Abstract

To include the quark sector, the |$A_{5}\equiv I$| (icosahedron) four generation lepton model is extended to a binary icosahedral symmetry I′ flavor model. We find that the masses of fermions, including the heavy sectors, can be accommodated. At leading order the Cabibbo–Kobayashi–Maskawa (CKM) matrix is the identity and the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix, resulting from the same set of vacua, corresponds to tribimaximal mixings.

1. Introduction

The current version of the standard model (SM) consists of three generations of quarks and leptons. Recently we proposed [1] a four generation lepton model based on the non-Abelian discrete symmetry |$A_{5}\equiv I$| (icosahedron), in which the best features of the three family |$A_{4}\equiv T$| (tetrahedral) model survive. Besides the new heavy degrees of freedom in the A5 model, which satisfy the experimental constraints, we retain tribimaximal neutrino mixings, three light neutrino masses, and three SM charged lepton masses in the three light generation sector.

In this paper, we will explore a generalization of our |$A_5$| model to include four generations of both quarks and leptons. But before launching into that discussion we must first discuss the viability of models with four generations, given recent experimental developments. A fourth generation is now being constrained [2–5] by precision electroweak data [6], by flavor symmetries [7], and by the Higgs-like particle at 125 GeV recently reported at the LHC [8–10]. The new data provide an important step forward in distinguishing various four generation models, and in particular eliminating some from consideration. In particular, four sequential generation models are now highly disfavored [2–5]; however, it would be premature to dismiss all four generation models. While tension between four generation models and data has developed, a fourth generation is not excluded by the electroweak precision data [11–15], so the existence of a fourth generation is still a viable phenomenological possibility that can provide an explanation of the observed anomaly of CP asymmetries in the B meson system [16–18], and the baryon asymmetry of the universe [19,20], with additional mixings and CP phases. Also, there are a number of way to relieve this tension. For example, two Higgs doublet models (see, e.g., Ref. [21] and references therein) can accommodate a fourth generation of fermions and current data. For a comprehensive review see Ref. [22]. Typically these two Higgs doublet models are low energy effective field theories that require composite Higgses similar to top quark condensate models [23]. For some recent examples see Refs. [24–27]. Another possibility is to add electroweak doublets that are in color octets [28]. Further discussion can be found in Ref. [29]. While the model we will discuss has an extended Higgs structure, a full exploration of the possible composite nature of the scalar sector is beyond the scope of our present study.

To generalize our |$A_5$| model to include four generations of quarks and leptons, we first recall the three family scenarios in which the binary tetrahedral group |$T'\equiv SL_{2}(3)$| is capable of providing a model of both the quarks and leptons with tribimaximal mixings and a calculable Cabibbo angle [30]. The T′ group is the double covering group of |$A_{4}$|⁠. It has four irreducible representations (irreps) with identical multiplication rules to those of |$A_{4}$|⁠, one triplet 3 and three singlets |$\textbf {1}, \textbf {1}'$|⁠, and |$\textbf {1}^{\prime \prime }$|⁠, plus three additional doublet irreps |$\textbf {2}, \textbf {2}'$|⁠, and |$\textbf {2}^{\prime \prime }$|⁠. The additional doublets allow the implementation of the |$\textbf {2}\oplus \textbf {1}$| structure to the quark sector [31–36]; thus, the third family of quarks are treated differently and are assigned to a singlet. Hence they can acquire heavy masses [37–39]. One should note that |$A_{4}$| is not a subgroup of T′; therefore, the inclusion of quarks into the model is not strictly an extension of |$A_{4}$|⁠, but instead replaces it [40]. Based on the same philosophy, we study the model of four families of quarks and leptons by using the binary icosahedral group |$I'\equiv SL_{2}(5)$|⁠. The relation between I′ and A5 is similar to that for T′ and |$A_{4}$|⁠. The icosahedral group |$A_{5} \subset SO(3)$| has double-valued representations that are single-valued representations of the double icosahedral group |$I' \subset SU(2)$|⁠. Hence, besides the irreps of I′ that are coincident with those of A5, there are four additional spinor-like irreps |$\textbf {2}_{s}, \textbf {2}'_{s}, \textbf {4}_{s}$|⁠, and |$\textbf {6}_{s}$| of I′. We shall be able to assign quarks to the spinor-like representations, but to discuss model building using I′, we must first review our lepton model based on A5, which will remain essentially unchanged when generalized to I′. Some useful group theory details have been relegated to the Appendix.

2. The leptonic A5 model

The irreps of A5 are one singlet 1, two triplets 3 and |$\textbf {3}'$|⁠, one quartet 4, and one quintet 5. The model is required to be invariant under the flavor symmetry of |$A_{5}\times Z_{2}\times Z_{3}$| and the particle content is given by Table 1.

Table 1.

Particle content of the lepton A5 model.

Field|$L_{i}$||$l_{R5}$||$l^c_{R3}$||$l^{(1),(2)}_{R1}$||$N_{R5}$||$N^{(1)_{R}}$||$S_{4}$||$H_{4}$||$H'_{4}$||$\Phi _{3}$|
|$SU(2)_{L}$|2111111222
A54531514443
|$Z_{2}$|1|$-$|1|$-$|1|$-$|11111|$-$|11
|$Z_{3}$||$\omega $|111111|$\omega ^2$||$\omega ^2$||$\omega ^2$|
Field|$L_{i}$||$l_{R5}$||$l^c_{R3}$||$l^{(1),(2)}_{R1}$||$N_{R5}$||$N^{(1)_{R}}$||$S_{4}$||$H_{4}$||$H'_{4}$||$\Phi _{3}$|
|$SU(2)_{L}$|2111111222
A54531514443
|$Z_{2}$|1|$-$|1|$-$|1|$-$|11111|$-$|11
|$Z_{3}$||$\omega $|111111|$\omega ^2$||$\omega ^2$||$\omega ^2$|
Table 1.

Particle content of the lepton A5 model.

