Abstract

The Canary Current Large Marine Ecosystem (CCLME), extending from Cape Spartel in Morocco to Guinea-Bissau, supports high primary and fisheries productivity driven by permanent or seasonal upwelling activity. During the current study, mesozooplankton and hydrographic sampling were conducted across the CCLME in the spring/summer of 2017 and the autumn/winter of 2019. The total mesozooplankton abundance and dry weight were found to be higher in 2017, partly due to the summer reproduction cycle of diplostracans. A prominent latitudinal gradient was observed in both the mesozooplankton standing stock and assemblage structure closely linked to a significant shift in oceanographic regimes at Cape Blanc (21°N). The area south of Cape Blanc, sampled during the upwelling relaxation in both years, was occupied by warmer South Atlantic Central Waters showing elevated mesozooplankton stock with a tropical assemblage structure. In contrast, cooler and more saline waters north of Cape Blanc, a result of the upwelling regime in that area, explained part of the observed variation in mesozooplankton composition among subregions and sampling periods. Our findings indicate that aside from the upwelling activity, spatiotemporal variation of mesoscale processes and topographical features at a subregional level may also shape mesozooplankton stock and assemblage structure in the CCLME.

INTRODUCTION

The Canary Current Large Marine Ecosystem (CCLME) stretches from Cape Spartel at the northern of Morocco (36°N) to southern Guinea Bissau (8°N) and is one of the four Eastern Boundary Upwelling Systems (EBUS) in the globe (Chavez and Messié, 2009; Fréon et al., 2009; Kämpf and Chapman, 2016), ranking third in terms of primary productivity and exhibiting the highest level of fisheries production among all African Upwelling Large Marine Ecosystems (Déniz-González et al., 2016). CCLME features two distinct water masses: the North Atlantic Central Water (NACW), flowing equatorward via the Canary Current, and the South Atlantic Central Water (SACW), which flows poleward through the Mauritanian Current. These water masses are separated by a dynamic front at 21°N (Cape Blanc), undergoing significant mixing and interlacing (Arístegui et al., 2006, 2009). The high regional productivity is primarily supported by the strength of north-easterly trade winds that blow towards the equator, inducing the offshore movement of surface water and leading to an inshore upwelled current rich in nutrients (Kämpf and Chapman, 2016). Due to a remarkable seasonality in the alongshore trade wind forcing, upwelling regime intensity can vary spatiotemporally along the CCLME, dividing the ecosystem into distinct subregions (e.g. Arístegui et al., 2009; Cropper et al., 2014; Benazzouz et al., 2014a). Cape Blanc at the borders of Mauritania (21°N), has been regarded as an important topographical limit where major changes in upwelling dynamics occur. Southern of Cape Blanc, the upwelling is only seasonal and occurs during winter/spring (e.g. Arístegui et al., 2009; Cropper et al., 2014). On the other hand, a year-round strong upwelling characterizes the central CCLME northern of Cape Blanc (21°N–26°N), while further northern (26°N–33°N) the upwelling though remains permanent, is weaker, intensifying during summer. Nevertheless, upwelling activity in the northern part of the African CCLME (33°N–36°N) is characterized by a weak to absent upwelling activity.

In addition to the upwelling regime, the productivity of the Northwest African coast is closely linked to a high degree of mesoscale oceanographic variability and the topographical complexity of the region (e.g. proximity to the islands, presence of capes) (Barton et al., 1998). The presence of mesoscale structures is particularly evidenced in the area of the Canary Eddy Corridor (22°N–29°N) (Sangrà et al., 2009) around the Canary Islands, but also on the Moroccan coast with the presence of upwelling filaments in proximity to Cape Ghir (31°N) (Salah et al., 2012; Sangrà et al., 2015) and Cape Juby (27oN) (Marcello et al., 2011). Local spots of productivity with high importance as feeding and nursery grounds for small pelagic fish have also been highlighted in other areas across CCLME, both north and south of Cape Blanc (e.g. Guénette et al., 2014; Brochier et al., 2018; Tiedemann et al., 2018).

