The evolution of local adaptation and the genetic architecture in 2 populations with different trait optima, assuming no pleiotropy
. | . | Population 1 . | . | . | . | . | . | Population 2 . | . | . | . | . |
---|---|---|---|---|---|---|---|---|---|---|---|---|
m . | . | . | . | . | . | . | . | . | . | . | . | . |
0 | 0 | 4.01 (0.04) | −0.05 (0.04) | 0.102 (0.011) | 0.099 (0.010) | 0.000 (0.000) | −3.95 (0.04) | 0.05 (0.04) | 0.101 (0.012) | 0.084 (0.010) | 0.000 (0.000) | |
0.002 | 0 | 3.69 (0.03) | 0.00 (0.03) | 0.597 (0.024) | 0.101 (0.009) | −0.001 (0.002) | −3.77 (0.03) | 0.01 (0.03) | 0.682 (0.030) | 0.103 (0.010) | −0.001 (0.001) | |
0.004 | 0 | 3.67 (0.03) | 0.02 (0.03) | 1.109 (0.041) | 0.104 (0.011) | 0.000 (0.001) | −3.68 (0.03) | 0.03 (0.02) | 1.124 (0.041) | 0.096 (0.011) | 0.000 (0.001) | |
0.008 | 0 | 3.52 (0.03) | −0.01 (0.02) | 1.903 (0.047) | 0.106 (0.007) | 0.001 (0.002) | −3.51 (0.02) | −0.02 (0.02) | 1.865 (0.051) | 0.106 (0.007) | 0.000 (0.002) | |
0.016 | 0 | 3.24 (0.03) | 0.00 (0.02) | 3.108 (0.083) | 0.105 (0.083) | −0.005 (0.002) | −3.22 (0.03) | 0.01 (0.03) | 3.062 (0.079) | 0.106 (0.010) | −0.004 (0.002) | |
0.032 | 0 | 2.81 (0.02) | 0.00 (0.02) | 4.761 (0.107) | 0.108 (0.011) | −0.002 (0.002) | −2.78 (0.03) | 0.01 (0.02) | 4.689 (0.108) | 0.111 (0.011) | −0.001 (0.002) | |
0.064 | 0 | 2.02 (0.04) | 0.04 (0.03) | 6.075 (0.149) | 0.118 (0.010) | −0.001 (0.002) | −2.01 (0.03) | 0.04 (0.03) | 6.045 (0.137) | 0.116 (0.010) | 0.000 (0.002) | |
0.128 | 0 | 0.79 (0.03) | −0.02 (0.02) | 4.348 (0.215) | 0.107 (0.010) | −0.004 (0.002) | −0.80 (0.04) | −0.02 (0.02) | 4.421 (0.228) | 0.108 (0.010) | −0.005 (0.002) | |
0.256 | 0 | 0.03 (0.02) | 0.00 (0.02) | 0.322 (0.042) | 0.109 (0.007) | −0.001 (0.001) | −0.02 (0.02) | 0.00 (0.02) | 0.323 (0.042) | 0.109 (0.007) | −0.001 (0.001) | |
0 | 1.6 | 3.95 (0.04) | 0.00 (0.06) | 0.189 (0.015) | 0.137 (0.011) | 0.001 (0.008) | −4.01 (0.05) | −0.08 (0.05) | 0.162 (0.011) | 0.163 (0.022) | 0.000 (0.011) | |
0.002 | 1.6 | 3.88 (0.05) | −0.07 (0.04) | 0.699 (0.046) | 0.285 (0.034) | −0.010 (0.034) | −3.82 (0.05) | −0.01 (0.04) | 0.667 (0.033) | 0.279 (0.031) | 0.002 (0.014) | |
0.004 | 1.6 | 3.76 (0.05) | −0.09 (0.05) | 1.166 (0.053) | 0.382 (0.043) | −0.014 (0.034) | −3.66 (0.04) | 0.08 (0.05) | 1.065 (0.046) | 0.411 (0.037) | −0.060 (0.031) | |
0.008 | 1.6 | 3.58 (0.04) | 0.04 (0.05) | 1.797 (0.083) | 0.440 (0.056) | 0.012 (0.036) | −3.59 (0.04) | 0.10 (0.05) | 1.798 (0.066) | 0.359 (0.045) | 0.005 (0.039) | |
