Table 2.

Stress-drop estimates (Δσ MPa) from second moments.

Length (Lc, m)Width (Wc, m)Mw = 2.3Mw = 2.2Mw = 2.4
Δσ071.244.57.35.210.34
|$\Delta \sigma _\mathrm{ d}^{\mathrm{ L}}$|78.346.36.24.48.7
|$\Delta \sigma _\mathrm{ d}^{\mathrm{ U}}$|63.540.59.97.014.0
|$\Delta \sigma _\mathrm{ m}^{\mathrm{ sL}}$|93.147.05.03.57.0
|$\Delta \sigma _\mathrm{ m}^{\mathrm{ sU}}$|74.139.19.16.412.8
|$\Delta \sigma _\mathrm{ m}^{\mathrm{ aL}}$|94.450.64.33.06.0
|$\Delta \sigma _\mathrm{ m}^{\mathrm{ aU}}$|43.121.054.038.276.2
Length (Lc, m)Width (Wc, m)Mw = 2.3Mw = 2.2Mw = 2.4
Δσ071.244.57.35.210.34
|$\Delta \sigma _\mathrm{ d}^{\mathrm{ L}}$|78.346.36.24.48.7
|$\Delta \sigma _\mathrm{ d}^{\mathrm{ U}}$|63.540.59.97.014.0
|$\Delta \sigma _\mathrm{ m}^{\mathrm{ sL}}$|93.147.05.03.57.0
|$\Delta \sigma _\mathrm{ m}^{\mathrm{ sU}}$|74.139.19.16.412.8
|$\Delta \sigma _\mathrm{ m}^{\mathrm{ aL}}$|94.450.64.33.06.0
|$\Delta \sigma _\mathrm{ m}^{\mathrm{ aU}}$|43.121.054.038.276.2

Δσ0 is the optimal stress-drop estimate, |$\Delta \sigma _\mathrm{ d}^{\mathrm{ L}}$| and |$\Delta \sigma _\mathrm{ d}^{\mathrm{ U}}$| are the stress-drop lower and upper bounds derived from measurement bootstrapping, |$\Delta \sigma _{\mathrm{ m}}^{\mathrm{ sL}}$| and |$\Delta \sigma _{\mathrm{ m}}^{\mathrm{ sU}}$| are the stress-drop lower and upper bounds derived from maximizing rupture area based on 95 per cent χ2 confidence level by fitting the cubic smoothing splines, |$\Delta \sigma _{\mathrm{ m}}^{\mathrm{ aL}}$| and |$\Delta \sigma _{\mathrm{ m}}^{\mathrm{ aU}}$| are the stress-drop lower and upper bounds derived from maximizing rupture area based on 95 per cent χ2 confidence level by fitting all the data.

Table 2.

Stress-drop estimates (Δσ MPa) from second moments.

Length (Lc, m)Width (Wc, m)Mw = 2.3Mw = 2.2Mw = 2.4
Δσ071.244.57.35.210.34
|$\Delta \sigma _\mathrm{ d}^{\mathrm{ L}}$|78.346.36.24.48.7
|$\Delta \sigma _\mathrm{ d}^{\mathrm{ U}}$|63.540.59.97.014.0
|$\Delta \sigma _\mathrm{ m}^{\mathrm{ sL}}$|93.147.05.03.57.0
|$\Delta \sigma _\mathrm{ m}^{\mathrm{ sU}}$|74.139.19.16.412.8
|$\Delta \sigma _\mathrm{ m}^{\mathrm{ aL}}$|94.450.64.33.06.0
|$\Delta \sigma _\mathrm{ m}^{\mathrm{ aU}}$|43.121.054.038.276.2
Length (Lc, m)Width (Wc, m)Mw = 2.3Mw = 2.2Mw = 2.4
Δσ071.244.57.35.210.34
|$\Delta \sigma _\mathrm{ d}^{\mathrm{ L}}$|78.346.36.24.48.7
|$\Delta \sigma _\mathrm{ d}^{\mathrm{ U}}$|63.540.59.97.014.0
|$\Delta \sigma _\mathrm{ m}^{\mathrm{ sL}}$|93.147.05.03.57.0
|$\Delta \sigma _\mathrm{ m}^{\mathrm{ sU}}$|74.139.19.16.412.8
|$\Delta \sigma _\mathrm{ m}^{\mathrm{ aL}}$|94.450.64.33.06.0
|$\Delta \sigma _\mathrm{ m}^{\mathrm{ aU}}$|43.121.054.038.276.2

Δσ0 is the optimal stress-drop estimate, |$\Delta \sigma _\mathrm{ d}^{\mathrm{ L}}$| and |$\Delta \sigma _\mathrm{ d}^{\mathrm{ U}}$| are the stress-drop lower and upper bounds derived from measurement bootstrapping, |$\Delta \sigma _{\mathrm{ m}}^{\mathrm{ sL}}$| and |$\Delta \sigma _{\mathrm{ m}}^{\mathrm{ sU}}$| are the stress-drop lower and upper bounds derived from maximizing rupture area based on 95 per cent χ2 confidence level by fitting the cubic smoothing splines, |$\Delta \sigma _{\mathrm{ m}}^{\mathrm{ aL}}$| and |$\Delta \sigma _{\mathrm{ m}}^{\mathrm{ aU}}$| are the stress-drop lower and upper bounds derived from maximizing rupture area based on 95 per cent χ2 confidence level by fitting all the data.

Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close