Mesozooplankton play a critical role in both ecological and biogeochemical processes, as they channel energy from the lower trophic levels to higher ones and impact biochemical cycling (Batten et al., 2016; Steinberg and Landry, 2017). Our knowledge regarding the ecological aspects of this important food web link in the CCLME region still lags behind that of other EBUS (e.g. Verheye et al., 2016; Venegas et al., 2024). Although, the first mesozooplankton studies within CCLME date back almost a century ago (Berraho et al., 2015), we still lack a comprehensive understanding regarding the dynamics of mesozooplankton on a regional level. As summarized by (Hernández-León et al., 2007; Berraho et al., 2015), the majority of mesozooplankton research conducted in the CCLME has predominantly focused on regions situated north of Cape Blanc (21°N), with a special emphasis on the Canary Island archipelago. Studies in this area have primarily explored the effects of upwelling filaments on the ecophysiological traits of mesozooplankton and subsequent implications for vertical fluxes (Hernández-León et al., 2007; Berraho et al., 2015), while just recently, size spectra (Couret et al., 2023a) and modeling approaches (Couret et al., 2023b), have been incorporated to address mesozooplankton spatiotemporal dynamics.

Outside the Canary Islands basin, mesozooplankton distribution patterns (particularly those of copepods) in relation to hydrography, have been mostly examined at highly localized spatial scales (Kuipers et al., 1993; Salah et al., 2012; Zaafa et al., 2014; Berraho et al., 2019a; Berraho et al., 2019b). Broader scale published data are limited, and mostly stemming from mesozooplankton sampling conducted several decades ago. Such studies were conducted in the framework of German research efforts during the 70s (Postel et al., 1995), but also of Russian research voyages (since 1994) both along the Moroccan coastal waters (i.e, Somoue et al., 2005; Lidvanov et al., 2018) and south of Cape Blanc (Sirota et al., 2004; Glushko and Lidvanov, 2012; Lidvanov et al., 2022). Notably, information from the latter research expeditions is predominantly accessible through Russian scientific literature (e.g. Glushko and Lidvanov, 2012; Shukhgalter and Lidvanov, 2018; Lidvanov et al., 2022). We are still lacking regional mesozooplankton studies covering the entire CCLME, that would allow spatiotemporal comparisons and future necessary modeling efforts of zooplankton communities in view of climate change (Ratnarajah et al., 2023). The latter requires not only intensive sampling effort but also standardized sampling design and protocols.

Here, we examine the broadscale distribution patterns of mesozooplankton assemblages along the coast of North-West Africa encompassing sub-regions of different upwelling regimes across the CCLME. Mesozooplankton and hydrographic sampling for the current study took place in two distinct years representing different seasons (2017: spring/summer, 2019: autumn/winter) in the framework of the EAF-Nansen programme of the Food and Agriculture Organization of the United Nations (FAO). Our main aim was to trace seasonal/interannual and subregional variability in mesozooplankton distribution patterns, in association with the environmental conditions. We hypothesized that mesozooplankton abundance and dry weight patterns in the area as well as assemblage structure will largely reflect the hydrographic conditions imposed by the upwelling conditions and topography of each region. We expect that our findings will enable a better understanding of the broader ecological patterns at a regional level and provide a valuable data source for future work in the CCLME, allowing for tracing the climate change-driven shifts in distribution patterns and changes in abundance, and the potential consequences for higher trophic levels (e.g. small pelagic fish).

METHOD

Sampling design

The study area covered the Northwest African coast (NWA), between 36°N north of Morocco and 12°N north of Guinea-Bissau (Fig. 1). Sampling was done on board the R/V Dr Fridtjof Nansen during seven surveys conducted in spring/summer 2017 and autumn/winter 2019 (Table S1). Mesozooplankton was sampled at 158 stations positioned across transects running perpendicular to the coast (2017: 82 stations, 2019: 76 stations, Table S1). Overall, stations were located at three isobathic strata (Str) at depths of 30 m (Str1), 100 m (Str2) and 500 m (Str3, including also few sites positioned at depths greater than 500 m). Tows were performed using a WP2 net (56 cm diameter, area of 0.25 m2 and 180 μm mesh size), equipped with a Hydrobios (438 115) mechanical flowmeter and hauled vertically at each station at a speed of ~ 0.5 m. s−1. Sampling was conducted during day or night (Fig. S1), from the depth of 200 m to the surface for stations with a bottom depth exceeding 200 m (or from 3 to 5 m above the sea floor at shallower stations). Str1,2 were not expected to be influenced by sampling time, as the tows covered their entire water column. In Str3 (stations ≥500 m depth, sampled at 0–200 m), mesozooplankton diel vertical migration (DVM) could have an effect and this was further explored (see data analysis).