0.016 | 1.6 | 3.27 (0.05) | −0.05 (0.05) | 2.707 (0.063) | 0.392 (0.072) | 0.005 (0.066) | −3.23 (0.04) | 0.07 (0.06) | 2.771 (0.108) | 0.397 (0.059) | −0.105 (0.064) | |
0.032 | 1.6 | 2.84 (0.06) | −0.03 (0.06) | 4.557 (0.135) | 0.439 (0.061) | −0.135 (0.072) | −2.80 (0.06) | 0.12 (0.05) | 4.347 (0.130) | 0.466 (0.079) | −0.132 (0.084) | |
0.064 | 1.6 | 2.12 (0.04) | 0.16 (0.04) | 6.144 (0.153) | 0.345 (0.050) | 0.161 (0.087) | −2.07 (0.05) | 0.02 (0.05) | 6.070 (0.169) | 0.341 (0.046) | 0.202 (0.085) | |
0.128 | 1.6 | 0.58 (0.05) | 0.05 (0.03) | 3.334 (0.273) | 0.325 (0.024) | −0.032 (0.071) | −0.60 (0.05) | 0.06 (0.04) | 3.354 (0.258) | 0.330 (0.027) | 0.008 (0.076) | |
0.256 | 1.6 | 0.00 (0.03) | 0.00 (0.03) | 0.191 (0.019) | 0.117 (0.008) | −0.002 (0.006) | −0.03 (0.03) | 0.00 (0.03) | 0.191 (0.020) | 0.117 (0.008) | −0.002 (0.006) |
. | . | Population 1 . | . | . | . | . | . | Population 2 . | . | . | . | . |
---|---|---|---|---|---|---|---|---|---|---|---|---|
m . | . | . | . | . | . | . | . | . | . | . | . | . |
0 | 0 | 4.01 (0.04) | −0.05 (0.04) | 0.102 (0.011) | 0.099 (0.010) | 0.000 (0.000) | −3.95 (0.04) | 0.05 (0.04) | 0.101 (0.012) | 0.084 (0.010) | 0.000 (0.000) | |
0.002 | 0 | 3.69 (0.03) | 0.00 (0.03) | 0.597 (0.024) | 0.101 (0.009) | −0.001 (0.002) | −3.77 (0.03) | 0.01 (0.03) | 0.682 (0.030) | 0.103 (0.010) | −0.001 (0.001) | |
0.004 | 0 | 3.67 (0.03) | 0.02 (0.03) | 1.109 (0.041) | 0.104 (0.011) | 0.000 (0.001) | −3.68 (0.03) | 0.03 (0.02) | 1.124 (0.041) | 0.096 (0.011) | 0.000 (0.001) | |
0.008 | 0 | 3.52 (0.03) | −0.01 (0.02) | 1.903 (0.047) | 0.106 (0.007) | 0.001 (0.002) | −3.51 (0.02) | −0.02 (0.02) | 1.865 (0.051) | 0.106 (0.007) | 0.000 (0.002) | |
0.016 | 0 | 3.24 (0.03) | 0.00 (0.02) | 3.108 (0.083) | 0.105 (0.083) | −0.005 (0.002) | −3.22 (0.03) | 0.01 (0.03) | 3.062 (0.079) | 0.106 (0.010) | −0.004 (0.002) | |
0.032 | 0 | 2.81 (0.02) | 0.00 (0.02) | 4.761 (0.107) | 0.108 (0.011) | −0.002 (0.002) | −2.78 (0.03) | 0.01 (0.02) | 4.689 (0.108) | 0.111 (0.011) | −0.001 (0.002) | |
0.064 | 0 | 2.02 (0.04) | 0.04 (0.03) | 6.075 (0.149) | 0.118 (0.010) | −0.001 (0.002) | −2.01 (0.03) | 0.04 (0.03) | 6.045 (0.137) | 0.116 (0.010) | 0.000 (0.002) | |
0.128 | 0 | 0.79 (0.03) | −0.02 (0.02) | 4.348 (0.215) | 0.107 (0.010) | −0.004 (0.002) | −0.80 (0.04) | −0.02 (0.02) | 4.421 (0.228) | 0.108 (0.010) | −0.005 (0.002) | |
0.256 | 0 | 0.03 (0.02) | 0.00 (0.02) | 0.322 (0.042) | 0.109 (0.007) | −0.001 (0.001) | −0.02 (0.02) | 0.00 (0.02) | 0.323 (0.042) | 0.109 (0.007) | −0.001 (0.001) | |
