-
PDF
- Split View
-
Views
-
Cite
Cite
John P. Markwell, J. Philip Thornber, Treatment of the Thylakoid Membrane with Surfactants : Assessment of Effectiveness Using the Chlorophyll a Absorption Spectrum, Plant Physiology, Volume 70, Issue 3, September 1982, Pages 633–636, https://doi.org/10.1104/pp.70.3.633
- Share Icon Share
Abstract
Treatment of higher plant (Nicotiana tabacum L. var. Samsun) chloroplast thylakoid membranes with surfactants results in a shift of the chlorophyll a absorption maximum in the red spectral region from its in vivo value of 678.5 nanometers to shorter wavelengths. The magnitude of this shift is correlated with membrane disruption, and is not necessarily due to the release of pigment from pigment-protein complexes present in the membrane. Membrane disruption has been measured by the amount of pigment in the supernatant fraction after centrifugation of surfactant treated membranes. For an equivalent amount of disruption, the extent of the blue-shift is influenced by the ionic nature of the surfactant: anionic surfactants cause small shifts, cationic surfactants cause the largest (∼10 nanometers) shifts, and nonionic surfactants produce intermediate shifts. The wavelength of maximum absorbance of chlorophyll a in the red region is a convenient criterion for assessing the potential utility of different surfactants for studies on the structure, composition and function of higher plant thylakoid membranes.
Supported by the National Science Foundation, Grant PCM 78-15835, and by the Science and Education Administration of the United States Department of Agriculture under grant number 5901-0410-8-0170-0 from the Competitive Grants Office.