Field|$L_{i}$||$l_{R5}$||$l^c_{R3}$||$l^{(1),(2)}_{R1}$||$N_{R5}$||$N^{(1)_{R}}$||$S_{4}$||$H_{4}$||$H'_{4}$||$\Phi _{3}$|
|$SU(2)_{L}$|2111111222
A54531514443
|$Z_{2}$|1|$-$|1|$-$|1|$-$|11111|$-$|11
|$Z_{3}$||$\omega $|111111|$\omega ^2$||$\omega ^2$||$\omega ^2$|
Field|$L_{i}$||$l_{R5}$||$l^c_{R3}$||$l^{(1),(2)}_{R1}$||$N_{R5}$||$N^{(1)_{R}}$||$S_{4}$||$H_{4}$||$H'_{4}$||$\Phi _{3}$|
|$SU(2)_{L}$|2111111222
A54531514443
|$Z_{2}$|1|$-$|1|$-$|1|$-$|11111|$-$|11
|$Z_{3}$||$\omega $|111111|$\omega ^2$||$\omega ^2$||$\omega ^2$|
Here |$L_{i} = (\nu _{i}, l_{i})^{T}$| is the left-handed |$SU(2)_{L}$| doublet with generation index |$i$|⁠, |$l_{R}$| and |$N_{R}$| are right-handed charged leptons and neutrinos respectively. |$H_{4}$|⁠, |$H_{4}^{\prime }$|⁠, and |$\Phi _{3}$| are |$SU(2)_{L}$| doublet scalar fields, while |$S_{4}$| is a singlet scalar. The representations of |$SU(2)_{L}$| gauge symmetry should not be confused with the representations of the non-Abelian discrete symmetry A5. The most general Yukawa interactions invariant under the symmetries can be expressed as
(1)
If the scalar |$S_{4}$| develops the vacuum expectation value (VEV) |$\langle S_{4} \rangle = (V_{S}, 0, 0, 0)$|⁠, then A5 will break to |$A_{4}$|⁠, causing the A5 irreps to decompose as |$\textbf {1} \rightarrow \textbf {1}$|⁠, |$\textbf {3} \rightarrow \textbf {3}$|⁠, |$\textbf {3}' \rightarrow \textbf {3}$|⁠, |$\textbf {4} \rightarrow \textbf {1} \oplus \textbf {3}$|⁠, and |$\textbf {5} \rightarrow \textbf {1}' \oplus \textbf {1}^{\prime \prime } \oplus \textbf {3}$|⁠. There is one vector-like |$SU(2)_{L}$| singlet charged lepton field with the mass given by |$\langle S_{4}\rangle $|⁠. The masses of the four chiral generations of charged leptons are generated by scalar field |$H'_{4}$| with an interesting result that the electron mass is predicted to be zero at tree level and induced through quantum corrections. We argued in Ref. [1] that there is enough freedom to fit the observed charged lepton masses. The canonical seesaw mechanism is responsible for the left-handed neutrino masses in the A5 model1 , while the Dirac mass terms are provided by the scalar fields |$H_{4}$| and |$\Phi _{3}$|⁠. We are able to obtain one heavy neutrino and three SM light neutrino masses through arranging the VEVs of the two scalar fields without severe fine-tuning. Therefore, the mass structure of the three families under |$A_{4}$| symmetry is retained. We refer the reader to Ref. [1] for the details of the model. Now we discuss the inclusion of the quark sector by extending A5 to its double covering I′.

3. I′ symmetry and the quark sector

The irreps of I′ are one singlet 1, two triplets 3 and |$\textbf {3}'$|⁠, one quartet 4, and one quintet 5, which are also the irreps of A5, plus I′ has four spinor-like irreps |$\textbf {2}_{s}, \textbf {2}'_{s}, \textbf {4}_{s}$|⁠, and |$\textbf {6}_{s}$|⁠. The characters and the multiplication rules of I′ symmetry can be found in Table 2 and Table 3 of the Appendix.

Table 2.

Character table of I′ where |$\phi = \frac {1 + \sqrt {5}}{2}$| is the golden ratio.

|$C_{1}(1)$||$C_{2}(1)$||$C_{3}(12)$||$C_{4}(12)$||$C_{5}(12)$||$C_{6}(12)$||$C_{7}(30)$||$C_{8}(20)$||$C_{9}(20)$|
1111111111
333|$1 - \phi $||$1 - \phi $||$\phi $||$\phi $||$-1$|00
|$\textbf {3}'$|33|$\phi $||$\phi $||$1 - \phi $||$1 - \phi $||$-1$|00
444|$-1$||$-1$||$-1$||$-1$|011
55500001|$-1$||$-1$|
|$\textbf {2}_{s}$|2|$-2$||$\phi -1$||$1 - \phi $||$-\phi $||$\phi $|0|$-1$|1
|$\textbf {2}_{s}'$|2|$-2$||$-\phi $||$\phi $||$\phi -1$||$1 - \phi $|0|$-1$|1
|$\textbf {4}_{s}$|4|$-4$||$-1$|1|$-1$|101|$-1$|
|$\textbf {6}_{s}$|6|$-6$|1|$-1$|1|$-1$|000
|$C_{1}(1)$||$C_{2}(1)$||$C_{3}(12)$||$C_{4}(12)$||$C_{5}(12)$||$C_{6}(12)$||$C_{7}(30)$||$C_{8}(20)$||$C_{9}(20)$|
1111111111
333|$1 - \phi $||$1 - \phi $||$\phi $||$\phi $||$-1$|00
|$\textbf {3}'$|33|$\phi $||$\phi $||$1 - \phi $||$1 - \phi $||$-1$|00
444|$-1$||$-1$||$-1$||$-1$|011
55500001|$-1$||$-1$|
|$\textbf {2}_{s}$|2|$-2$||$\phi -1$||$1 - \phi $||$-\phi $||$\phi $|0|$-1$|1
|$\textbf {2}_{s}'$|2|$-2$||$-\phi $||$\phi $||$\phi -1$||$1 - \phi $|0|$-1$|1
|$\textbf {4}_{s}$|4|$-4$||$-1$|1|$-1$|101|$-1$|
|$\textbf {6}_{s}$|6|$-6$|1|$-1$|1|$-1$|000
Table 2.

