-
Views
-
Cite
Cite
Tsubasa Shoji, Masaki Mishima, Takashi Hashimoto, Divergent DNA-Binding Specificities of a Group of ETHYLENE RESPONSE FACTOR Transcription Factors Involved in Plant Defense , Plant Physiology, Volume 162, Issue 2, June 2013, Pages 977–990, https://doi.org/10.1104/pp.113.217455
- Share Icon Share
Abstract
Transcription factors (TFs) recognize target DNA sequences with distinct DNA-binding domains (DBDs). The DBD of Arabidopsis (Arabidopsis thaliana) ETHYLENE RESPONSE FACTOR1 (AtERF1) uses three consecutive β-strands to recognize a GCC-containing sequence, but tobacco (Nicotiana tabacum) ERF189 and periwinkle (Catharanthus roseus) Octadecanoid-derivative Responsive Catharanthus AP2-domain protein3 (ORCA3) of the same TF subgroup appear to target similar but divergent DNA sequences. Here, we examined how DNA-binding specificities of these TFs have diverged in each plant lineage to regulate distinct defense metabolisms. Extensive mutational analyses of these DBDs suggest that two modes of protein-DNA interactions independently contribute to binding specificity and affinity. Substitution of a conserved arginine to lysine in the first β-strand of ERF189 relaxes its interaction with the second GC pair of the GCC DNA sequence. By contrast, an increased number of basic amino acids in the first two β-strands of ORCA3 allows this TF to recognize more than one GCC-related target, presumably via increased electrostatic interactions with the negatively charged phosphate backbone of DNA. Divergent DNA-binding specificities of the ERFs may have arisen through mutational changes of these amino acid residues.