Maps of the study area in 2017 and 2019. Stations of hydrographic (CTD) and mesozooplankton (WPII) sampling are shown. Sampling directions are indicated with arrows. Major water mass circulation and oceanographic features adapted from Arístegui et al., (2009) are indicated (AC: Azores Current, CC: Canary Current, CVFZ: Cape Verde Frontal Zone, MC: Mauritanian Current, NEC: North Equatorial Current, NECC: North Equatorial Countercurrent, NACW: North Atlantic Central Water, SACW: South Atlantic Central Water). The Zones of distinct upwelling regime shown in the study area are based on Arístegui et al., (2009) and Cropper et al., (2014) [i.e. Zone A: 36°N—33°N, weak to absent upwelling; Zone B: 33°N -26°N, permanent weak upwelling; Zone C: 26°N -21°N, permanent strong upwelling; Zone D: 21°N—12°N, seasonal upwelling]. The position of the isobath 200 m is indicated with a dashed line.
Fig. 1

Maps of the study area in 2017 and 2019. Stations of hydrographic (CTD) and mesozooplankton (WPII) sampling are shown. Sampling directions are indicated with arrows. Major water mass circulation and oceanographic features adapted from Arístegui et al., (2009) are indicated (AC: Azores Current, CC: Canary Current, CVFZ: Cape Verde Frontal Zone, MC: Mauritanian Current, NEC: North Equatorial Current, NECC: North Equatorial Countercurrent, NACW: North Atlantic Central Water, SACW: South Atlantic Central Water). The Zones of distinct upwelling regime shown in the study area are based on Arístegui et al., (2009) and Cropper et al., (2014) [i.e. Zone A: 36°N—33°N, weak to absent upwelling; Zone B: 33°N -26°N, permanent weak upwelling; Zone C: 26°N -21°N, permanent strong upwelling; Zone D: 21°N—12°N, seasonal upwelling]. The position of the isobath 200 m is indicated with a dashed line.

A total of 332 Conductivity Temperature Depth (CTD) casts were done in both years across the studied area, covering both coastal and offshore waters (2017: 200 casts; 2019: 132 casts, Table S1). In 2017, hydrographic sampling was conducted using a Seabird 911 CTD, equipped with a Chelsea Mk III Aquatracka fluorometer and an SBE 43 oxygen sensor. In 2019, a Sea-Bird 911plus CTD profiler was deployed, equipped with a WET Labs ECO-AFL fluorometer for in situ fluorescence measurement. The CTD sensors aboard R/V Dr Fridtjof Nansen undergo routine pre- and post-use calibration by the manufacturer every 1–2 years. During each survey, sensor data are rigorously validated. Fluorescence was employed to estimate Chlorophyll-a (Chl-a) concentrations, with fluorometer data validated against onboard Chl-a measurements. These measurements were obtained from water samples collected at various depths using Niskin bottles. The Chl-a assay involved extraction with 90% acetone, followed by centrifugation, and analysis using a fluorometer (model 10 AU, Turner Designs Inc., Sunnyvale, CA, USA) in accordance with Welschmeyer (1994) and Jeffrey and Humphrey (1975). Salinity measurements were cross-verified onboard using a Portasal Salinometer (Model 8410A), while oxygen measurements were validated using Winkler titration, following the protocol outlined by Grasshoff et al. (1983).

Sample processing and analysis

Each mesozooplankton sample was halved on board using a Motoda box. The first half was dried on pre-weighed aluminum trays for 24 h at ~ 60°C, for the estimation of the mesozooplankton dry weight as a biomass measure. The second half was directly fixed with a 4% borax-buffered formaldehyde solution and was used for further estimation of the total abundance and species composition. Seven samples were not served for taxonomic analysis due to their poor preservation (one sample in 2017 and six samples in 2019).