0 | 1.6 | 3.95 (0.04) | 0.00 (0.06) | 0.189 (0.015) | 0.137 (0.011) | 0.001 (0.008) | −4.01 (0.05) | −0.08 (0.05) | 0.162 (0.011) | 0.163 (0.022) | 0.000 (0.011) | |
0.002 | 1.6 | 3.88 (0.05) | −0.07 (0.04) | 0.699 (0.046) | 0.285 (0.034) | −0.010 (0.034) | −3.82 (0.05) | −0.01 (0.04) | 0.667 (0.033) | 0.279 (0.031) | 0.002 (0.014) | |
0.004 | 1.6 | 3.76 (0.05) | −0.09 (0.05) | 1.166 (0.053) | 0.382 (0.043) | −0.014 (0.034) | −3.66 (0.04) | 0.08 (0.05) | 1.065 (0.046) | 0.411 (0.037) | −0.060 (0.031) | |
0.008 | 1.6 | 3.58 (0.04) | 0.04 (0.05) | 1.797 (0.083) | 0.440 (0.056) | 0.012 (0.036) | −3.59 (0.04) | 0.10 (0.05) | 1.798 (0.066) | 0.359 (0.045) | 0.005 (0.039) | |
0.016 | 1.6 | 3.27 (0.05) | −0.05 (0.05) | 2.707 (0.063) | 0.392 (0.072) | 0.005 (0.066) | −3.23 (0.04) | 0.07 (0.06) | 2.771 (0.108) | 0.397 (0.059) | −0.105 (0.064) | |
0.032 | 1.6 | 2.84 (0.06) | −0.03 (0.06) | 4.557 (0.135) | 0.439 (0.061) | −0.135 (0.072) | −2.80 (0.06) | 0.12 (0.05) | 4.347 (0.130) | 0.466 (0.079) | −0.132 (0.084) | |
0.064 | 1.6 | 2.12 (0.04) | 0.16 (0.04) | 6.144 (0.153) | 0.345 (0.050) | 0.161 (0.087) | −2.07 (0.05) | 0.02 (0.05) | 6.070 (0.169) | 0.341 (0.046) | 0.202 (0.085) | |
0.128 | 1.6 | 0.58 (0.05) | 0.05 (0.03) | 3.334 (0.273) | 0.325 (0.024) | −0.032 (0.071) | −0.60 (0.05) | 0.06 (0.04) | 3.354 (0.258) | 0.330 (0.027) | 0.008 (0.076) | |
0.256 | 1.6 | 0.00 (0.03) | 0.00 (0.03) | 0.191 (0.019) | 0.117 (0.008) | −0.002 (0.006) | −0.03 (0.03) | 0.00 (0.03) | 0.191 (0.020) | 0.117 (0.008) | −0.002 (0.006) |
These simulations used the core set of parameter values (Table 1). Each quantitative trait was determined by 4 quantitative trait loci, and these loci were not pleiotropic (i.e., each of the 2 traits was determined by an independent set of loci). The genome consisted of 4 linkage groups, with 1 QTL per trait per linkage group. The epistatic variance () indicates the variance of the normal distribution from which epistatic parameters were drawn, with a value of 0 indicating no epistatic effects. The 2 simulated populations differed with respect to the location of the bivariate optimum. The optimum for trait 1 in population 1 had a value of 4, whereas the trait 1 optimum in population 2 had a value of −4. Both populations had an optimum of 0 for trait 2. This table shows the migration rate (m), the aforementioned epistatic variance (), the means of the 2 traits ( and ), and the total genetic variances and covariance for the 2 traits (, , and ) for each of the 2 populations. Each value is a mean across 30 independent simulations, with the standard error of these means shown in parentheses.
