Table 3.

Table summarizing the dynamical fit solution. Parameter values as the MLE and HDI at 68.27 per cent equivalent. Dynamical parameters are computed at the epoch of reference BJD|$_\textrm{TDB}\, 2455088.212$|⁠.

ParameterKepler-9bKepler-9c
Fitted dynamical model
Mp/M|$0.000128_{-0.000002}^{+0.000001}$||$0.000088_{-0.000001}^{+0.000001}$|
Pp (day)|$19.23891_{-0.00006}^{+0.00006}$||$38.9853_{-0.0003}^{+0.0003}$|
|$\sqrt{e}\cos (\omega _\mathrm{p})$||$0.24651_{-0.0027}^{+0.0021}$||$-0.2526_{-0.0003}^{+0.0003}$|
|$\sqrt{e}\sin (\omega _\mathrm{p})$||$-0.014_{-0.002}^{+0.002}$||$0.0559_{-0.0005}^{+0.0005}$|
i (°)|$88.982_{-0.005}^{+0.007}$|
icos (Ωp)|$-89.172_{-0.005}^{+0.002}$|
isin (Ωp)|$1.7_{-0.5}^{+0.2}$|
λp (°)(a)|$179.49_{-0.11}^{+0.15}$||$293.9_{-0.1}^{+0.3}$|
Derived dynamical model
Mp (M)|$43.4_{-2.0}^{+1.6}$||$29.9_{-1.3}^{+1.1}$|
ρp (g cm−3)|$0.42_{-0.09}^{+0.06}$||$0.31_{-0.06}^{+0.05}$|
ep|$0.0609_{-0.0013}^{+0.0010}$||$0.06691_{-0.00012}^{+0.00010}$|
ωp (°)|$357.0_{-0.4}^{+0.5}$||$167.5_{-0.1}^{+0.1}$|
|$\mathcal {M}_\mathrm{p}$| (°)|$2.6_{-0.6}^{+0.5}$||$307.4_{-0.1}^{+0.1}$|
i (°)|$89.188_{-0.006}^{+0.005}$|
Ωp (°)180. (fixed)|$179.0_{-0.1}^{+0.3}$|
dynamical model|$\chi ^2_\textrm{r}$| (dof = 230)1.16 –
ParameterKepler-9bKepler-9c
Fitted dynamical model
Mp/M|$0.000128_{-0.000002}^{+0.000001}$||$0.000088_{-0.000001}^{+0.000001}$|
Pp (day)|$19.23891_{-0.00006}^{+0.00006}$||$38.9853_{-0.0003}^{+0.0003}$|
|$\sqrt{e}\cos (\omega _\mathrm{p})$||$0.24651_{-0.0027}^{+0.0021}$||$-0.2526_{-0.0003}^{+0.0003}$|
|$\sqrt{e}\sin (\omega _\mathrm{p})$||$-0.014_{-0.002}^{+0.002}$||$0.0559_{-0.0005}^{+0.0005}$|
i (°)|$88.982_{-0.005}^{+0.007}$|
icos (Ωp)|$-89.172_{-0.005}^{+0.002}$|
isin (Ωp)|$1.7_{-0.5}^{+0.2}$|
λp (°)(a)|$179.49_{-0.11}^{+0.15}$||$293.9_{-0.1}^{+0.3}$|
Derived dynamical model
Mp (M)|$43.4_{-2.0}^{+1.6}$||$29.9_{-1.3}^{+1.1}$|
ρp (g cm−3)|$0.42_{-0.09}^{+0.06}$||$0.31_{-0.06}^{+0.05}$|
ep|$0.0609_{-0.0013}^{+0.0010}$||$0.06691_{-0.00012}^{+0.00010}$|
ωp (°)|$357.0_{-0.4}^{+0.5}$||$167.5_{-0.1}^{+0.1}$|
|$\mathcal {M}_\mathrm{p}$| (°)|$2.6_{-0.6}^{+0.5}$||$307.4_{-0.1}^{+0.1}$|
i (°)|$89.188_{-0.006}^{+0.005}$|
Ωp (°)180. (fixed)|$179.0_{-0.1}^{+0.3}$|
dynamical model|$\chi ^2_\textrm{r}$| (dof = 230)1.16 –

Note. (a)λp is the mean longitude of the planet, defined as |$\lambda _\mathrm{p}= \Omega _\mathrm{p}+ \omega _\mathrm{p}+ \mathcal {M}_\mathrm{p}$|⁠.