Character table of I′ where |$\phi = \frac {1 + \sqrt {5}}{2}$| is the golden ratio.

|$C_{1}(1)$||$C_{2}(1)$||$C_{3}(12)$||$C_{4}(12)$||$C_{5}(12)$||$C_{6}(12)$||$C_{7}(30)$||$C_{8}(20)$||$C_{9}(20)$|
1111111111
333|$1 - \phi $||$1 - \phi $||$\phi $||$\phi $||$-1$|00
|$\textbf {3}'$|33|$\phi $||$\phi $||$1 - \phi $||$1 - \phi $||$-1$|00
444|$-1$||$-1$||$-1$||$-1$|011
55500001|$-1$||$-1$|
|$\textbf {2}_{s}$|2|$-2$||$\phi -1$||$1 - \phi $||$-\phi $||$\phi $|0|$-1$|1
|$\textbf {2}_{s}'$|2|$-2$||$-\phi $||$\phi $||$\phi -1$||$1 - \phi $|0|$-1$|1
|$\textbf {4}_{s}$|4|$-4$||$-1$|1|$-1$|101|$-1$|
|$\textbf {6}_{s}$|6|$-6$|1|$-1$|1|$-1$|000
|$C_{1}(1)$||$C_{2}(1)$||$C_{3}(12)$||$C_{4}(12)$||$C_{5}(12)$||$C_{6}(12)$||$C_{7}(30)$||$C_{8}(20)$||$C_{9}(20)$|
1111111111
333|$1 - \phi $||$1 - \phi $||$\phi $||$\phi $||$-1$|00
|$\textbf {3}'$|33|$\phi $||$\phi $||$1 - \phi $||$1 - \phi $||$-1$|00
444|$-1$||$-1$||$-1$||$-1$|011
55500001|$-1$||$-1$|
|$\textbf {2}_{s}$|2|$-2$||$\phi -1$||$1 - \phi $||$-\phi $||$\phi $|0|$-1$|1
|$\textbf {2}_{s}'$|2|$-2$||$-\phi $||$\phi $||$\phi -1$||$1 - \phi $|0|$-1$|1
|$\textbf {4}_{s}$|4|$-4$||$-1$|1|$-1$|101|$-1$|
|$\textbf {6}_{s}$|6|$-6$|1|$-1$|1|$-1$|000
Table 3.

Multiplication rules for the binary icosahedral group I′.

|$\otimes $|13|$\textbf {3}'$|45|$\textbf {2}_{s}$||$\textbf {2}'_{s}$||$\textbf {4}_{s}$||$\textbf {6}_{s}$|
113|$\textbf {3}'$|45|$\textbf {2}_{s}$||$\textbf {2}'_{s}$||$\textbf {4}_{s}$||$\textbf {6}_{s}$|
33|$\textbf {1}\oplus \textbf {3}\oplus \textbf {5}$||$\textbf {4}\oplus \textbf {5}$||$\textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {2}_{s}\oplus \textbf {4}_{s}$||$\textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$|
|$\textbf {3}'$||$\textbf {3}'$||$\textbf {4}\oplus \textbf {5}$||$\textbf {1}\oplus \textbf {3}'\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {6}_{s}$||$\textbf {2}'_{s}\oplus \textbf {4}_{s}$||$\textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}$|
44|$\textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {1}\oplus \textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {5}\oplus \textbf {5}$||$\textbf {2}'_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {6}_{s}$||$\textbf {4}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$|
55|$\textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {5}\oplus \textbf {5}$||$\textbf {1}\oplus \textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {4}\oplus \textbf {5}\oplus \textbf {5}$||$\textbf {4}_{s}\oplus \textbf {6}_{s}$||$\textbf {4}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s} \oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$|
|$\textbf {2}_{s}$||$\textbf {2}_{s}$||$\textbf {2}_{s}\oplus \textbf {4}_{s}$||$\textbf {6}_{s}$||$\textbf {2}'_{s}\oplus \textbf {6}_{s}$||$\textbf {4}_{s}\oplus \textbf {6}_{s}$||$\textbf {1}\oplus \textbf {3}$|4|$\textbf {3}\oplus \textbf {5}$||$\textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$|
|$\textbf {2}'_{s}$||$\textbf {2}'_{s}$||$\textbf {6}_{s}$||$\textbf {2}'_{s}\oplus \textbf {4}_{s}$||$\textbf {2}_{s}\oplus \textbf {6}_{s}$||$\textbf {4}_{s}\oplus \textbf {6}_{s}$|4|$\textbf {1}\oplus \textbf {3}'$||$\textbf {3}'\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {4}\oplus \textbf {5}$|
|$\textbf {4}_{s}$||$\textbf {4}_{s}$||$\textbf {2}_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}$||$\textbf {4}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$||$\textbf {3}\oplus \textbf {5}$||$\textbf {3}'\oplus \textbf {5}$||$\textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {4}\oplus \textbf {5}\oplus \textbf {5}$|
|$\textbf {6}_{s}$||$\textbf {6}_{s}$||$\textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {4}_{s}$||$\oplus \ \textbf {6}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$||$\textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {4}\oplus \textbf {5}\oplus \textbf {5}$||$\textbf {1}\oplus \textbf {3}\oplus \textbf {3}\oplus \textbf {3}'\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {4}\oplus \textbf {5}\oplus \textbf {5}\oplus \textbf {5}$|
|$\otimes $|13|$\textbf {3}'$|45|$\textbf {2}_{s}$||$\textbf {2}'_{s}$||$\textbf {4}_{s}$||$\textbf {6}_{s}$|
113|$\textbf {3}'$|45|$\textbf {2}_{s}$||$\textbf {2}'_{s}$||$\textbf {4}_{s}$||$\textbf {6}_{s}$|
33|$\textbf {1}\oplus \textbf {3}\oplus \textbf {5}$||$\textbf {4}\oplus \textbf {5}$||$\textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {2}_{s}\oplus \textbf {4}_{s}$||$\textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$|
|$\textbf {3}'$||$\textbf {3}'$||$\textbf {4}\oplus \textbf {5}$||$\textbf {1}\oplus \textbf {3}'\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {6}_{s}$||$\textbf {2}'_{s}\oplus \textbf {4}_{s}$||$\textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}$|
44|$\textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {1}\oplus \textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {5}\oplus \textbf {5}$||$\textbf {2}'_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {6}_{s}$||$\textbf {4}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$|
55|$\textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {5}\oplus \textbf {5}$||$\textbf {1}\oplus \textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {4}\oplus \textbf {5}\oplus \textbf {5}$||$\textbf {4}_{s}\oplus \textbf {6}_{s}$||$\textbf {4}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s} \oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$|
|$\textbf {2}_{s}$||$\textbf {2}_{s}$||$\textbf {2}_{s}\oplus \textbf {4}_{s}$||$\textbf {6}_{s}$||$\textbf {2}'_{s}\oplus \textbf {6}_{s}$||$\textbf {4}_{s}\oplus \textbf {6}_{s}$||$\textbf {1}\oplus \textbf {3}$|4|$\textbf {3}\oplus \textbf {5}$||$\textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$|
|$\textbf {2}'_{s}$||$\textbf {2}'_{s}$||$\textbf {6}_{s}$||$\textbf {2}'_{s}\oplus \textbf {4}_{s}$||$\textbf {2}_{s}\oplus \textbf {6}_{s}$||$\textbf {4}_{s}\oplus \textbf {6}_{s}$|4|$\textbf {1}\oplus \textbf {3}'$||$\textbf {3}'\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {4}\oplus \textbf {5}$|
|$\textbf {4}_{s}$||$\textbf {4}_{s}$||$\textbf {2}_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}$||$\textbf {4}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$||$\textbf {3}\oplus \textbf {5}$||$\textbf {3}'\oplus \textbf {5}$||$\textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {4}\oplus \textbf {5}\oplus \textbf {5}$|
|$\textbf {6}_{s}$||$\textbf {6}_{s}$||$\textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {4}_{s}$||$\oplus \ \textbf {6}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$||$\textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {4}\oplus \textbf {5}\oplus \textbf {5}$||$\textbf {1}\oplus \textbf {3}\oplus \textbf {3}\oplus \textbf {3}'\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {4}\oplus \textbf {5}\oplus \textbf {5}\oplus \textbf {5}$|
Table 3.