Taxonomic identification was done to the lowest possible taxonomic level based on morphological characteristics using available sources (Rose, 1933; Trégouboff and Rose, 1957; Wiafe and Frid, 2001; Richardson et al., 2013; Razouls et al., 2024). In this study, we use the term Paracalanus parvus* to refer to the P. parvus species complex (Kasapidis et al., 2018). Abundance and dry weight values were expressed as individuals per square meter (ind. m−2) and grams per square meter (g m−2) to provide information on the total mesozooplankton standing stock in the first 200 m of the water column. However, to allow comparison with other studies in the area we also provide, as supplementary material, density expressed as ind. m−3.

Data analyses

Due to the high variability of the environmental parameters across the study area, we followed an “a priori” division of four latitudinal Zones (Fig. 1A–D) based on previous knowledge on the hydrological features and upwelling dynamics within the CCLME (e.g. Arístegui et al., 2009; Cropper et al., 2014; Benazzouz et al., 2014a). The Zones were defined as follows: Zone A (36°N–33°N) with weak to absent upwelling activity, Zone B (33°N–26°N) with weak and permanent upwelling activity, stronger in summer and autumn, Zone C (26°N–21°N) with strong and permanent upwelling activity throughout the year, peaking from spring to autumn and Zone D (21°N–12°N) with seasonal upwelling, primarily occurring in winter.

Exploration for day-night sampling effects in St3 (stations ≥500 m depth, sampled at 0–200 m) is provided in Supplement S2. Comparisons within Zones of balanced day/night sampling in Str3 (assuming consistent zooplankton behavior among nearby stations), showed no significant day vs. night differences in mesozooplankton stock and assemblage structure. Latitudinal trends in zooplankton stock were also found similar, regardless of the inclusion of the deeper stratum, and the clustering in Str 3 mirrored the latitudinal separation of shallower stations (Str1, 2). Therefore, for the purpose of this work, we have included Str3 (25% of the sampling grid) in the same analysis as the other two strata.

Contour maps of surface temperature, salinity, Chl-a and oxygen were made using the Ocean Data View and Data-Interpolating Variational Analysis (ODV version 5.7.0, Schlitzer, 2024). All other plotting and analyses were performed in the R programming language (version 4.3.3, R Core Team, 2024) and the R studio software (version 2024.04.0, RStudio Team, 2024). Plotting was done using the packages “ggOceanMaps” (version 2.0.0, Vihtakari, 2023) and “ggplot2” (version 3.4.2, Wickham, 2016). Statistics were performed using the packages “stats and vegan” (version 2.6-4, Oksanen et al., 2022).

Significant differences in the surface hydrological parameters were tested across Zones and strata in each year by Permutational Multivariate Analysis of Variance (PERMANOVA, Anderson, 2001, 2017) with 999 permutations implemented, on the Euclidean distance matrix of prior normalized data, via the adonis2 function from the “vegan” package. Pairwise tests were made with the function pairwise.adonis2 (Martinez Arbizu, 2020). Seasonal/interannual and latitudinal (Zones A-D) differences in total mesozooplankton abundance and dry weight were tested by one-way ANOVA on log-transformed data, following confirmation of normality (Shapiro–Wilk test, α = 0.05) and homogeneity of variance (Levene’s test, α = 0.05). The non-parametric Kruskal-Wallis H-test and post hoc Dunn’s test were used for comparisons of univariate variables among the latitudinal Zones (A-D).

