Table 7.

Overview of collated model parameters and arising physical properties of the lens and source systems.

Lens binarySource binary
Collated model parameters
Microlensing parallax parameterπE = 0.41 ± 0.01πE = 0.39 ± 0.01
Source size parameterρ = (10.4 ± 1.6) × 10−4|$\rho _\star ^{\mbox{(1)}} = (7.6 \pm 0.5) \times 10^{-3}$|
|$\rho _\star ^{\mbox{(2)}} = (1.6 \pm 0.1) \times 10^{-3}$|
Mass ratioq = (3.9 ± 0.3) × 10−4
Luminosity offset ratioωI = 0.042 ± 0.003
Event time-scaletE = (264 ± 17) dtE = (309 ± 19) d
Binary separation parameterd(c) = 0.718 ± 0.009λcis = 0.0087 ± 0.0008
d(w) = 1.403 ± 0.014λtrans = 0.0107 ± 0.0009
Source distanceDS = (8.5 ± 2.0) kpc
Baseline magnitude|$I_\mathrm{base}^{\mathrm{OGLE}}= 19.04$|
Lens star (system)
Mass of starM1 = (0.35 ± 0.06) MM = (0.046 ± 0.007) M
Mass of planetM2 = (45 ± 9) M
Angular Einstein radiusθE = (1.2 ± 0.2) masθE = (0.15 ± 0.02) mas
Effective proper motion|$\mu = (4.4 \pm 0.8)~\mu \mbox{as}\;\mbox{d}^{-1}$||$\mu = (0.47 \pm 0.08)~\mu \mbox{as}\;\mbox{d}^{-1}$|
=(1.6 ± 0.3) mas yr−1=(0.17 ± 0.03) mas yr−1
Lens-source parallaxπLS = (0.48 ± 0.09) masπLS = (0.057 ± 0.009) mas
Lens distanceDL = (1.7 ± 0.3) kpcDL = (5.7 ± 0.9) kpc
Effective lens velocityv = (13 ± 3) km s−1v = (4.7 ± 1.1) km s−1
Einstein radiusrE = (2.0 ± 0.5) aurE = (0.84 ± 0.19) au
Current projected separation|$r_{0,\perp }^{(\mathrm{c})} = (1.4 \pm 0.3)~\mbox{au}$|
|$r_{0,\perp }^{(\mathrm{w})} = (2.7 \pm 0.6)~\mbox{au}$|
Minimal orbital period|$P_\mathrm{min}^{(\mathrm{c})} = (1.0 \pm 0.4)~\mbox{yr}$|
|$P_\mathrm{min}^{(\mathrm{w})} = (2.7 \pm 1.0)~\mbox{yr}$|
Source star (system)/microlensing target
Right ascension (J2000)|$\mbox{RA} = 17{^{\rm h}_{.}}41{^{\rm m}_{.}}59{^{\rm s}_{.}}63$|
Declination (J2000)Dec. = −34|${^{\circ}_{.}}$|17|${^{\prime}_{.}}$|18|${^{\prime\prime}_{.}}$|1
De-reddened red clump colour/mag(VI, I)RC, 0 = (1.06, 14.62)
Red clump colour/mag(VI, I)RC = (3.19 ± 0.01, 17.06 ± 0.02)
Source colour/mag(VI, I) = (2.76 ± 0.05, 19.42 ± 0.12)(VI, I) = (2.75 ± 0.05, 19.54 ± 0.06)
De-reddened source colour/mag(VI, I)0 = (0.63 ± 0.05, 16.98 ± 0.12)(VI, I)0 = (0.62 ± 0.05, 17.10 ± 0.07)
De-reddened source colour/mag (1)|$(V-I,I)_0^{\mbox{(1)}}=(0.62\pm 0.14, 17.15\pm 0.07)$|
De-reddened source colour/mag (2)|$(V-I,I)_0^{\mbox{(2)}}=(0.63 \pm 0.18, 20.54\pm 0.10)$|
Type of sourceF V, G IVF V, G IV / G VI
Angular radius of source|$\theta _\star = (1.21 \pm 0.11)~\mu \mbox{as}$||$\theta _\star ^{\mbox{(1)}} = (1.11 \pm 0.16)~\mu \mbox{as}$|
