Models discussed in this paper. |$M_{200, \rm cor}$| and |$L_{200, \rm cor}$| are the total mass and total angular momentum of the corona contained in the virial sphere of radius |$r_{\rm 200}=237\, {\rm kpc}$|. |$L_0=10^{14}\, \mathrm{M}_\odot \, {\rm km\, s^{-1}}\, {\rm kpc}$| represents the order of magnitude of the total angular momentum contained in the Milky Way stellar disc (e.g. Peebles 1969). |$\lambda=j_{200, \rm cor} / (\sqrt{2} \, r_{200} v_{200})$| is the spin parameter according to the definition of Bullock et al. (2001), where |$j_{200, \rm cor}=L_{200,\rm cor}/ M_{200,\rm cor}$| is the averaged specific angular momentum of the corona.
Name . | qaxis . | Paxis . | Taxis . | |$M_{200,\rm cor}/\, \mathrm{M}_\odot$| . | |$L_{200,\rm cor}/L_0$| . | λ . |
---|---|---|---|---|---|---|
Model 1 | 1 (spherical) | Equation (22) | Isothermal | 3.4 × 1010 | 0 | 0 |
Model 2 | Equations (23)–(24) | Equation (22) | Isothermal | 4.0 × 1010 | 0.91 | 0.038 |
Model 3 | Equations (25)–(26) | Equation (22) | Isothermal | 3.9 × 1010 | 0.45 | 0.019 |
Model 4 | 1 (spherical) | Equation (27) | Polytropic Γ = 5/3 | 2.8 × 1010 | 0 | 0 |
Model 5 | Equations (23)–(24) | Equation (27) | Polytropic Γ = 5/3 | 3.1 × 1010 | 0.73 | 0.039 |
Model 6 | Equations (25)–(26) | Equation (27) | Polytropic Γ = 5/3 | 3.1 × 1010 | 0.38 | 0.021 |
Name . | qaxis . | Paxis . | Taxis . | |$M_{200,\rm cor}/\, \mathrm{M}_\odot$| . | |$L_{200,\rm cor}/L_0$| . | λ . |
---|---|---|---|---|---|---|
Model 1 | 1 (spherical) | Equation (22) | Isothermal | 3.4 × 1010 | 0 | 0 |
Model 2 | Equations (23)–(24) | Equation (22) | Isothermal | 4.0 × 1010 | 0.91 | 0.038 |
Model 3 | Equations (25)–(26) | Equation (22) | Isothermal | 3.9 × 1010 | 0.45 | 0.019 |
Model 4 | 1 (spherical) | Equation (27) | Polytropic Γ = 5/3 | 2.8 × 1010 | 0 | 0 |
Model 5 | Equations (23)–(24) | Equation (27) | Polytropic Γ = 5/3 | 3.1 × 1010 | 0.73 | 0.039 |
Model 6 | Equations (25)–(26) | Equation (27) | Polytropic Γ = 5/3 | 3.1 × 1010 | 0.38 | 0.021 |
Models discussed in this paper. |$M_{200, \rm cor}$| and |$L_{200, \rm cor}$| are the total mass and total angular momentum of the corona contained in the virial sphere of radius |$r_{\rm 200}=237\, {\rm kpc}$|. |$L_0=10^{14}\, \mathrm{M}_\odot \, {\rm km\, s^{-1}}\, {\rm kpc}$| represents the order of magnitude of the total angular momentum contained in the Milky Way stellar disc (e.g. Peebles 1969). |$\lambda=j_{200, \rm cor} / (\sqrt{2} \, r_{200} v_{200})$| is the spin parameter according to the definition of Bullock et al. (2001), where |$j_{200, \rm cor}=L_{200,\rm cor}/ M_{200,\rm cor}$| is the averaged specific angular momentum of the corona.
Name . | qaxis . | Paxis . | Taxis . | |$M_{200,\rm cor}/\, \mathrm{M}_\odot$| . | |$L_{200,\rm cor}/L_0$| . | λ . |
---|---|---|---|---|---|---|
Model 1 | 1 (spherical) | Equation (22) | Isothermal | 3.4 × 1010 | 0 | 0 |
Model 2 | Equations (23)–(24) | Equation (22) | Isothermal | 4.0 × 1010 | 0.91 | 0.038 |
Model 3 | Equations (25)–(26) | Equation (22) | Isothermal | 3.9 × 1010 | 0.45 | 0.019 |
Model 4 | 1 (spherical) | Equation (27) | Polytropic Γ = 5/3 | 2.8 × 1010 | 0 | 0 |
Model 5 | Equations (23)–(24) | Equation (27) | Polytropic Γ = 5/3 | 3.1 × 1010 | 0.73 | 0.039 |
Model 6 | Equations (25)–(26) | Equation (27) | Polytropic Γ = 5/3 | 3.1 × 1010 | 0.38 | 0.021 |
Name . | qaxis . | Paxis . | Taxis . | |$M_{200,\rm cor}/\, \mathrm{M}_\odot$| . | |$L_{200,\rm cor}/L_0$| . | λ . |
---|---|---|---|---|---|---|
Model 1 | 1 (spherical) | Equation (22) | Isothermal | 3.4 × 1010 | 0 | 0 |
Model 2 | Equations (23)–(24) | Equation (22) | Isothermal | 4.0 × 1010 | 0.91 | 0.038 |
Model 3 | Equations (25)–(26) | Equation (22) | Isothermal | 3.9 × 1010 | 0.45 | 0.019 |
Model 4 | 1 (spherical) | Equation (27) | Polytropic Γ = 5/3 | 2.8 × 1010 | 0 | 0 |
Model 5 | Equations (23)–(24) | Equation (27) | Polytropic Γ = 5/3 | 3.1 × 1010 | 0.73 | 0.039 |
Model 6 | Equations (25)–(26) | Equation (27) | Polytropic Γ = 5/3 | 3.1 × 1010 | 0.38 | 0.021 |
This PDF is available to Subscribers Only
View Article Abstract & Purchase OptionsFor full access to this pdf, sign in to an existing account, or purchase an annual subscription.