The evolution of local adaptation and the genetic architecture in 2 populations with different trait optima, assuming no pleiotropy
. | . | Population 1 . | . | . | . | . | . | Population 2 . | . | . | . | . |
---|---|---|---|---|---|---|---|---|---|---|---|---|
m . | . | . | . | . | . | . | . | . | . | . | . | . |
0 | 0 | 4.01 (0.04) | −0.05 (0.04) | 0.102 (0.011) | 0.099 (0.010) | 0.000 (0.000) | −3.95 (0.04) | 0.05 (0.04) | 0.101 (0.012) | 0.084 (0.010) | 0.000 (0.000) | |
0.002 | 0 | 3.69 (0.03) | 0.00 (0.03) | 0.597 (0.024) | 0.101 (0.009) | −0.001 (0.002) | −3.77 (0.03) | 0.01 (0.03) | 0.682 (0.030) | 0.103 (0.010) | −0.001 (0.001) | |
0.004 | 0 | 3.67 (0.03) | 0.02 (0.03) | 1.109 (0.041) | 0.104 (0.011) | 0.000 (0.001) | −3.68 (0.03) | 0.03 (0.02) | 1.124 (0.041) | 0.096 (0.011) | 0.000 (0.001) | |
0.008 | 0 | 3.52 (0.03) | −0.01 (0.02) | 1.903 (0.047) | 0.106 (0.007) | 0.001 (0.002) | −3.51 (0.02) | −0.02 (0.02) | 1.865 (0.051) | 0.106 (0.007) | 0.000 (0.002) | |
0.016 | 0 | 3.24 (0.03) | 0.00 (0.02) | 3.108 (0.083) | 0.105 (0.083) | −0.005 (0.002) | −3.22 (0.03) | 0.01 (0.03) | 3.062 (0.079) | 0.106 (0.010) | −0.004 (0.002) | |
0.032 | 0 | 2.81 (0.02) | 0.00 (0.02) | 4.761 (0.107) | 0.108 (0.011) | −0.002 (0.002) | −2.78 (0.03) | 0.01 (0.02) | 4.689 (0.108) | 0.111 (0.011) | −0.001 (0.002) | |
0.064 | 0 | 2.02 (0.04) | 0.04 (0.03) | 6.075 (0.149) | 0.118 (0.010) | −0.001 (0.002) | −2.01 (0.03) | 0.04 (0.03) | 6.045 (0.137) | 0.116 (0.010) | 0.000 (0.002) | |
0.128 | 0 | 0.79 (0.03) | −0.02 (0.02) | 4.348 (0.215) | 0.107 (0.010) | −0.004 (0.002) | −0.80 (0.04) | −0.02 (0.02) | 4.421 (0.228) | 0.108 (0.010) | −0.005 (0.002) | |
0.256 | 0 | 0.03 (0.02) | 0.00 (0.02) | 0.322 (0.042) | 0.109 (0.007) | −0.001 (0.001) | −0.02 (0.02) | 0.00 (0.02) | 0.323 (0.042) | 0.109 (0.007) | −0.001 (0.001) | |
0 | 1.6 | 3.95 (0.04) | 0.00 (0.06) | 0.189 (0.015) | 0.137 (0.011) | 0.001 (0.008) | −4.01 (0.05) | −0.08 (0.05) | 0.162 (0.011) | 0.163 (0.022) | 0.000 (0.011) | |
0.002 | 1.6 | 3.88 (0.05) | −0.07 (0.04) | 0.699 (0.046) | 0.285 (0.034) | −0.010 (0.034) | −3.82 (0.05) | −0.01 (0.04) | 0.667 (0.033) | 0.279 (0.031) | 0.002 (0.014) | |
0.004 | 1.6 | 3.76 (0.05) | −0.09 (0.05) | 1.166 (0.053) | 0.382 (0.043) | −0.014 (0.034) | −3.66 (0.04) | 0.08 (0.05) | 1.065 (0.046) | 0.411 (0.037) | −0.060 (0.031) | |
0.008 | 1.6 | 3.58 (0.04) | 0.04 (0.05) | 1.797 (0.083) | 0.440 (0.056) | 0.012 (0.036) | −3.59 (0.04) | 0.10 (0.05) | 1.798 (0.066) | 0.359 (0.045) | 0.005 (0.039) | |