|$\theta _\star ^{\mbox{(2)}} = (0.23 \pm 0.04)~\mu \mbox{as}$|
Physical radius of sourceR = (2.2 ± 0.6) R|$R_\star ^{\mbox{(1)}} = (2.0 \pm 0.6)~{\rm R}_\odot$|
|$R_\star ^{\mbox{(2)}} = (0.43 \pm 0.13)~{\rm R}_\odot$|
Angular separation of constituents|$\beta ^\mathrm{cis} = (1.3 \pm 0.2)~\rm{\mu as}$|
|$\beta ^\mathrm{trans} = (1.6 \pm 0.3)~\rm{\mu as}$|
Current projected separation|$\rho _\perp ^\mathrm{cis} =(0.011 \pm 0.003)~\mbox{au}$|
|$\rho _\perp ^\mathrm{trans} = (0.013 \pm 0.004)~\mbox{au}$|
Minimal orbital period|$P_\mathrm{S,min}^\mathrm{cis} = (0.10 \pm 0.05)~\mbox{d}$|
|$P_\mathrm{S,min}^\mathrm{trans} = (0.14 \pm 0.06)~\mbox{d}$|
Lens binarySource binary
Collated model parameters
Microlensing parallax parameterπE = 0.41 ± 0.01πE = 0.39 ± 0.01
Source size parameterρ = (10.4 ± 1.6) × 10−4|$\rho _\star ^{\mbox{(1)}} = (7.6 \pm 0.5) \times 10^{-3}$|
|$\rho _\star ^{\mbox{(2)}} = (1.6 \pm 0.1) \times 10^{-3}$|
Mass ratioq = (3.9 ± 0.3) × 10−4
Luminosity offset ratioωI = 0.042 ± 0.003
Event time-scaletE = (264 ± 17) dtE = (309 ± 19) d
Binary separation parameterd(c) = 0.718 ± 0.009λcis = 0.0087 ± 0.0008
d(w) = 1.403 ± 0.014λtrans = 0.0107 ± 0.0009
Source distanceDS = (8.5 ± 2.0) kpc
Baseline magnitude|$I_\mathrm{base}^{\mathrm{OGLE}}= 19.04$|
Lens star (system)
Mass of starM1 = (0.35 ± 0.06) MM = (0.046 ± 0.007) M
Mass of planetM2 = (45 ± 9) M
Angular Einstein radiusθE = (1.2 ± 0.2) masθE = (0.15 ± 0.02) mas
Effective proper motion|$\mu = (4.4 \pm 0.8)~\mu \mbox{as}\;\mbox{d}^{-1}$||$\mu = (0.47 \pm 0.08)~\mu \mbox{as}\;\mbox{d}^{-1}$|
=(1.6 ± 0.3) mas yr−1=(0.17 ± 0.03) mas yr−1
Lens-source parallaxπLS = (0.48 ± 0.09) masπLS = (0.057 ± 0.009) mas
Lens distanceDL = (1.7 ± 0.3) kpcDL = (5.7 ± 0.9) kpc
Effective lens velocityv = (13 ± 3) km s−1v = (4.7 ± 1.1) km s−1
Einstein radiusrE = (2.0 ± 0.5) aurE = (0.84 ± 0.19) au
Current projected separation|$r_{0,\perp }^{(\mathrm{c})} = (1.4 \pm 0.3)~\mbox{au}$|
|$r_{0,\perp }^{(\mathrm{w})} = (2.7 \pm 0.6)~\mbox{au}$|
Minimal orbital period|$P_\mathrm{min}^{(\mathrm{c})} = (1.0 \pm 0.4)~\mbox{yr}$|
|$P_\mathrm{min}^{(\mathrm{w})} = (2.7 \pm 1.0)~\mbox{yr}$|
Source star (system)/microlensing target
Right ascension (J2000)|$\mbox{RA} = 17{^{\rm h}_{.}}41{^{\rm m}_{.}}59{^{\rm s}_{.}}63$|
Declination (J2000)Dec. = −34|${^{\circ}_{.}}$|17|${^{\prime}_{.}}$|18|${^{\prime\prime}_{.}}$|1
De-reddened red clump colour/mag(VI, I)RC, 0 = (1.06, 14.62)
Red clump colour/mag(VI, I)RC = (3.19 ± 0.01, 17.06 ± 0.02)
