Abstract

As we previously reported for glutathione (GSH), both ascorbic acid (AA) and vitamin E were observed to suppress wild carrot (Daucus carota L.) somatic embryogenesis with little concomitant effect on biomass. Endogenous concentrations of AA were lower during embryo development than during cell proliferation, exhibiting a temporal pattern nearly identical to that of GSH. GSSG (oxidized GSH) reductase was found to be considerably more active in proliferating than in developing cultures, whereas no difference was evident in the case of dehydroascorbate (DHA) reductase. Both GSH and AA concentrations in these cells are governed by 2,4-D. These results show that redox status is a strong determinant of proliferative versus developmental growth and indicate that the mode of action of 2,4-D in this system may be explained at least in part by its influence on endogenous antioxidant levels.

2

Current address: James River-Otis Inc., P. O. Box 10, Jay, ME 04239.

1

Portions of this work were used by B. A. E. as partial fulfillment of the requirements for the Ph.D. degree at The Institute of Paper Chemistry.

This content is only available as a PDF.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://dbpia.nl.go.kr/journals/pages/open_access/funder_policies/chorus/standard_publication_model)