Main parameters of the runs in the Chronos++ suite used in the present work. From left to right, columns define: the presence of radiative cooling or star forming particles, the critical gas number density n* to trigger star formation in the Kravtsov (2003) model, the time-scale for star formation t*, the thermal feedback efficiency, and the magnetic feedback efficiency (ϵSF and ϵSF, b) from star forming regions; the efficiency of Bondi accretion αBondi in the Kim et al. (2011) model for SMBH; the thermal feedback efficiency and the magnetic feedback efficiency (ϵBH and ϵBH, b) from SMBH; the intensity of the initial magnetic field, B0; the presence of sub-grid dynamo amplification at run time; the ID of the run; and some additional descriptive notes. All simulations evolved an |$85^3 \rm Mpc^3$| volume using 10243 cells and dark matter particles, starting at redshift z = 38. The name convention of all runs is consistent with Vazza et al. (2017).
Cooling . | Star form. . | n* . | t* . | ϵSF . | ϵSF, b . | αBondi . | ϵBH . | ϵBH, b . | B0 . | Dynamo . | ID . | Description . |
---|---|---|---|---|---|---|---|---|---|---|---|---|
. | . | [|$1/\rm cm^3$|] . | [|$\rm Gyr$|] . | . | . | . | . | . | [G] . | . | . | . |
n | n | – | – | – | – | – | – | – | 10−9 | no | P(Baseline) | primordial,unifor, |
n | n | – | – | – | – | – | – | – | 10−9 | no | Z2 | primordial, tangled |
n | n | – | – | – | – | – | – | – | 10−18 | |$10 \cdot \epsilon _{\rm dyn}(\mathcal {M})$| | DYN5 | low primordial, efficient dynamo |
n | n | – | – | – | – | – | – | – | 10−18 | ϵdyn = 0.04 | DYN7 | low primordial, inefficient dynamo |
n | n | – | – | – | – | – | – | – | 10−11 | |$\epsilon _{\rm dyn}(\mathcal {M})$| | DYN8 | high primordial, dynamo |
y | y | 0.001 | 1.5 | 10−9 | 0.01 | – | – | – | 10−18 | – | CSF2 | star formation, weak feedback |
y | y | 0.001 | 1.5 | 10−8 | 0.01 | – | – | – | 10−11 | – | CSFB11 | star formation, high primordial field |
y | y | 0.0002 | 1.0 | 10−6 | 0.1 | – | – | – | 10−18 | – | CSF5 | star formation, strong feedback |
y | y | 0.0001 | 1.5 | 10−8 | 0.01 | 103 fix. | 0.05 | 0.01 | 10−18 | – | CSFBH2 | star formation, BH, constant |$(\frac{0.01 \, \mathrm{M}_{\odot }}\,{\rm yr})$| |
y | y | 0.001 | 1.0 | 10−7 | 0.1 | 103 | 0.05 | 0.1 | 10−18 | – | CSFBH3 | star formation, BH, variable accr. rate |
y | y | 0.0002 | 1.0 | 10−7 | 0.1 | 102 | 0.05 | 0.1 | 10−18 | – | CSFBH5 | star formation, BH, strong feedback |
Cooling . | Star form. . | n* . | t* . | ϵSF . | ϵSF, b . | αBondi . | ϵBH . | ϵBH, b . | B0 . | Dynamo . | ID . | Description . |
---|---|---|---|---|---|---|---|---|---|---|---|---|
. | . | [|$1/\rm cm^3$|] . | [|$\rm Gyr$|] . | . | . | . | . | . | [G] . | . | . | . |
n | n | – | – | – | – | – | – | – | 10−9 | no | P(Baseline) | primordial,unifor, |
n | n | – | – | – | – | – | – | – | 10−9 | no | Z2 | primordial, tangled |
n | n | – | – | – | – | – | – | – | 10−18 | |$10 \cdot \epsilon _{\rm dyn}(\mathcal {M})$| | DYN5 | low primordial, efficient dynamo |
n | n | – | – | – | – | – | – | – | 10−18 | ϵdyn = 0.04 | DYN7 | low primordial, inefficient dynamo |
n | n | – | – | – | – | – | – | – | 10−11 | |$\epsilon _{\rm dyn}(\mathcal {M})$| | DYN8 | high primordial, dynamo |
y | y | 0.001 | 1.5 | 10−9 | 0.01 | – | – | – | 10−18 | – | CSF2 | star formation, weak feedback |
y | y | 0.001 | 1.5 | 10−8 | 0.01 | – | – | – | 10−11 | – | CSFB11 | star formation, high primordial field |
y | y | 0.0002 | 1.0 | 10−6 | 0.1 | – | – | – | 10−18 | – | CSF5 | star formation, strong feedback |
y | y | 0.0001 | 1.5 | 10−8 | 0.01 | 103 fix. | 0.05 | 0.01 | 10−18 | – | CSFBH2 | star formation, BH, constant |$(\frac{0.01 \, \mathrm{M}_{\odot }}\,{\rm yr})$| |
y | y | 0.001 | 1.0 | 10−7 | 0.1 | 103 | 0.05 | 0.1 | 10−18 | – | CSFBH3 | star formation, BH, variable accr. rate |
y | y | 0.0002 | 1.0 | 10−7 | 0.1 | 102 | 0.05 | 0.1 | 10−18 | – | CSFBH5 | star formation, BH, strong feedback |
Main parameters of the runs in the Chronos++ suite used in the present work. From left to right, columns define: the presence of radiative cooling or star forming particles, the critical gas number density n* to trigger star formation in the Kravtsov (2003) model, the time-scale for star formation t*, the thermal feedback efficiency, and the magnetic feedback efficiency (ϵSF and ϵSF, b) from star forming regions; the efficiency of Bondi accretion αBondi in the Kim et al. (2011) model for SMBH; the thermal feedback efficiency and the magnetic feedback efficiency (ϵBH and ϵBH, b) from SMBH; the intensity of the initial magnetic field, B0; the presence of sub-grid dynamo amplification at run time; the ID of the run; and some additional descriptive notes. All simulations evolved an |$85^3 \rm Mpc^3$| volume using 10243 cells and dark matter particles, starting at redshift z = 38. The name convention of all runs is consistent with Vazza et al. (2017).
