Table 1.

Main parameters of the runs in the Chronos++ suite used in the present work. From left to right, columns define: the presence of radiative cooling or star forming particles, the critical gas number density n* to trigger star formation in the Kravtsov (2003) model, the time-scale for star formation t*, the thermal feedback efficiency, and the magnetic feedback efficiency (ϵSF and ϵSF, b) from star forming regions; the efficiency of Bondi accretion αBondi in the Kim et al. (2011) model for SMBH; the thermal feedback efficiency and the magnetic feedback efficiency (ϵBH and ϵBH, b) from SMBH; the intensity of the initial magnetic field, B0; the presence of sub-grid dynamo amplification at run time; the ID of the run; and some additional descriptive notes. All simulations evolved an |$85^3 \rm Mpc^3$| volume using 10243 cells and dark matter particles, starting at redshift z = 38. The name convention of all runs is consistent with Vazza et al. (2017).

CoolingStar form.n*t*ϵSFϵSF, bαBondiϵBHϵBH, bB0DynamoIDDescription
[|$1/\rm cm^3$|][|$\rm Gyr$|][G]
nn10−9noP(Baseline)primordial,unifor,
nn10−9noZ2primordial, tangled
nn10−18|$10 \cdot \epsilon _{\rm dyn}(\mathcal {M})$|DYN5low primordial, efficient dynamo
nn10−18ϵdyn = 0.04DYN7low primordial, inefficient dynamo
nn10−11|$\epsilon _{\rm dyn}(\mathcal {M})$|DYN8high primordial, dynamo
yy0.0011.510−90.0110−18CSF2star formation, weak feedback
yy0.0011.510−80.0110−11CSFB11star formation, high primordial field
yy0.00021.010−60.110−18CSF5star formation, strong feedback
yy0.00011.510−80.01103 fix.0.050.0110−18CSFBH2star formation, BH, constant |$(\frac{0.01 \, \mathrm{M}_{\odot }}\,{\rm yr})$|
yy0.0011.010−70.11030.050.110−18CSFBH3star formation, BH, variable accr. rate
yy0.00021.010−70.11020.050.110−18CSFBH5star formation, BH, strong feedback
CoolingStar form.n*t*ϵSFϵSF, bαBondiϵBHϵBH, bB0DynamoIDDescription
[|$1/\rm cm^3$|][|$\rm Gyr$|][G]
nn10−9noP(Baseline)primordial,unifor,
nn10−9noZ2primordial, tangled
nn10−18|$10 \cdot \epsilon _{\rm dyn}(\mathcal {M})$|DYN5low primordial, efficient dynamo
nn10−18ϵdyn = 0.04DYN7low primordial, inefficient dynamo
nn10−11|$\epsilon _{\rm dyn}(\mathcal {M})$|DYN8high primordial, dynamo
yy0.0011.510−90.0110−18CSF2star formation, weak feedback
yy0.0011.510−80.0110−11CSFB11star formation, high primordial field
yy0.00021.010−60.110−18CSF5star formation, strong feedback
yy0.00011.510−80.01103 fix.0.050.0110−18CSFBH2star formation, BH, constant |$(\frac{0.01 \, \mathrm{M}_{\odot }}\,{\rm yr})$|
yy0.0011.010−70.11030.050.110−18CSFBH3star formation, BH, variable accr. rate
yy0.00021.010−70.11020.050.110−18CSFBH5star formation, BH, strong feedback
Table 1.

Main parameters of the runs in the Chronos++ suite used in the present work. From left to right, columns define: the presence of radiative cooling or star forming particles, the critical gas number density n* to trigger star formation in the Kravtsov (2003) model, the time-scale for star formation t*, the thermal feedback efficiency, and the magnetic feedback efficiency (ϵSF and ϵSF, b) from star forming regions; the efficiency of Bondi accretion αBondi in the Kim et al. (2011) model for SMBH; the thermal feedback efficiency and the magnetic feedback efficiency (ϵBH and ϵBH, b) from SMBH; the intensity of the initial magnetic field, B0; the presence of sub-grid dynamo amplification at run time; the ID of the run; and some additional descriptive notes. All simulations evolved an |$85^3 \rm Mpc^3$| volume using 10243 cells and dark matter particles, starting at redshift z = 38. The name convention of all runs is consistent with Vazza et al. (2017).

CoolingStar form.n*t*ϵSFϵSF, bαBondiϵBHϵBH, bB0DynamoIDDescription
[|$1/\rm cm^3$|][|$\rm Gyr$|][G]
nn10−9noP(Baseline)primordial,unifor,
nn10−9noZ2primordial, tangled
nn10−18|$10 \cdot \epsilon _{\rm dyn}(\mathcal {M})$|DYN5low primordial, efficient dynamo
nn10−18ϵdyn = 0.04DYN7low primordial, inefficient dynamo
nn10−11|$\epsilon _{\rm dyn}(\mathcal {M})$|DYN8high primordial, dynamo
yy0.0011.510−90.0110−18CSF2star formation, weak feedback
yy0.0011.510−80.0110−11CSFB11star formation, high primordial field
yy0.00021.010−60.110−18CSF5star formation, strong feedback
yy0.00011.510−80.01103 fix.0.050.0110−18CSFBH2star formation, BH, constant |$(\frac{0.01 \, \mathrm{M}_{\odot }}\,{\rm yr})$|
yy0.0011.010−70.11030.050.110−18CSFBH3star formation, BH, variable accr. rate
yy0.00021.010−70.11020.050.110−18CSFBH5star formation, BH, strong feedback
CoolingStar form.n*t*ϵSFϵSF, bαBondiϵBHϵBH, bB0DynamoIDDescription
[|$1/\rm cm^3$|][|$\rm Gyr$|][G]
nn10−9noP(Baseline)primordial,unifor,
nn10−9noZ2primordial, tangled
nn10−18|$10 \cdot \epsilon _{\rm dyn}(\mathcal {M})$|DYN5low primordial, efficient dynamo
nn10−18ϵdyn = 0.04DYN7low primordial, inefficient dynamo
nn10−11|$\epsilon _{\rm dyn}(\mathcal {M})$|DYN8high primordial, dynamo
yy0.0011.510−90.0110−18CSF2star formation, weak feedback
yy0.0011.510−80.0110−11CSFB11star formation, high primordial field
yy0.00021.010−60.110−18CSF5star formation, strong feedback
yy0.00011.510−80.01103 fix.0.050.0110−18CSFBH2star formation, BH, constant |$(\frac{0.01 \, \mathrm{M}_{\odot }}\,{\rm yr})$|
yy0.0011.010−70.11030.050.110−18CSFBH3star formation, BH, variable accr. rate
yy0.00021.010−70.11020.050.110−18CSFBH5star formation, BH, strong feedback
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close