Source colour/mag(VI, I) = (2.76 ± 0.05, 19.42 ± 0.12)(VI, I) = (2.75 ± 0.05, 19.54 ± 0.06)
De-reddened source colour/mag(VI, I)0 = (0.63 ± 0.05, 16.98 ± 0.12)(VI, I)0 = (0.62 ± 0.05, 17.10 ± 0.07)
De-reddened source colour/mag (1)|$(V-I,I)_0^{\mbox{(1)}}=(0.62\pm 0.14, 17.15\pm 0.07)$|
De-reddened source colour/mag (2)|$(V-I,I)_0^{\mbox{(2)}}=(0.63 \pm 0.18, 20.54\pm 0.10)$|
Type of sourceF V, G IVF V, G IV / G VI
Angular radius of source|$\theta _\star = (1.21 \pm 0.11)~\mu \mbox{as}$||$\theta _\star ^{\mbox{(1)}} = (1.11 \pm 0.16)~\mu \mbox{as}$|
|$\theta _\star ^{\mbox{(2)}} = (0.23 \pm 0.04)~\mu \mbox{as}$|
Physical radius of sourceR = (2.2 ± 0.6) R|$R_\star ^{\mbox{(1)}} = (2.0 \pm 0.6)~{\rm R}_\odot$|
|$R_\star ^{\mbox{(2)}} = (0.43 \pm 0.13)~{\rm R}_\odot$|
Angular separation of constituents|$\beta ^\mathrm{cis} = (1.3 \pm 0.2)~\rm{\mu as}$|
|$\beta ^\mathrm{trans} = (1.6 \pm 0.3)~\rm{\mu as}$|
Current projected separation|$\rho _\perp ^\mathrm{cis} =(0.011 \pm 0.003)~\mbox{au}$|
|$\rho _\perp ^\mathrm{trans} = (0.013 \pm 0.004)~\mbox{au}$|
Minimal orbital period|$P_\mathrm{S,min}^\mathrm{cis} = (0.10 \pm 0.05)~\mbox{d}$|
|$P_\mathrm{S,min}^\mathrm{trans} = (0.14 \pm 0.06)~\mbox{d}$|
Table 7.

Overview of collated model parameters and arising physical properties of the lens and source systems.

Lens binarySource binary
Collated model parameters
Microlensing parallax parameterπE = 0.41 ± 0.01πE = 0.39 ± 0.01
Source size parameterρ = (10.4 ± 1.6) × 10−4|$\rho _\star ^{\mbox{(1)}} = (7.6 \pm 0.5) \times 10^{-3}$|
|$\rho _\star ^{\mbox{(2)}} = (1.6 \pm 0.1) \times 10^{-3}$|
Mass ratioq = (3.9 ± 0.3) × 10−4
Luminosity offset ratioωI = 0.042 ± 0.003
Event time-scaletE = (264 ± 17) dtE = (309 ± 19) d
Binary separation parameterd(c) = 0.718 ± 0.009λcis = 0.0087 ± 0.0008
d(w) = 1.403 ± 0.014λtrans = 0.0107 ± 0.0009
Source distanceDS = (8.5 ± 2.0) kpc
Baseline magnitude|$I_\mathrm{base}^{\mathrm{OGLE}}= 19.04$|
Lens star (system)
Mass of starM1 = (0.35 ± 0.06) MM = (0.046 ± 0.007) M
Mass of planetM2 = (45 ± 9) M
Angular Einstein radiusθE = (1.2 ± 0.2) masθE = (0.15 ± 0.02) mas
Effective proper motion|$\mu = (4.4 \pm 0.8)~\mu \mbox{as}\;\mbox{d}^{-1}$||$\mu = (0.47 \pm 0.08)~\mu \mbox{as}\;\mbox{d}^{-1}$|
=(1.6 ± 0.3) mas yr−1=(0.17 ± 0.03) mas yr−1
Lens-source parallaxπLS = (0.48 ± 0.09) masπLS = (0.057 ± 0.009) mas
Lens distanceDL = (1.7 ± 0.3) kpcDL = (5.7 ± 0.9) kpc
Effective lens velocityv = (13 ± 3) km s−1v = (4.7 ± 1.1) km s−1