Multiplication rules for the binary icosahedral group I′.

|$\otimes $|13|$\textbf {3}'$|45|$\textbf {2}_{s}$||$\textbf {2}'_{s}$||$\textbf {4}_{s}$||$\textbf {6}_{s}$|
113|$\textbf {3}'$|45|$\textbf {2}_{s}$||$\textbf {2}'_{s}$||$\textbf {4}_{s}$||$\textbf {6}_{s}$|
33|$\textbf {1}\oplus \textbf {3}\oplus \textbf {5}$||$\textbf {4}\oplus \textbf {5}$||$\textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {2}_{s}\oplus \textbf {4}_{s}$||$\textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$|
|$\textbf {3}'$||$\textbf {3}'$||$\textbf {4}\oplus \textbf {5}$||$\textbf {1}\oplus \textbf {3}'\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {6}_{s}$||$\textbf {2}'_{s}\oplus \textbf {4}_{s}$||$\textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}$|
44|$\textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {1}\oplus \textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {5}\oplus \textbf {5}$||$\textbf {2}'_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {6}_{s}$||$\textbf {4}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$|
55|$\textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {5}\oplus \textbf {5}$||$\textbf {1}\oplus \textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {4}\oplus \textbf {5}\oplus \textbf {5}$||$\textbf {4}_{s}\oplus \textbf {6}_{s}$||$\textbf {4}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s} \oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$|
|$\textbf {2}_{s}$||$\textbf {2}_{s}$||$\textbf {2}_{s}\oplus \textbf {4}_{s}$||$\textbf {6}_{s}$||$\textbf {2}'_{s}\oplus \textbf {6}_{s}$||$\textbf {4}_{s}\oplus \textbf {6}_{s}$||$\textbf {1}\oplus \textbf {3}$|4|$\textbf {3}\oplus \textbf {5}$||$\textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$|
|$\textbf {2}'_{s}$||$\textbf {2}'_{s}$||$\textbf {6}_{s}$||$\textbf {2}'_{s}\oplus \textbf {4}_{s}$||$\textbf {2}_{s}\oplus \textbf {6}_{s}$||$\textbf {4}_{s}\oplus \textbf {6}_{s}$|4|$\textbf {1}\oplus \textbf {3}'$||$\textbf {3}'\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {4}\oplus \textbf {5}$|
|$\textbf {4}_{s}$||$\textbf {4}_{s}$||$\textbf {2}_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}$||$\textbf {4}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$||$\textbf {3}\oplus \textbf {5}$||$\textbf {3}'\oplus \textbf {5}$||$\textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {4}\oplus \textbf {5}\oplus \textbf {5}$|
|$\textbf {6}_{s}$||$\textbf {6}_{s}$||$\textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {4}_{s}$||$\oplus \ \textbf {6}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$||$\textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {4}\oplus \textbf {5}\oplus \textbf {5}$||$\textbf {1}\oplus \textbf {3}\oplus \textbf {3}\oplus \textbf {3}'\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {4}\oplus \textbf {5}\oplus \textbf {5}\oplus \textbf {5}$|
|$\otimes $|13|$\textbf {3}'$|45|$\textbf {2}_{s}$||$\textbf {2}'_{s}$||$\textbf {4}_{s}$||$\textbf {6}_{s}$|
113|$\textbf {3}'$|45|$\textbf {2}_{s}$||$\textbf {2}'_{s}$||$\textbf {4}_{s}$||$\textbf {6}_{s}$|
33|$\textbf {1}\oplus \textbf {3}\oplus \textbf {5}$||$\textbf {4}\oplus \textbf {5}$||$\textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {2}_{s}\oplus \textbf {4}_{s}$||$\textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$|
|$\textbf {3}'$||$\textbf {3}'$||$\textbf {4}\oplus \textbf {5}$||$\textbf {1}\oplus \textbf {3}'\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {6}_{s}$||$\textbf {2}'_{s}\oplus \textbf {4}_{s}$||$\textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}$|
44|$\textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {1}\oplus \textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {5}\oplus \textbf {5}$||$\textbf {2}'_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {6}_{s}$||$\textbf {4}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$|
55|$\textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {5}\oplus \textbf {5}$||$\textbf {1}\oplus \textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {4}\oplus \textbf {5}\oplus \textbf {5}$||$\textbf {4}_{s}\oplus \textbf {6}_{s}$||$\textbf {4}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s} \oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$|
|$\textbf {2}_{s}$||$\textbf {2}_{s}$||$\textbf {2}_{s}\oplus \textbf {4}_{s}$||$\textbf {6}_{s}$||$\textbf {2}'_{s}\oplus \textbf {6}_{s}$||$\textbf {4}_{s}\oplus \textbf {6}_{s}$||$\textbf {1}\oplus \textbf {3}$|4|$\textbf {3}\oplus \textbf {5}$||$\textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$|
|$\textbf {2}'_{s}$||$\textbf {2}'_{s}$||$\textbf {6}_{s}$||$\textbf {2}'_{s}\oplus \textbf {4}_{s}$||$\textbf {2}_{s}\oplus \textbf {6}_{s}$||$\textbf {4}_{s}\oplus \textbf {6}_{s}$|4|$\textbf {1}\oplus \textbf {3}'$||$\textbf {3}'\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {4}\oplus \textbf {5}$|
|$\textbf {4}_{s}$||$\textbf {4}_{s}$||$\textbf {2}_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}$||$\textbf {4}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$||$\textbf {3}\oplus \textbf {5}$||$\textbf {3}'\oplus \textbf {5}$||$\textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {4}\oplus \textbf {5}\oplus \textbf {5}$|
|$\textbf {6}_{s}$||$\textbf {6}_{s}$||$\textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {4}_{s}$||$\oplus \ \textbf {6}_{s}\oplus \textbf {6}_{s}$||$\textbf {2}_{s}\oplus \textbf {2}'_{s}\oplus \textbf {4}_{s}\oplus \textbf {4}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}\oplus \textbf {6}_{s}$||$\textbf {3}'\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {4}\oplus \textbf {5}$||$\textbf {3}\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {4}\oplus \textbf {5}\oplus \textbf {5}$||$\textbf {1}\oplus \textbf {3}\oplus \textbf {3}\oplus \textbf {3}'\oplus \textbf {3}'\oplus \textbf {4}\oplus \textbf {4}\oplus \textbf {5}\oplus \textbf {5}\oplus \textbf {5}$|
In this work we confine ourselves to minimally extending the A5 model, i.e., to include the four generations of quarks while minimizing the introduction of other new degrees of freedom. The assignment of the quark sector under |$I'\times Z_{2}\times Z_{3}$| is given as follows:
(2)
for the left-handed doublets, and
(3)
for the right-handed singlets. Here the fields |$(t', b')^{T}_{L}$|⁠, |$b'_{R}$|⁠, and |$t'_{R}$| denote the chiral fields of the fourth generation quarks and the Higgs sector is the same as the A5 model. Thus, we can write the most general Yukawa interactions between quarks and scalar fields as
(4)
Recall that in the A5 model the first step of symmetry breaking |$A_{5}\rightarrow A_{4}$| was caused by the vacuum expectation values (VEVs) of the |$SU(2)_{L}$| singlet scalars |$\langle S_{4}\rangle = (V_{S}, 0, 0, 0)$|⁠. Here the |$S_4$| VEV breaks I′ to T′ symmetry. The decomposition of the irreps at this stage of symmetry breaking |$I'\rightarrow T'$| is given in Table 4 in the Appendix. Therefore, the quark fields decompose as
(5)
while for the scalars we have
(6)
The Yukawa interactions of Eq. (4) now read
(7)
The Clebsch–Gordan coefficients of T′ can be found in the review [42] and were already calculated in Refs. [32,33,36,43]. We adopt the coefficients shown in Ref. [42] and ignore the phases for simplicity. The Yukawa couplings are divided into terms involving the up-type quarks
(8)
and the down-type quarks
(9)
respectively. Here we express the components of scalar fields as |$\Phi _{3} = (\Phi _{3_1}, \Phi _{3_2}, \Phi _{3_3})$|⁠, |$H_{4} = H_{1} + H_{3}$| where |$H_{3} = (H_{3_1}, H_{3_2}, H_{3_3})$|⁠, and |$H'_{4} = H'_{1} + H'_{3}$| where |$H'_{3}= (H'_{3_1}, H'_{3_2}, H'_{3_3})$| according to the breaking |$I' \rightarrow T'$| shown in Eq. (6). The masses of up-type fermions are generated by the |$\Phi _3$| and |$H_{4}$| VEVs, while down-type fermion masses are generated by the |$\Phi _3$| and |$H'_{4}$| VEVs.
Table 4.

