Table 5.

The most efficient variables for each machine learning method when using five MINT-selected features. The Mean Validation Score is the accuracy which the best parameters achieved. Rows are as in Table 3.

Hyperparameter Optimization Results (using 5 MINT features)
RFADAEXTGBT
n_estimators6451264256
max_features1131
min_samples_leaf13310
criterionentropyentropygini-
min_samples_split103310
max_depth34None9
learning_rate-0.01-0.01
Mean Validation Score0.9740.9740.9730.974
Standard Deviation0.0060.0060.0050.006
Hyperparameter Optimization Results (using 5 MINT features)
RFADAEXTGBT
n_estimators6451264256
max_features1131
min_samples_leaf13310
criterionentropyentropygini-
min_samples_split103310
max_depth34None9
learning_rate-0.01-0.01
Mean Validation Score0.9740.9740.9730.974
Standard Deviation0.0060.0060.0050.006
Table 5.

The most efficient variables for each machine learning method when using five MINT-selected features. The Mean Validation Score is the accuracy which the best parameters achieved. Rows are as in Table 3.

Hyperparameter Optimization Results (using 5 MINT features)
RFADAEXTGBT
n_estimators6451264256
max_features1131
min_samples_leaf13310
criterionentropyentropygini-
min_samples_split103310
max_depth34None9
learning_rate-0.01-0.01
Mean Validation Score0.9740.9740.9730.974
Standard Deviation0.0060.0060.0050.006
Hyperparameter Optimization Results (using 5 MINT features)
RFADAEXTGBT
n_estimators6451264256
max_features1131
min_samples_leaf13310
criterionentropyentropygini-
min_samples_split103310
max_depth34None9
learning_rate-0.01-0.01
Mean Validation Score0.9740.9740.9730.974
Standard Deviation0.0060.0060.0050.006
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close