Einstein radiusrE = (2.0 ± 0.5) aurE = (0.84 ± 0.19) au
Current projected separation|$r_{0,\perp }^{(\mathrm{c})} = (1.4 \pm 0.3)~\mbox{au}$|
|$r_{0,\perp }^{(\mathrm{w})} = (2.7 \pm 0.6)~\mbox{au}$|
Minimal orbital period|$P_\mathrm{min}^{(\mathrm{c})} = (1.0 \pm 0.4)~\mbox{yr}$|
|$P_\mathrm{min}^{(\mathrm{w})} = (2.7 \pm 1.0)~\mbox{yr}$|
Source star (system)/microlensing target
Right ascension (J2000)|$\mbox{RA} = 17{^{\rm h}_{.}}41{^{\rm m}_{.}}59{^{\rm s}_{.}}63$|
Declination (J2000)Dec. = −34|${^{\circ}_{.}}$|17|${^{\prime}_{.}}$|18|${^{\prime\prime}_{.}}$|1
De-reddened red clump colour/mag(VI, I)RC, 0 = (1.06, 14.62)
Red clump colour/mag(VI, I)RC = (3.19 ± 0.01, 17.06 ± 0.02)
Source colour/mag(VI, I) = (2.76 ± 0.05, 19.42 ± 0.12)(VI, I) = (2.75 ± 0.05, 19.54 ± 0.06)
De-reddened source colour/mag(VI, I)0 = (0.63 ± 0.05, 16.98 ± 0.12)(VI, I)0 = (0.62 ± 0.05, 17.10 ± 0.07)
De-reddened source colour/mag (1)|$(V-I,I)_0^{\mbox{(1)}}=(0.62\pm 0.14, 17.15\pm 0.07)$|
De-reddened source colour/mag (2)|$(V-I,I)_0^{\mbox{(2)}}=(0.63 \pm 0.18, 20.54\pm 0.10)$|
Type of sourceF V, G IVF V, G IV / G VI
Angular radius of source|$\theta _\star = (1.21 \pm 0.11)~\mu \mbox{as}$||$\theta _\star ^{\mbox{(1)}} = (1.11 \pm 0.16)~\mu \mbox{as}$|
|$\theta _\star ^{\mbox{(2)}} = (0.23 \pm 0.04)~\mu \mbox{as}$|
Physical radius of sourceR = (2.2 ± 0.6) R|$R_\star ^{\mbox{(1)}} = (2.0 \pm 0.6)~{\rm R}_\odot$|
|$R_\star ^{\mbox{(2)}} = (0.43 \pm 0.13)~{\rm R}_\odot$|
Angular separation of constituents|$\beta ^\mathrm{cis} = (1.3 \pm 0.2)~\rm{\mu as}$|
|$\beta ^\mathrm{trans} = (1.6 \pm 0.3)~\rm{\mu as}$|
Current projected separation|$\rho _\perp ^\mathrm{cis} =(0.011 \pm 0.003)~\mbox{au}$|
|$\rho _\perp ^\mathrm{trans} = (0.013 \pm 0.004)~\mbox{au}$|
Minimal orbital period|$P_\mathrm{S,min}^\mathrm{cis} = (0.10 \pm 0.05)~\mbox{d}$|
|$P_\mathrm{S,min}^\mathrm{trans} = (0.14 \pm 0.06)~\mbox{d}$|
Lens binarySource binary
Collated model parameters
Microlensing parallax parameterπE = 0.41 ± 0.01πE = 0.39 ± 0.01
Source size parameterρ = (10.4 ± 1.6) × 10−4|$\rho _\star ^{\mbox{(1)}} = (7.6 \pm 0.5) \times 10^{-3}$|
|$\rho _\star ^{\mbox{(2)}} = (1.6 \pm 0.1) \times 10^{-3}$|
Mass ratioq = (3.9 ± 0.3) × 10−4
Luminosity offset ratioωI = 0.042 ± 0.003
Event time-scaletE = (264 ± 17) dtE = (309 ± 19) d
Binary separation parameterd(c) = 0.718 ± 0.009λcis = 0.0087 ± 0.0008
d(w) = 1.403 ± 0.014λtrans = 0.0107 ± 0.0009
Source distanceDS = (8.5 ± 2.0) kpc
Baseline magnitude|$I_\mathrm{base}^{\mathrm{OGLE}}= 19.04$|