Table 3.

Table summarizing the dynamical fit solution. Parameter values as the MLE and HDI at 68.27 per cent equivalent. Dynamical parameters are computed at the epoch of reference BJD|$_\textrm{TDB}\, 2455088.212$|⁠.

ParameterKepler-9bKepler-9c
Fitted dynamical model
Mp/M|$0.000128_{-0.000002}^{+0.000001}$||$0.000088_{-0.000001}^{+0.000001}$|
Pp (day)|$19.23891_{-0.00006}^{+0.00006}$||$38.9853_{-0.0003}^{+0.0003}$|
|$\sqrt{e}\cos (\omega _\mathrm{p})$||$0.24651_{-0.0027}^{+0.0021}$||$-0.2526_{-0.0003}^{+0.0003}$|
|$\sqrt{e}\sin (\omega _\mathrm{p})$||$-0.014_{-0.002}^{+0.002}$||$0.0559_{-0.0005}^{+0.0005}$|
i (°)|$88.982_{-0.005}^{+0.007}$|
icos (Ωp)|$-89.172_{-0.005}^{+0.002}$|
isin (Ωp)|$1.7_{-0.5}^{+0.2}$|
λp (°)(a)|$179.49_{-0.11}^{+0.15}$||$293.9_{-0.1}^{+0.3}$|
Derived dynamical model
Mp (M)|$43.4_{-2.0}^{+1.6}$||$29.9_{-1.3}^{+1.1}$|
ρp (g cm−3)|$0.42_{-0.09}^{+0.06}$||$0.31_{-0.06}^{+0.05}$|
ep|$0.0609_{-0.0013}^{+0.0010}$||$0.06691_{-0.00012}^{+0.00010}$|
ωp (°)|$357.0_{-0.4}^{+0.5}$||$167.5_{-0.1}^{+0.1}$|
|$\mathcal {M}_\mathrm{p}$| (°)|$2.6_{-0.6}^{+0.5}$||$307.4_{-0.1}^{+0.1}$|
i (°)|$89.188_{-0.006}^{+0.005}$|
Ωp (°)180. (fixed)|$179.0_{-0.1}^{+0.3}$|
dynamical model|$\chi ^2_\textrm{r}$| (dof = 230)1.16 –
ParameterKepler-9bKepler-9c
Fitted dynamical model
Mp/M|$0.000128_{-0.000002}^{+0.000001}$||$0.000088_{-0.000001}^{+0.000001}$|
Pp (day)|$19.23891_{-0.00006}^{+0.00006}$||$38.9853_{-0.0003}^{+0.0003}$|
|$\sqrt{e}\cos (\omega _\mathrm{p})$||$0.24651_{-0.0027}^{+0.0021}$||$-0.2526_{-0.0003}^{+0.0003}$|
|$\sqrt{e}\sin (\omega _\mathrm{p})$||$-0.014_{-0.002}^{+0.002}$||$0.0559_{-0.0005}^{+0.0005}$|
i (°)|$88.982_{-0.005}^{+0.007}$|
icos (Ωp)|$-89.172_{-0.005}^{+0.002}$|
isin (Ωp)|$1.7_{-0.5}^{+0.2}$|
λp (°)(a)|$179.49_{-0.11}^{+0.15}$||$293.9_{-0.1}^{+0.3}$|
Derived dynamical model
Mp (M)|$43.4_{-2.0}^{+1.6}$||$29.9_{-1.3}^{+1.1}$|
ρp (g cm−3)|$0.42_{-0.09}^{+0.06}$||$0.31_{-0.06}^{+0.05}$|
ep|$0.0609_{-0.0013}^{+0.0010}$||$0.06691_{-0.00012}^{+0.00010}$|
ωp (°)|$357.0_{-0.4}^{+0.5}$||$167.5_{-0.1}^{+0.1}$|
|$\mathcal {M}_\mathrm{p}$| (°)|$2.6_{-0.6}^{+0.5}$||$307.4_{-0.1}^{+0.1}$|
i (°)|$89.188_{-0.006}^{+0.005}$|
Ωp (°)180. (fixed)|$179.0_{-0.1}^{+0.3}$|
dynamical model|$\chi ^2_\textrm{r}$| (dof = 230)1.16 –

Note. (a)λp is the mean longitude of the planet, defined as |$\lambda _\mathrm{p}= \Omega _\mathrm{p}+ \omega _\mathrm{p}+ \mathcal {M}_\mathrm{p}$|⁠.

Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close