Cooling . | Star form. . | n* . | t* . | ϵSF . | ϵSF, b . | αBondi . | ϵBH . | ϵBH, b . | B0 . | Dynamo . | ID . | Description . |
---|---|---|---|---|---|---|---|---|---|---|---|---|
. | . | [|$1/\rm cm^3$|] . | [|$\rm Gyr$|] . | . | . | . | . | . | [G] . | . | . | . |
n | n | – | – | – | – | – | – | – | 10−9 | no | P(Baseline) | primordial,unifor, |
n | n | – | – | – | – | – | – | – | 10−9 | no | Z2 | primordial, tangled |
n | n | – | – | – | – | – | – | – | 10−18 | |$10 \cdot \epsilon _{\rm dyn}(\mathcal {M})$| | DYN5 | low primordial, efficient dynamo |
n | n | – | – | – | – | – | – | – | 10−18 | ϵdyn = 0.04 | DYN7 | low primordial, inefficient dynamo |
n | n | – | – | – | – | – | – | – | 10−11 | |$\epsilon _{\rm dyn}(\mathcal {M})$| | DYN8 | high primordial, dynamo |
y | y | 0.001 | 1.5 | 10−9 | 0.01 | – | – | – | 10−18 | – | CSF2 | star formation, weak feedback |
y | y | 0.001 | 1.5 | 10−8 | 0.01 | – | – | – | 10−11 | – | CSFB11 | star formation, high primordial field |
y | y | 0.0002 | 1.0 | 10−6 | 0.1 | – | – | – | 10−18 | – | CSF5 | star formation, strong feedback |
y | y | 0.0001 | 1.5 | 10−8 | 0.01 | 103 fix. | 0.05 | 0.01 | 10−18 | – | CSFBH2 | star formation, BH, constant |$(\frac{0.01 \, \mathrm{M}_{\odot }}\,{\rm yr})$| |
y | y | 0.001 | 1.0 | 10−7 | 0.1 | 103 | 0.05 | 0.1 | 10−18 | – | CSFBH3 | star formation, BH, variable accr. rate |
y | y | 0.0002 | 1.0 | 10−7 | 0.1 | 102 | 0.05 | 0.1 | 10−18 | – | CSFBH5 | star formation, BH, strong feedback |
Cooling . | Star form. . | n* . | t* . | ϵSF . | ϵSF, b . | αBondi . | ϵBH . | ϵBH, b . | B0 . | Dynamo . | ID . | Description . |
---|---|---|---|---|---|---|---|---|---|---|---|---|
. | . | [|$1/\rm cm^3$|] . | [|$\rm Gyr$|] . | . | . | . | . | . | [G] . | . | . | . |
n | n | – | – | – | – | – | – | – | 10−9 | no | P(Baseline) | primordial,unifor, |
n | n | – | – | – | – | – | – | – | 10−9 | no | Z2 | primordial, tangled |
n | n | – | – | – | – | – | – | – | 10−18 | |$10 \cdot \epsilon _{\rm dyn}(\mathcal {M})$| | DYN5 | low primordial, efficient dynamo |
n | n | – | – | – | – | – | – | – | 10−18 | ϵdyn = 0.04 | DYN7 | low primordial, inefficient dynamo |
n | n | – | – | – | – | – | – | – | 10−11 | |$\epsilon _{\rm dyn}(\mathcal {M})$| | DYN8 | high primordial, dynamo |
y | y | 0.001 | 1.5 | 10−9 | 0.01 | – | – | – | 10−18 | – | CSF2 | star formation, weak feedback |
y | y | 0.001 | 1.5 | 10−8 | 0.01 | – | – | – | 10−11 | – | CSFB11 | star formation, high primordial field |
y | y | 0.0002 | 1.0 | 10−6 | 0.1 | – | – | – | 10−18 | – | CSF5 | star formation, strong feedback |
y | y | 0.0001 | 1.5 | 10−8 | 0.01 | 103 fix. | 0.05 | 0.01 | 10−18 | – | CSFBH2 | star formation, BH, constant |$(\frac{0.01 \, \mathrm{M}_{\odot }}\,{\rm yr})$| |
y | y | 0.001 | 1.0 | 10−7 | 0.1 | 103 | 0.05 | 0.1 | 10−18 | – | CSFBH3 | star formation, BH, variable accr. rate |
y | y | 0.0002 | 1.0 | 10−7 | 0.1 | 102 | 0.05 | 0.1 | 10−18 | – | CSFBH5 | star formation, BH, strong feedback |
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.