0.016 | 1.6 | 3.27 (0.05) | −0.05 (0.05) | 2.707 (0.063) | 0.392 (0.072) | 0.005 (0.066) | −3.23 (0.04) | 0.07 (0.06) | 2.771 (0.108) | 0.397 (0.059) | −0.105 (0.064) | |
0.032 | 1.6 | 2.84 (0.06) | −0.03 (0.06) | 4.557 (0.135) | 0.439 (0.061) | −0.135 (0.072) | −2.80 (0.06) | 0.12 (0.05) | 4.347 (0.130) | 0.466 (0.079) | −0.132 (0.084) | |
0.064 | 1.6 | 2.12 (0.04) | 0.16 (0.04) | 6.144 (0.153) | 0.345 (0.050) | 0.161 (0.087) | −2.07 (0.05) | 0.02 (0.05) | 6.070 (0.169) | 0.341 (0.046) | 0.202 (0.085) | |
0.128 | 1.6 | 0.58 (0.05) | 0.05 (0.03) | 3.334 (0.273) | 0.325 (0.024) | −0.032 (0.071) | −0.60 (0.05) | 0.06 (0.04) | 3.354 (0.258) | 0.330 (0.027) | 0.008 (0.076) | |
0.256 | 1.6 | 0.00 (0.03) | 0.00 (0.03) | 0.191 (0.019) | 0.117 (0.008) | −0.002 (0.006) | −0.03 (0.03) | 0.00 (0.03) | 0.191 (0.020) | 0.117 (0.008) | −0.002 (0.006) |
. | . | Population 1 . | . | . | . | . | . | Population 2 . | . | . | . | . |
---|---|---|---|---|---|---|---|---|---|---|---|---|
m . | . | . | . | . | . | . | . | . | . | . | . | . |
0 | 0 | 4.01 (0.04) | −0.05 (0.04) | 0.102 (0.011) | 0.099 (0.010) | 0.000 (0.000) | −3.95 (0.04) | 0.05 (0.04) | 0.101 (0.012) | 0.084 (0.010) | 0.000 (0.000) | |
0.002 | 0 | 3.69 (0.03) | 0.00 (0.03) | 0.597 (0.024) | 0.101 (0.009) | −0.001 (0.002) | −3.77 (0.03) | 0.01 (0.03) | 0.682 (0.030) | 0.103 (0.010) | −0.001 (0.001) | |
0.004 | 0 | 3.67 (0.03) | 0.02 (0.03) | 1.109 (0.041) | 0.104 (0.011) | 0.000 (0.001) | −3.68 (0.03) | 0.03 (0.02) | 1.124 (0.041) | 0.096 (0.011) | 0.000 (0.001) | |
0.008 | 0 | 3.52 (0.03) | −0.01 (0.02) | 1.903 (0.047) | 0.106 (0.007) | 0.001 (0.002) | −3.51 (0.02) | −0.02 (0.02) | 1.865 (0.051) | 0.106 (0.007) | 0.000 (0.002) | |
0.016 | 0 | 3.24 (0.03) | 0.00 (0.02) | 3.108 (0.083) | 0.105 (0.083) | −0.005 (0.002) | −3.22 (0.03) | 0.01 (0.03) | 3.062 (0.079) | 0.106 (0.010) | −0.004 (0.002) | |
0.032 | 0 | 2.81 (0.02) | 0.00 (0.02) | 4.761 (0.107) | 0.108 (0.011) | −0.002 (0.002) | −2.78 (0.03) | 0.01 (0.02) | 4.689 (0.108) | 0.111 (0.011) | −0.001 (0.002) | |
0.064 | 0 | 2.02 (0.04) | 0.04 (0.03) | 6.075 (0.149) | 0.118 (0.010) | −0.001 (0.002) | −2.01 (0.03) | 0.04 (0.03) | 6.045 (0.137) | 0.116 (0.010) | 0.000 (0.002) | |
0.128 | 0 | 0.79 (0.03) | −0.02 (0.02) | 4.348 (0.215) | 0.107 (0.010) | −0.004 (0.002) | −0.80 (0.04) | −0.02 (0.02) | 4.421 (0.228) | 0.108 (0.010) | −0.005 (0.002) | |
0.256 | 0 | 0.03 (0.02) | 0.00 (0.02) | 0.322 (0.042) | 0.109 (0.007) | −0.001 (0.001) | −0.02 (0.02) | 0.00 (0.02) | 0.323 (0.042) | 0.109 (0.007) | −0.001 (0.001) | |
0 | 1.6 | 3.95 (0.04) | 0.00 (0.06) | 0.189 (0.015) | 0.137 (0.011) | 0.001 (0.008) | −4.01 (0.05) | −0.08 (0.05) | 0.162 (0.011) | 0.163 (0.022) | 0.000 (0.011) | |