|$I'\rightarrow T'$| symmetry breaking.

I|$\rightarrow $|TI|$\rightarrow $|T
11|$\textbf {2}_{s}$|2
33|$\textbf {2}'_{s}$|2
|$\textbf {3}'$|3|$\textbf {4}_{s}$||$\textbf {2}' + \textbf {2}^{\prime \prime }$|
4|$\textbf {1} + \textbf {3} $||$\textbf {6}_{s}$||$\textbf {2} + \textbf {2}' + \textbf {2}^{\prime \prime }$|
5|$\textbf {1}' + \textbf {1}^{\prime \prime } + \textbf {3}$|
I|$\rightarrow $|TI|$\rightarrow $|T
11|$\textbf {2}_{s}$|2
33|$\textbf {2}'_{s}$|2
|$\textbf {3}'$|3|$\textbf {4}_{s}$||$\textbf {2}' + \textbf {2}^{\prime \prime }$|
4|$\textbf {1} + \textbf {3} $||$\textbf {6}_{s}$||$\textbf {2} + \textbf {2}' + \textbf {2}^{\prime \prime }$|
5|$\textbf {1}' + \textbf {1}^{\prime \prime } + \textbf {3}$|
Table 4.

|$I'\rightarrow T'$| symmetry breaking.

I|$\rightarrow $|TI|$\rightarrow $|T
11|$\textbf {2}_{s}$|2
33|$\textbf {2}'_{s}$|2
|$\textbf {3}'$|3|$\textbf {4}_{s}$||$\textbf {2}' + \textbf {2}^{\prime \prime }$|
4|$\textbf {1} + \textbf {3} $||$\textbf {6}_{s}$||$\textbf {2} + \textbf {2}' + \textbf {2}^{\prime \prime }$|
5|$\textbf {1}' + \textbf {1}^{\prime \prime } + \textbf {3}$|
I|$\rightarrow $|TI|$\rightarrow $|T
11|$\textbf {2}_{s}$|2
33|$\textbf {2}'_{s}$|2
|$\textbf {3}'$|3|$\textbf {4}_{s}$||$\textbf {2}' + \textbf {2}^{\prime \prime }$|
4|$\textbf {1} + \textbf {3} $||$\textbf {6}_{s}$||$\textbf {2} + \textbf {2}' + \textbf {2}^{\prime \prime }$|
5|$\textbf {1}' + \textbf {1}^{\prime \prime } + \textbf {3}$|

