Abstract

Penetration of naphthaleneacetic acid through enzymatically isolated upper pear (Pyrus communis L. cv. Bartlett) leaf cuticle increased as the donor pH was decreased. Naphthaleneacetamide penetration was not influenced by donor pH. The effect of pH on naphthaleneacetic acid penetration was reversible. Higher receiver (simulated leaf interior) pH favored penetration of naphthaleneacetic acid. Changes in the degree of dissociation, and hence polarity, as controlled by hydrogen ion concentration was the prime factor in the response of naphthaleneacetic acid to pH. At pH values lower than the pK (4.2 for naphthaleneacetic acid), the molecule was primarily undissociated, lipophilic, and penetrated into the cuticle; whereas, at pH values above the pK naphthaleneacetic acid was ionized, hydrophilic, and penetrated the cuticle with difficulty or not at all. Data presented are consistent with the hypothesis that naphthaleneacetic acid and naphthaleneacetamide penetration through the cuticle takes place by diffusion.

2

Present address: Department of Botany, University of California, Davis, Calif. 95616.

1

This study was supported by Public Health Service Grant CC 00246 from the National Communicable Disease Center, Atlanta, Ga., and Food and Drug Administration Grant FD 00223. Michigan Agricultural Experiment Station Journal Article No. 5546.

This content is only available as a PDF.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://dbpia.nl.go.kr/journals/pages/open_access/funder_policies/chorus/standard_publication_model)