0.002 | 1.6 | 3.88 (0.05) | −0.07 (0.04) | 0.699 (0.046) | 0.285 (0.034) | −0.010 (0.034) | −3.82 (0.05) | −0.01 (0.04) | 0.667 (0.033) | 0.279 (0.031) | 0.002 (0.014) | |
0.004 | 1.6 | 3.76 (0.05) | −0.09 (0.05) | 1.166 (0.053) | 0.382 (0.043) | −0.014 (0.034) | −3.66 (0.04) | 0.08 (0.05) | 1.065 (0.046) | 0.411 (0.037) | −0.060 (0.031) | |
0.008 | 1.6 | 3.58 (0.04) | 0.04 (0.05) | 1.797 (0.083) | 0.440 (0.056) | 0.012 (0.036) | −3.59 (0.04) | 0.10 (0.05) | 1.798 (0.066) | 0.359 (0.045) | 0.005 (0.039) | |
0.016 | 1.6 | 3.27 (0.05) | −0.05 (0.05) | 2.707 (0.063) | 0.392 (0.072) | 0.005 (0.066) | −3.23 (0.04) | 0.07 (0.06) | 2.771 (0.108) | 0.397 (0.059) | −0.105 (0.064) | |
0.032 | 1.6 | 2.84 (0.06) | −0.03 (0.06) | 4.557 (0.135) | 0.439 (0.061) | −0.135 (0.072) | −2.80 (0.06) | 0.12 (0.05) | 4.347 (0.130) | 0.466 (0.079) | −0.132 (0.084) | |
0.064 | 1.6 | 2.12 (0.04) | 0.16 (0.04) | 6.144 (0.153) | 0.345 (0.050) | 0.161 (0.087) | −2.07 (0.05) | 0.02 (0.05) | 6.070 (0.169) | 0.341 (0.046) | 0.202 (0.085) | |
0.128 | 1.6 | 0.58 (0.05) | 0.05 (0.03) | 3.334 (0.273) | 0.325 (0.024) | −0.032 (0.071) | −0.60 (0.05) | 0.06 (0.04) | 3.354 (0.258) | 0.330 (0.027) | 0.008 (0.076) | |
0.256 | 1.6 | 0.00 (0.03) | 0.00 (0.03) | 0.191 (0.019) | 0.117 (0.008) | −0.002 (0.006) | −0.03 (0.03) | 0.00 (0.03) | 0.191 (0.020) | 0.117 (0.008) | −0.002 (0.006) |
These simulations used the core set of parameter values (Table 1). Each quantitative trait was determined by 4 quantitative trait loci, and these loci were not pleiotropic (i.e., each of the 2 traits was determined by an independent set of loci). The genome consisted of 4 linkage groups, with 1 QTL per trait per linkage group. The epistatic variance () indicates the variance of the normal distribution from which epistatic parameters were drawn, with a value of 0 indicating no epistatic effects. The 2 simulated populations differed with respect to the location of the bivariate optimum. The optimum for trait 1 in population 1 had a value of 4, whereas the trait 1 optimum in population 2 had a value of −4. Both populations had an optimum of 0 for trait 2. This table shows the migration rate (m), the aforementioned epistatic variance (), the means of the 2 traits ( and ), and the total genetic variances and covariance for the 2 traits (, , and ) for each of the 2 populations. Each value is a mean across 30 independent simulations, with the standard error of these means shown in parentheses.
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.