Abstract

Light-weight concrete (LWC) (or drywall construction) has been used for partition walls in public housing in Hong Kong for about 10 years. A previous laboratory investigation showed that all types of LWC had considerably smaller Rn exhalation rates than those from normal concrete (NC), and could thus theoretically reduce the indoor Rn concentrations and the corresponding radiation dose from Rn. In the present investigation, a survey of Rn exhalation rates and indoor Rn concentrations at 39 dwelling sites built using LWC were carried out using charcoal canisters and ?-spectroscopy. The mean Rn exhalation rate and the mean Rn concentration were around 1.6 mBq.s-1.m-2 and 19 Bq.m-3, respectively, which were significantly smaller than the corresponding values of 12 mBq.s-1.m-2 and 33 Bq.m-3 for NC sites. The statistical t-test showed that both the mean Rn exhalation rate and the mean Rn concentration for NC and LWC sites walls were different at the 100% confidence level. The Rn exhalation rate from an LWC surface was, on average, only about 14% of that from an NC surface, while the Rn concentration in an LWC site was, on average, about 58% of that in an NC site, which were significant. A person living at an LWC site receives an average annual equivalent dose smaller than one living at an NC site by an amount as large as 1 mSv. Therefore, the use of LWC for partition walls can be a simple and economical way to reduce the indoor Rn concentrations and the corresponding radiation dose from Rn. Furthermore, the mean Rn concentration theoretically predicted from the mean Rn exhalation rate agreed excellently with that from measurements.

This content is only available as a PDF.
You do not currently have access to this article.