegian Sea<90°CMetagenomics, metatranscriptomics, metaproteomicsNDMethylobacterUrich et al. 2014
Hot spring, Yellowstone National Park (YNP), USA86°CnifH qRT-PCR (nitrogen fixation)NDMethylacidiphilumHamilton et al. 2014
Geothermal lake, YNP, USA62–66°CMetagenomics (pmoA), 16S rRNA gene PCRNDMethylothermusInskeep et al. 2015
Imperial Geyser microbial mats, YNP, USA64–75°CMetagenomics (16S rRNA gene) (EMP)NDMethylocaldum, MethylomonasThompson et al. 2017, ERP022167
Microbial mats, Rainbow Spring, YNP, USA42–90°CAssembled metagenomes (IMG/M)NDMethylacidiphilumChen et al. 2019
Joseph's Coat hot spring, YNP, USANDAssembled metagenomes (IMG/M)NDMethylacidiphilumChen et al. 2019
Microbial mat, Mushroom Spring, YNP, USA42–90°CAssembled metagenomes (IMG/M)NDMethylothermusChen et al. 2019
Microbial mat, hot spring, YNP, USA42–90°CAssembled metagenomes (IMG/M)NDMethylococcus, Methylocystis, MethylosinusChen et al. 2019
Hot spring sediment, YNP, USA42–90°CAssembled metagenomes (IMG/M)NDMethylacidiphilumChen et al. 2019
EnvironmentTemperatureaDetection methodsMaximum methane oxidation rateMethanotrophic genera identifiedReference/accession
Hydrothermal sediment, Guaymas Basin5–85°CMethane oxidation (anaerobic)25 pmol L−1 d−1NDKallmeyer and Boetius 2004
Hydrothermal vent, East Pacific Rise50–100°CpmoA PCRNDMethylothermusNercessian et al. 2005
Compost, Germany25–70°CMethane oxidation, cultivation98.4 µmol g−1 d−1MethylocaldumJäckel, Thummes and Kämpfer 2005
Compost, Belgium10–66°C16S rRNA gene qPCR with type I and type II specific primersNDType I methanotrophs (Gammaproteobacteria)Halet, Boon and Verstraete 2006
Hydrothermal sediment, Mid Atlantic Ridge44–91°CMetagenomics (16S rRNA gene) (EMP)NDCrenothrix, uncultured MethylococcaceaeBrazelton et al. 2010, ERP016395
Geothermal gas vents, Greece32–39°CMethane oxidation11.4 nmol g−1 d−1NDD'Alessandro et al. 2011
Hydrothermal sediment, Guaymas Basin4–70, 50°CMethane oxidation (anaerobic), 16S rRNA gene and mcrA PCR1.2 µmol g−1 d−1ANME-1, ANME-2cHoller, Widdel and Knittel 2011
Geothermal soil, New Zealand37–65°CMethane oxidation, DNA-SIP7.0 µmol g−1 d−1MethylacidiphilumSharp, Stott and Dunfield 2012
Hot springs, Kamchatka, Russia47–65°CpmoA and 16S rRNA gene qPCRNDMethylobacter, Methylomonas, MethylothermusKizilova et al. 2012
Hydrothermal vent, Taiwan49.5°CMetagenomics (MG-RAST)NDMethylomarinum, MethylomicrobiumMeyer et al. 2008, MGP19574
Geothermal soil, Italy33–83, 37–80°CpmoA PCR, methane oxidation2.4 µmol g−1 d−1Methylacidiphilum, Methylocaldum, Methylococcus, MethylocystisGagliano et al. 2014
Geothermal soil, New Zealand35–82, 37–65°CpmoA and 16S rRNA gene PCR, methane oxidation, DNA-SIP20.4 µmol g−1 d−1Methylacidimicrobium, MethylacidiphilumSharp et al. 2014b
Geothermal soil, Canada22–45°CMethane oxidation, DNA-SIP99 µmol g−1 d−1Methylocaldum, MethylocapsaSharp et al. 2014a
Hot springs, Kuril Islands, Russia44–99, 40–75°CpmoA and 16S rRNA gene qPCR, methane oxidation104 µmol L−1 d−1Methylobacter, Methylococcus, MethylothermusKizilova et al. 2014
Hydrothermal vents, Norwegian Sea<90°CMetagenomics, metatranscriptomics, metaproteomicsNDMethylobacterUrich et al. 2014
Hot spring, Yellowstone National Park (YNP), USA86°CnifH qRT-PCR (nitrogen fixation)NDMethylacidiphilumHamilton et al. 2014
Geothermal lake, YNP, USA62–66°CMetagenomics (pmoA), 16S rRNA gene PCRNDMethylothermusInskeep et al. 2015
Imperial Geyser microbial mats, YNP, USA64–75°CMetagenomics (16S rRNA gene) (EMP)NDMethylocaldum, MethylomonasThompson et al. 2017, ERP022167
Microbial mats, Rainbow Spring, YNP, USA42–90°CAssembled metagenomes (IMG/M)NDMethylacidiphilumChen et al. 2019
Joseph's Coat hot spring, YNP, USANDAssembled metagenomes (IMG/M)NDMethylacidiphilumChen et al. 2019
Microbial mat, Mushroom Spring, YNP, USA42–90°CAssembled metagenomes (IMG/M)NDMethylothermusChen et al. 2019
Microbial mat, hot spring, YNP, USA42–90°CAssembled metagenomes (IMG/M)NDMethylococcus, Methylocystis, MethylosinusChen et al. 2019
Hot spring sediment, YNP, USA42–90°CAssembled metagenomes (IMG/M)NDMethylacidiphilumChen et al. 2019
a

In situ temperature shown for molecular detection methods, and incubation temperatures for methane oxidation rates. ND, not determined; EMP, Earth Microbiome Project; MG-RAST, Metagenomic Rapid Annotations using Subsystems Technology; IMG/M, Integrated Microbial Genomes and Microbiomes.

Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close