Estimates of the mantle and core composition as well as core mass fraction of potential habitable-zone terrestrial exoplanets (i.e. exo-Earths) orbiting the studied host stars: Kepler-10 (K10), Kepler-20 (K20), Kepler-21 (K21), Kepler-100 (K100).
. | Quantity . | Potential habitable-zone terrestrial exoplanets (i.e. exo-Earths)a . | Pyrolite silicate Earth . | |||
---|---|---|---|---|---|---|
. | (molar wt%) . | K10-exoE . | K20-exoE . | K21-exoE . | K100-exoE . | McDonough & Sun (1995) . |
Mantle | SiO2 | 30.3 ± 2.6 | 50.7 ± 3.3 | 49.9 ± 4.9 | 40.5 ± 4.4 | 45.0 |
CaO | 2.50 ± 0.22 | 4.39 ± 0.34 | 3.85 ± 0.38 | 2.98 ± 0.36 | 3.55 | |
Na2O | 0.23 ± 0.02 | 0.43 ± 0.03 | 0.41 ± 0.04 | 0.41 ± 0.05 | 0.36 | |
MgO | 29.2 ± 2.4 | 25.7 ± 3.6 | 43.3 ± 3.9 | 36.0 ± 4.0 | 37.8 | |
Al2O3 | 3.28 ± 0.31 | – | – | 4.01 ± 0.47 | 4.45 | |
FeO | 31.3 ± 5.1 | – | |$1.53^{+8.35}_{1.53}$| | 13.9 ± 7.9 | 8.05 | |
NiO | 1.71 ± 0.34 | – | |$0.15^{+0.40}_{-0.15}$| | 0.95 ± 0.51 | 0.25 | |
SO3 | 1.25 ± 0.46 | – | 0.50 ± 0.48 | 0.90 ± 0.51 | – | |
CO2 | – | – | – | – | – | |
Graphite | 0.28 ± 0.05 | 0.38 ± 0.05 | 0.42 ± 0.06 | 0.30 ± 0.07 | – | |
Metals | – | 18.4 ± 10.7 | – | – | – | |
McDonough (2014)b | ||||||
Core | Fe | 85.7 ± 5.0 | 94.5 ± 0.6 | 94.1 ± 1.3 | 92.9 ± 1.9 | 92.33 |
Ni | 5.25 ± 0.73 | 5.49 ± 0.63 | 4.76 ± 0.65 | 5.69 ± 0.68 | 5.62 | |
S | 9.07 ± 5.24 | – | 1.16 ± 1.14 | |$1.40^{+1.83}_{-1.40}$| | 2.05 | |
Core mass fraction | |$1.4^{+5.0}_{-1.4}$| | 35.3 ± 5.1 | 31.9 ± 5.9 | 19.6 ± 6.3 | 32.5 ± 0.3c | |
(wt% planet) |
. | Quantity . | Potential habitable-zone terrestrial exoplanets (i.e. exo-Earths)a . | Pyrolite silicate Earth . | |||
---|---|---|---|---|---|---|
. | (molar wt%) . | K10-exoE . | K20-exoE . | K21-exoE . | K100-exoE . | McDonough & Sun (1995) . |
Mantle | SiO2 | 30.3 ± 2.6 | 50.7 ± 3.3 | 49.9 ± 4.9 | 40.5 ± 4.4 | 45.0 |
CaO | 2.50 ± 0.22 | 4.39 ± 0.34 | 3.85 ± 0.38 | 2.98 ± 0.36 | 3.55 | |
Na2O | 0.23 ± 0.02 | 0.43 ± 0.03 | 0.41 ± 0.04 | 0.41 ± 0.05 | 0.36 | |
MgO | 29.2 ± 2.4 | 25.7 ± 3.6 | 43.3 ± 3.9 | 36.0 ± 4.0 | 37.8 | |
Al2O3 | 3.28 ± 0.31 | – | – | 4.01 ± 0.47 | 4.45 | |
FeO | 31.3 ± 5.1 | – | |$1.53^{+8.35}_{1.53}$| | 13.9 ± 7.9 | 8.05 | |
NiO | 1.71 ± 0.34 | – | |$0.15^{+0.40}_{-0.15}$| | 0.95 ± 0.51 | 0.25 | |
SO3 | 1.25 ± 0.46 | – | 0.50 ± 0.48 | 0.90 ± 0.51 | – | |
CO2 | – | – | – | – | – | |
Graphite | 0.28 ± 0.05 | 0.38 ± 0.05 | 0.42 ± 0.06 | 0.30 ± 0.07 | – | |
Metals | – | 18.4 ± 10.7 | – | – | – | |
McDonough (2014)b | ||||||
Core | Fe | 85.7 ± 5.0 | 94.5 ± 0.6 | 94.1 ± 1.3 | 92.9 ± 1.9 | 92.33 |
Ni | 5.25 ± 0.73 | 5.49 ± 0.63 | 4.76 ± 0.65 | 5.69 ± 0.68 | 5.62 | |
S | 9.07 ± 5.24 | – | 1.16 ± 1.14 | |$1.40^{+1.83}_{-1.40}$| | 2.05 | |
Core mass fraction | |$1.4^{+5.0}_{-1.4}$| | 35.3 ± 5.1 | 31.9 ± 5.9 | 19.6 ± 6.3 | 32.5 ± 0.3c | |
(wt% planet) |
Notes.aBulk elemental compositions of these exo-Earths are from Table 1.
bMass fractions of the three elements in the core of McDonough (2014) have been renormalized under the assumption of only the three elements in the core.
cRefers to Wang et al. (2018b), in which the core mass fraction is integrated from Earth’s radial density profiles.