Lens star (system)
Mass of starM1 = (0.35 ± 0.06) MM = (0.046 ± 0.007) M
Mass of planetM2 = (45 ± 9) M
Angular Einstein radiusθE = (1.2 ± 0.2) masθE = (0.15 ± 0.02) mas
Effective proper motion|$\mu = (4.4 \pm 0.8)~\mu \mbox{as}\;\mbox{d}^{-1}$||$\mu = (0.47 \pm 0.08)~\mu \mbox{as}\;\mbox{d}^{-1}$|
=(1.6 ± 0.3) mas yr−1=(0.17 ± 0.03) mas yr−1
Lens-source parallaxπLS = (0.48 ± 0.09) masπLS = (0.057 ± 0.009) mas
Lens distanceDL = (1.7 ± 0.3) kpcDL = (5.7 ± 0.9) kpc
Effective lens velocityv = (13 ± 3) km s−1v = (4.7 ± 1.1) km s−1
Einstein radiusrE = (2.0 ± 0.5) aurE = (0.84 ± 0.19) au
Current projected separation|$r_{0,\perp }^{(\mathrm{c})} = (1.4 \pm 0.3)~\mbox{au}$|
|$r_{0,\perp }^{(\mathrm{w})} = (2.7 \pm 0.6)~\mbox{au}$|
Minimal orbital period|$P_\mathrm{min}^{(\mathrm{c})} = (1.0 \pm 0.4)~\mbox{yr}$|
|$P_\mathrm{min}^{(\mathrm{w})} = (2.7 \pm 1.0)~\mbox{yr}$|
Source star (system)/microlensing target
Right ascension (J2000)|$\mbox{RA} = 17{^{\rm h}_{.}}41{^{\rm m}_{.}}59{^{\rm s}_{.}}63$|
Declination (J2000)Dec. = −34|${^{\circ}_{.}}$|17|${^{\prime}_{.}}$|18|${^{\prime\prime}_{.}}$|1
De-reddened red clump colour/mag(VI, I)RC, 0 = (1.06, 14.62)
Red clump colour/mag(VI, I)RC = (3.19 ± 0.01, 17.06 ± 0.02)
Source colour/mag(VI, I) = (2.76 ± 0.05, 19.42 ± 0.12)(VI, I) = (2.75 ± 0.05, 19.54 ± 0.06)
De-reddened source colour/mag(VI, I)0 = (0.63 ± 0.05, 16.98 ± 0.12)(VI, I)0 = (0.62 ± 0.05, 17.10 ± 0.07)
De-reddened source colour/mag (1)|$(V-I,I)_0^{\mbox{(1)}}=(0.62\pm 0.14, 17.15\pm 0.07)$|
De-reddened source colour/mag (2)|$(V-I,I)_0^{\mbox{(2)}}=(0.63 \pm 0.18, 20.54\pm 0.10)$|
Type of sourceF V, G IVF V, G IV / G VI
Angular radius of source|$\theta _\star = (1.21 \pm 0.11)~\mu \mbox{as}$||$\theta _\star ^{\mbox{(1)}} = (1.11 \pm 0.16)~\mu \mbox{as}$|
|$\theta _\star ^{\mbox{(2)}} = (0.23 \pm 0.04)~\mu \mbox{as}$|
Physical radius of sourceR = (2.2 ± 0.6) R|$R_\star ^{\mbox{(1)}} = (2.0 \pm 0.6)~{\rm R}_\odot$|
|$R_\star ^{\mbox{(2)}} = (0.43 \pm 0.13)~{\rm R}_\odot$|
Angular separation of constituents|$\beta ^\mathrm{cis} = (1.3 \pm 0.2)~\rm{\mu as}$|
|$\beta ^\mathrm{trans} = (1.6 \pm 0.3)~\rm{\mu as}$|
Current projected separation|$\rho _\perp ^\mathrm{cis} =(0.011 \pm 0.003)~\mbox{au}$|
|$\rho _\perp ^\mathrm{trans} = (0.013 \pm 0.004)~\mbox{au}$|
Minimal orbital period|$P_\mathrm{S,min}^\mathrm{cis} = (0.10 \pm 0.05)~\mbox{d}$|
|$P_\mathrm{S,min}^\mathrm{trans} = (0.14 \pm 0.06)~\mbox{d}$|
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close