4. Masses and mixings

We notice that each up- and down-type quark mass matrix is divided into two 2 × 2 block matrices and can be expressed as
(10)
This indicates that the first two generations mix only with the third and fourth generations through higher order corrections. The 2 × 2 block mass matrices are given by
(11)
(12)
and
(13)
With the |$\langle \Phi _{3}\rangle = v(1,1,1)$| VEV, which is enforced by the requirement of tribimaximal mixings in neutrinos at leading order [1], we find that the masses of |$u, d, s, c$| are degenerate |$m_{u} = m_{d} = m_{s} = m_{c} = \sqrt {\frac {3}{2}}f_{1}v$|⁠. Also, the mass matrices of both |$M_{uc}$| and |$M_{ds}$| take the same form. Therefore, the matrices |$M_{uc}M^{\dagger }_{uc}$| and |$M_{ds}M^{\dagger }_{ds}$| are diagonalized by using the same unitary matrix. Thus we conclude that, at first order, the Cabibbo–Kobayashi–Maskawa (CKM) matrix is forced to be the identity2 , which is an acceptable first approximation to |$V_{\mathrm {CKM}}$|⁠. It is interesting that the light quark masses |$(u,d,s,c)$| and three SM light neutrino masses3 have the same origin; both come from the VEVs of |$\Phi _{3}$| field, and the unit CKM matrix and the tribimaximal Pontecorvo–Maki–Nakagawa–Sakata (PMNS) mixings arise from the single subgroup |$Z_{3}$|⁠, which is the remnant symmetry left in the vacuum |$\langle \Phi _{3}\rangle = v(1,1,1)$|⁠. To correct the CKM mixings by the high-order effects, the relevant dimension-five and -six effective operators are |$U_{2L}D_{sR}\Phi ^2_{3}$|⁠, |$U_{2L}D_{sR}\Phi _{3}H_{4}$|⁠, |$U_{2L}D_{sR}H^{\prime 2}_{4}$|⁠, |$U_{2L}D_{sR}H^2_{4}$| and |$U_{1L}D_{bR}H^2_{4}H'_{4}$|⁠, |$U_{1L}D_{tR}H^3_{4}$|⁠, |$U_{1L}D_{tR}H^{\prime 2}_{4}H_{4}$| respectively. Also, as mentioned in Ref. [1], perturbations of the |$\Phi _{3}$| VEVs are needed to accommodate realistic neutrino masses. These high-order corrections will link together the derivations of the Cabibbo angle |$\theta _{C}$| and |$\theta _{13}$| in the quark and lepton mixing matrices respectively. A nonzero value of |$\theta _{13}$| has recently been indicated by several experiments [44–47] and by global analyses [48,49]. If we consider perturbations of the VEVs by taking |$\langle \Phi _{3} \rangle = (v + \Delta _{1}, v + \Delta _{2}, v)$|⁠, the light quark masses are calculated to be
and
This indicates how the degeneracy of the light quark masses can be lifted.

Recall that, in the lepton A5 model, H4 is responsible for the Dirac masses of neutrinos, and we require the condition |$\langle H_{1}\rangle \equiv V_{1} \gg \langle H_{3_{1,2,3}}\rangle \equiv V_{3_{1,2,3}}$| in order to decouple the fourth generation neutrino from the three light SM neutrinos. Therefore, from |$M_{t,t'}$|⁠, we obtain the masses of |$t$| and |$t'$| as |$m^2_{t,t'} \approx \left [V^2_{1} + (V^2_{3_1} + V^2_{3_2} + V^2_{3_3}) \mp V_{1} \sqrt {4V^2_{3_1} + 2(V_{3_2} + V_{3_3})^2}\right ]/2$|⁠. For |$M_{bb'}$|⁠, we also follow the lepton |$A_5$| model by taking4|$\langle H'_{4}\rangle = (V'_{1}, V',V',V')$|⁠, since this gives masses to charged leptons too. |$m^2_{b,b'}$| are then given by |$[V^{\prime 2}_{1} + 3V^{\prime 2} \mp 2\sqrt {3}V'_{1}V']/{2}$|⁠. In general, we have enough parameters to accommodate the heavy quark mass spectrum.

5. Conclusion

As mentioned in the introduction, the recent observations of a boson with a mass near 125 GeV [8,9] have placed severe constraints on the standard model augmented by a sequential fourth generation of fermions. The CMS experiment has now excluded such a fourth generation of fermions with masses of up to 600 GeV [10]. Note that our I′ model has three doublets and one singlet Higgs, all of which are in non-singlet irreps of I′. Hence it is not necessarily disfavored by the current experimental search. Indeed, such severe limits can be relaxed into the range of 400–600 GeV in a two Higgs doublets model with four generation of fermions, as discussed in Ref. [22]. It would be interesting to investigate whether our I′ model (or one of its extensions) can be recast into a form designed in Ref. [22].

In summary, we construct a model of four fermion generations based on the binary icosahedral symmetry group I′. Many properties of the SM with three families are accommodated, such as the mass spectrum, tribimaximal mixings in the neutrino sector, and an identity CKM matrix at leading order5 . In addition, quark and lepton relations are intimately connected as their masses are provided from the same set of scalars. We believe that this makes the model both interesting and challenging. For example, one has to strike a balance between the result of tribimaximal mixings in the neutrino sector and derivation of a realistic Cabibbo angle from perturbations in the quark sector. It is still not clear to us whether the higher order corrections will lead to a realistic Cabibbo angle or if we need extra degrees of freedom to realize it. We will leave this and other phenomenological aspects of this model to future work.

Acknowledgements

This work was supported in part by the US DOE grant DE-FG05-85ER40226, the National Science Council of Taiwan under Grant Numbers 98-2112-M-001-014-MY3, 101-2112-M-001-005-MY3, and the National Center for Theoretical Sciences of Taiwan (NCTS). T.W.K. is grateful for the hospitality of the Physics Division of NCTS where this work was initiated. T.C.Y. is grateful for the hospitality of KITPC (Beijing, China) and IMSc (Chennai, India) where progress in this work was made.

Appendix

A.1 Discrete symmetry groups I′ and A5
A5 is the only simple finite discrete subgroup of |$SO(3)$|⁠. Its 60 elements can be generated by products of the two generators a and b, which satisfy
(A1)
where e is the identity element.
I′ is the double covering of A5; therefore it has 120 elements. The representation in terms of generators is similar to that of A5, namely
(A2)
We note that |$a^2$| is no longer the identity, but the negative of the identity, i.e., |$a^4=b^6=e$|⁠. Any finite subgroup of |$SU(2)$| must have (at least) one spinor doublet |$\textbf {2}_{s}$|⁠. By using the multiplication rules, the irreducible representations of the group [55,56] can be visualized as an extended Dynkin diagram depicted in Fig. 1.
Extended Dynkin diagram and irreducible representations of I′.
Fig. 1.