Estimates of the mantle and core composition as well as core mass fraction of potential habitable-zone terrestrial exoplanets (i.e. exo-Earths) orbiting the studied host stars: Kepler-10 (K10), Kepler-20 (K20), Kepler-21 (K21), Kepler-100 (K100).
. | Quantity . | Potential habitable-zone terrestrial exoplanets (i.e. exo-Earths)a . | Pyrolite silicate Earth . | |||
---|---|---|---|---|---|---|
. | (molar wt%) . | K10-exoE . | K20-exoE . | K21-exoE . | K100-exoE . | McDonough & Sun (1995) . |
Mantle | SiO2 | 30.3 ± 2.6 | 50.7 ± 3.3 | 49.9 ± 4.9 | 40.5 ± 4.4 | 45.0 |
CaO | 2.50 ± 0.22 | 4.39 ± 0.34 | 3.85 ± 0.38 | 2.98 ± 0.36 | 3.55 | |
Na2O | 0.23 ± 0.02 | 0.43 ± 0.03 | 0.41 ± 0.04 | 0.41 ± 0.05 | 0.36 | |
MgO | 29.2 ± 2.4 | 25.7 ± 3.6 | 43.3 ± 3.9 | 36.0 ± 4.0 | 37.8 | |
Al2O3 | 3.28 ± 0.31 | – | – | 4.01 ± 0.47 | 4.45 | |
FeO | 31.3 ± 5.1 | – | |$1.53^{+8.35}_{1.53}$| | 13.9 ± 7.9 | 8.05 | |
NiO | 1.71 ± 0.34 | – | |$0.15^{+0.40}_{-0.15}$| | 0.95 ± 0.51 | 0.25 | |
SO3 | 1.25 ± 0.46 | – | 0.50 ± 0.48 | 0.90 ± 0.51 | – | |
CO2 | – | – | – | – | – | |
Graphite | 0.28 ± 0.05 | 0.38 ± 0.05 | 0.42 ± 0.06 | 0.30 ± 0.07 | – | |
Metals | – | 18.4 ± 10.7 | – | – | – | |
McDonough (2014)b | ||||||
Core | Fe | 85.7 ± 5.0 | 94.5 ± 0.6 | 94.1 ± 1.3 | 92.9 ± 1.9 | 92.33 |
Ni | 5.25 ± 0.73 | 5.49 ± 0.63 | 4.76 ± 0.65 | 5.69 ± 0.68 | 5.62 | |
S | 9.07 ± 5.24 | – | 1.16 ± 1.14 | |$1.40^{+1.83}_{-1.40}$| | 2.05 | |
Core mass fraction | |$1.4^{+5.0}_{-1.4}$| | 35.3 ± 5.1 | 31.9 ± 5.9 | 19.6 ± 6.3 | 32.5 ± 0.3c | |
(wt% planet) |
. | Quantity . | Potential habitable-zone terrestrial exoplanets (i.e. exo-Earths)a . | Pyrolite silicate Earth . | |||
---|---|---|---|---|---|---|
. | (molar wt%) . | K10-exoE . | K20-exoE . | K21-exoE . | K100-exoE . | McDonough & Sun (1995) . |
Mantle | SiO2 | 30.3 ± 2.6 | 50.7 ± 3.3 | 49.9 ± 4.9 | 40.5 ± 4.4 | 45.0 |
CaO | 2.50 ± 0.22 | 4.39 ± 0.34 | 3.85 ± 0.38 | 2.98 ± 0.36 | 3.55 | |
Na2O | 0.23 ± 0.02 | 0.43 ± 0.03 | 0.41 ± 0.04 | 0.41 ± 0.05 | 0.36 | |
MgO | 29.2 ± 2.4 | 25.7 ± 3.6 | 43.3 ± 3.9 | 36.0 ± 4.0 | 37.8 | |
Al2O3 | 3.28 ± 0.31 | – | – | 4.01 ± 0.47 | 4.45 | |
FeO | 31.3 ± 5.1 | – | |$1.53^{+8.35}_{1.53}$| | 13.9 ± 7.9 | 8.05 | |
NiO | 1.71 ± 0.34 | – | |$0.15^{+0.40}_{-0.15}$| | 0.95 ± 0.51 | 0.25 | |
SO3 | 1.25 ± 0.46 | – | 0.50 ± 0.48 | 0.90 ± 0.51 | – | |
CO2 | – | – | – | – | – | |
Graphite | 0.28 ± 0.05 | 0.38 ± 0.05 | 0.42 ± 0.06 | 0.30 ± 0.07 | – | |
Metals | – | 18.4 ± 10.7 | – | – | – | |
McDonough (2014)b | ||||||
Core | Fe | 85.7 ± 5.0 | 94.5 ± 0.6 | 94.1 ± 1.3 | 92.9 ± 1.9 | 92.33 |
Ni | 5.25 ± 0.73 | 5.49 ± 0.63 | 4.76 ± 0.65 | 5.69 ± 0.68 | 5.62 | |
S | 9.07 ± 5.24 | – | 1.16 ± 1.14 | |$1.40^{+1.83}_{-1.40}$| | 2.05 | |
Core mass fraction | |$1.4^{+5.0}_{-1.4}$| | 35.3 ± 5.1 | 31.9 ± 5.9 | 19.6 ± 6.3 | 32.5 ± 0.3c | |
(wt% planet) |
Notes.aBulk elemental compositions of these exo-Earths are from Table 1.
bMass fractions of the three elements in the core of McDonough (2014) have been renormalized under the assumption of only the three elements in the core.
cRefers to Wang et al. (2018b), in which the core mass fraction is integrated from Earth’s radial density profiles.
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.