Extended Dynkin diagram and irreducible representations of I′.

Recalling that the exact sequence relation between |$SU(2)$| and |$SO(3)$| is
(A3)
we can restrict ourselves to the discrete cases
(A4)
and
(A5)
to demonstrate the double coverings. As our interest is in I′, we first reproduce its character table in Table 2, from which we can easily calculate the multiplication table for I′ irreps presented in Table 3. The symmetry breaking to T′ is also easily obtained, as given in Table 4.
A.2 Higgs potential
The most general form of the Higgs potential containing the scalar fields |$S_{4}$|⁠, |$H_{4}$|⁠, |$H'_{4}$|⁠, and |$\Phi _{3}$|⁠, invariant under the discrete |$A_{5}\times Z_{2}\times Z_{3}$| symmetries, is given by
(A6)
where the individual terms are written as
Here we have introduced the I′ group representation indices |$\alpha = \textbf {1}, \textbf {3}, \textbf {3}', \textbf {4}, \textbf {5}$|⁠; |$\beta = \textbf {1}, \textbf {3}, \textbf {5}$|⁠; and |$\gamma $| = |$\textbf {3}', \textbf {4}, \textbf {5}$| respectively. The first stage of spontaneous symmetry breaking (SSB) takes us from the initial I′ discrete symmetry to T′, and this is accomplished with a VEV for |$S_4$|⁠. Consider the pure |$S_4$| sector of the Higgs potential
where |$M_1$| and |$M_3$| are I′ group matrices. Since |$(4\times 4)_S$| in I′ contains three terms, there are three singlets in |$[(4\times 4)_S]^2$| and hence in |$V_{S_4}$|⁠. There is also a potential cubic term that can be suppressed, either by imposing an additional |$Z_2$| symmetry, or by making |$S_4$| a complex field. For |$\lambda _1$| and |$\lambda _2$| sufficiently small and of the proper signs, the SSB is dominated by the λ term and we have |$\langle S_4 \rangle =-\sqrt {\frac {\mu _{S_4}^2}{\lambda }}(1,0,0,0)$| such that |$I' \rightarrow T'$| with the SM gauge group unaffected and with the scalars decomposing as in Eq. (6).

The sector of the Higgs potential of the I′ model that depends only on |$H_1$|⁠, |$H_{1'}$|⁠, |$H_3$|⁠, and |$H_{3'}$| is given in the appendix of Ref. [57], which only involves T′ invariant terms and is identical to our form of the potential up to constraints due to residual I′ relations on the coupling constants. The work of Ref. [57] demonstrates how T′ is broken completely and how the light quark and lepton masses and mixings arise.

Our only other additional scalars are the I′ triplet, SM doublet fields |$\Phi _3$|⁠. Since |$3\rightarrow 3$| under |$I' \rightarrow T'$|⁠, a |$\Phi _3$| breaks T′. The pure |$\Phi _3$| scalar sector can be rewritten as
where we have included the triplet indices |$a,b,\ldots =1,2,3$| and find two quartic terms due to the fact that |$(3\times 3)_S$| in I′ contains two terms and hence |$[(3\times 3)_S]^2$| contains two singlets. Given the T′ level VEVs for |$H_3$|⁠, and |$H_{3'}$|⁠, there is no T′ symmetry remaining to rotate the |$\Phi _3$| VEV. Hence the choice |$\langle \Phi _3 \rangle =-v (1,1,1)$| is stable for |$\lambda ' \approx 0$| and of the form needed in the model.

A similar analysis can be applied to the investigation of the SSB in our |$A_5$| model. Finally, we note that typically only an |$O(10^{-1})$| fine tuning of scalar quartic coupling constants is needed to maintain the stability of such patterns of SSB.

1

Also see Ref. [41] for a general discussion of neutrino masses with four generations of fermions.

2

The third and fourth generations can mix largely in principle.

3

Neutrino masses are generated through the seesaw mechanism, and therefore they are further suppressed by the lepton number breaking scale.

4

The four component VEVs, in general, can be different.

5

Both |$A_5$| and I′ have also recently been used in the context of three generation models of fermion masses and mixings [51–54].

References

1

Chen
C.-S.
Kephart
T. W.
Yuan
T.-C.
,
J. High Energy Phys.
1104
,
015
(
2011
) [].

2

Eberhardt
O.
Lenz
A.
Rohrwild
J.
,
Phys. Rev. D
82
,
095006
(
2010
) [].

3

Eberhardt
O.
Herbert
G.
Lacker
H.
Lenz
A.
Menzel
A.
Nierste
U.
Wiebusch
M.
,
Phys. Rev. D
86
,
013011
(
2012
) [].

4

Eberhardt
O.
Lenz
A.
Menzel
A.
Nierste
U.
Wiebusch
M.
,
Phys. Rev. D
86
,
074014
(
2012
) [].

5

Eberhardt
O.
Herbert
G.
Lacker
H.
Lenz
A.
Menzel
A.
Nierste
U.
Wiebusch
M.
,
Phys. Rev. Lett.
109
,
241802
(
2012
) [].

6

Lazzeroni
C.
et al. [
NA62 Collaboration
],
Phys. Lett. B
698
,
105
(
2011
) [].

7

Lacker
H.
Menzel
A.
,
J. High Energy Phys.
1007
,
006
(
2010
) [].

8

Aad
G.
et al. [
ATLAS Collaboration
],
Phys. Lett. B
716
,
1
(
2012
) [].

9

Chatrchyan
S.
et al. [
CMS Collaboration
],
Phys. Lett. B
716
,
30
(
2012
) [].

10

Chatrchyan
S.
et al. [
CMS Collaboration
], [].

11

Gates
E.
Terning
J.
,
Phys. Rev. Lett.
67
,
1840
(
1991
).

12

Kniehl
B. A.
Kohrs
H. G.
,
Phys. Rev. D
48
,
225
(
1993
).

13

Holdom
B.
,
Phys. Rev. D
54
,
721
(
1996
) [].

14

He
H. J.
Polonsky
N.
Su
S.
,
Phys. Rev. D
64
,
053004
(
2001
) [].

15

Holdom
B.
Hou
W. S.
Hurth
T.
Mangano
M. L.
Sultansoy
S.
Unel
G.
,
PMC Phys. A
3
,
4
(
2009
) [].

16

Hou
W. S.
Nagashima
M.
Soddu
A.
,
Phys. Rev. Lett.
95
,
141601
(
2005
) [].

17

Hou
W. S.
Li
H. n.
Mishima
S.
Nagashima
M.
,
Phys. Rev. Lett.
98
,
131801
(
2007
) [].

18

Soni
A.
Alok
A. K.
Giri
A.
Mohanta
R.
Nandi
S.
,
Phys. Lett. B
683
,
302
(
2010
) [].

19

Shaposhnikov
M. E.
,
Nucl. Phys. B
287
,
757
(
1987
).

20

Hou
W. S.
,
Chin. J. Phys.
47
,
134
(
2009
) [].

21

Bar-Shalom
S.
Nandi
S.
Soni
A.
,
Phys. Rev. D
84
,
053009
(
2011
) [].

22

Bar-Shalom
S.
Geller
M.
Nandi
S.
Soni
A.
, [].

23

Bardeen
W. A.
Hill
C. T.
Lindner
M.
,
Phys. Rev. D
41
,
1647
(
1990
).

24

Hung
P. Q.
Xiong
C.
,
Nucl. Phys. B
847
,
160
(
2011
) [].

25

Hung
P. Q.
Xiong
C.
,
Phys. Lett. B
694
,
430
(
2011
) [].

26

Hung
P. Q.
Xiong
C.
,
Nucl. Phys. B
848
,
288
(
2011
) [].

27

Ho
C. M.
Hung
P. Q.
Kephart
T. W.
,
J. High Energy Phys.
1206
,
045
(
2012
) [].

28

Manohar
A. V.
Wise
M. B.
,
Phys. Rev. D
74
,
035009
(
2006
) [].

29

He
X.-G.
Valencia
G.
,
Phys. Lett. B
707
,
381
(
2012
) [].

30

Frampton
P. H.
Kephart
T. W.
Matsuzaki
S.
,
Phys. Rev. D
78
,
073004
(
2008
) [].

31

Frampton
P. H.
Kephart
T. W.
,
Int. J. Mod. Phys. A
10
,
4689
(
1995
) [].

32

Aranda
A.
Carone
C. D.
Lebed
R. F.
,
Phys. Lett. B
474
,
170
(
2000
) [].

33

Aranda
A.
Carone
C. D.
Lebed
R. F.
,
Phys. Rev. D
62
,
016009
(
2000
) [].

34

Feruglio
F.
Hagedorn
C.
Lin
Y.
Merlo
L.
,
Nucl. Phys. B
775
,
120
(
2007
) [];
836, 127 (2010) [erratum].

35

Chen
M. C.
Mahanthappa
K. T.
,
Phys. Lett. B
652
,
34
(
2007
) [].

36

Frampton
P. H.
Kephart
T. W.
,
J. High Energy Phys.
0709
,
110
(
2007
) [].

37

Frampton
P. H.
Kephart
T. W.
,
Phys. Rev. D
51
,
1
(
1995
) [].

38

Frampton
P. H.
,
The third family is different
. In
Proceeding of the Fourth International Symposium on Particles, Strings and Cosmology
, ed.
Wali
K. C.
, (
World Scientific
,
Singapore
,
1995
) [].

39

Frampton
P. H.
,
Treating top differently from charm and up.
In
Particle Theory and Phenomenology
, eds.
Lassila
K. E.
et al.
(
World Scientific
,
Singapore
,
1996
) [].

40

Frampton
P. H.
Kephart
T. W.
Rohm
R. M.
,
Phys. Lett. B
679
,
478
(
2009
) [].

41

Schmidt
M. A.
Smirnov
A. Y.
,
Nucl. Phys. B
857
,
1
(
2012
) [].

42

Ishimori
H.
Kobayashi
T.
Ohki
H.
Okada
H.
Shimizu
Y.
Tanimoto
M.
,
Prog. Theor. Phys. Suppl.
183
,
1
(
2010
) [].

43

Fairbairn
W. M.
Fulton
T.
Klink
W. H.
,
J. Math. Phys.
5
,
1038
(
1964
).

44

Abe
K.
et al. [
T2K Collaboration
],
Phys. Rev. Lett.
107
,
041801
(
2011
) [].

45

Abe
Y.
et al. [
DOUBLE-CHOOZ Collaboration
],
Phys. Rev. Lett.
108
,
131801
(
2012
) [].

46

An
F. P.
et al. [
DAYA-BAY Collaboration
],
Phys. Rev. Lett.
108
,
171803
(
2012
) [].

47

Ahn
J. K.
et al. [
RENO Collaboration
],
Phys. Rev. Lett.
108
,
191802
(
2012
) [].

48

Fogli
G. L.
Lisi
E.
Marrone
A.
Palazzo
A.
Rotunno
A. M.
,
Phys. Rev. D
84
,
053007
(
2011
) [].

49

Schwetz
T.
Tortola
M.
Valle
J. W. F.
,
New J. Phys.
13
,
109401
(
2011
) [].

50

Nakamura
K.
et al. (
Particle Data Group
),
J. Phys. G: Nucl. Part. Phys.
37
,
075021
(
2010
).

51

Everett
L. L.
Stuart
A. J.
,
Phys. Rev. D
79
,
085005
(
2009
) [].

52

Feruglio
F.
Paris
A.
,
J. High Energy Phys.
1103
,
101
(
2011
) [].

53

Ding
G.-J.
Everett
L. L.
Stuart
A. J.
,
Nucl. Phys. B
857
,
219
(
2012
) [].

54

Everett
L. L.
Stuart
A. J.
,
Phys. Lett. B
698
,
131
(
2011
) [].

55

Luhn
C.
Nasri
S.
Ramond
P.
,
J. Math. Phys.
48
,
123519
(
2007
) [].

56

Ramond
P.
,
Group Theory: A Physicist's Survey
(
Cambridge University Press
,
Cambridge, UK
,
2010
).

57

Eby
D. A.
Frampton
P. H.
,
Phys. Lett. B
713
,
249
(
2012
) [].

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.