Hierarchical clustering and non-metric multidimensional scaling (nMDS) analysis (Clarke et al., 2014), were used to investigate the copepod and diplostracan assemblage structure. To account for the influence of rare taxa and minimize the impact of dominating taxa, data was square-root transformed and a dissimilarity matrix was built using the Bray–Curtis dissimilarity index. Clustering was performed on the dissimilarity matrix using group-average linkage. Taxa with a relative density > 3% in at least one station were further clustered by calculating the Bray–Curtis dissimilarity index on pairs of taxa based on standardized abundances. To identify the taxa contributing to the 70% similarity of the clustered samples we performed Similarity Percentage analysis (SIMPER) using the simper function of the “vegan” package. This package was also used to calculate the diversity indices (taxonomic richness and Shannon-Weiner (H, Shannon and Weaver, 1949) based on the copepod and diplostracan genera encountered in the samples. PERMANOVA routine also tested for differences in copepod and diplostracan assemblages for each year (Zones, strata) based on the Bray–Curtis dissimilarity matrix used for clustering.

To relate the assemblage structure with the environment, selected environmental vectors were fitted on the nMDS ordination plot using the envfit function of the “vegan” package in R (Oksanen et al., 2022). This analysis was performed separately for each year, as well as for both years combined, to identify common trends. The function envfit uses a permutation process to identify which environmental vectors most accurately determine the distribution of assemblage structure. The ordination scores produced by the nMDS are related by regression analysis with the selected environmental variables. The environmental variables are the dependent variables that are explained by the ordination scores, and each dependent variable is analyzed separately. Significance is tested by permutation tests (999 permutations) and p-values were Bonferroni-corrected. The parameters selected during our study were station sampling depth and averages of temperature, salinity, Chl-a and oxygen at the 0–30 m layer (adjusting for the shallower stations in Str1).

RESULTS

Environmental conditions

Contour maps of temperature, salinity, Chl-a and oxygen levels at 10 m depth (Fig. 2) and their mean depth profiles in the four latitudinal Zones (Fig. 3) showed a strong spatial variability across the CCLME. PERMANOVA analysis in each year revealed statistically significant differences across Zones and strata and an important interaction (Table I). Pairwise differences are shown in Tables S2 and S3.

Maps of horizontal distribution of temperature (°C), salinity, Chlorophyll-a (mg m−3) and oxygen (mL L−1) along the studied area in 2017 (a, c, e, g) and 2019 (b, d, f, h). Upwelling Zones (A, B, C, D) are shown. Contours are based on 200 CTD stations in 2017 (A: 42, B: 43, C:39, D: 76) and 132 in 2019 (A: 21, B: 43, C:19, D: 49).
Fig. 2

Maps of horizontal distribution of temperature (°C), salinity, Chlorophyll-a (mg m−3) and oxygen (mL L−1) along the studied area in 2017 (a, c, e, g) and 2019 (b, d, f, h). Upwelling Zones (A, B, C, D) are shown. Contours are based on 200 CTD stations in 2017 (A: 42, B: 43, C:39, D: 76) and 132 in 2019 (A: 21, B: 43, C:19, D: 49).

Mean vertical profiles of temperature, salinity, Chl-a and oxygen in the upper 200 m layer of each upwelling Zone (A, B, C, D), in 2017 (a, c, e, g) and 2019 (b, d, f, h). Profiles are based on 200 CTD stations in 2017 (A: 42, B: 43, C:39, D: 76) and 132 in 2019 (A: 21, B: 43, C:19, D: 49).
Fig. 3

Mean vertical profiles of temperature, salinity, Chl-a and oxygen in the upper 200 m layer of each upwelling Zone (A, B, C, D), in 2017 (a, c, e, g) and 2019 (b, d, f, h). Profiles are based on 200 CTD stations in 2017 (A: 42, B: 43, C:39, D: 76) and 132 in 2019 (A: 21, B: 43, C:19, D: 49).

Table I

PERMANOVA analysis results testing the effect of the latitudinal zones and the sampling strata on the hydrological parameters at 10 m (two-way PERMANOVAs) and on the copepod and diplostracan (one-way PERMANOVAs) in 2017 and 2019

  DfSum Of SqsR2FPr (>F)
Hydrology
2017Zone3336.2800.42252.0550.001***
Stratum230.1400.0386.9990.001***
Zone*Stratum624.7600.0311.9160.017*
Residual188404.8200.509
2019Zone3247.3200.47245.8500.001***
Stratum228.0200.0537.7920.001***
Zone*Stratum632.9000.0633.0490.001***
Residual120215.7600.412
Zooplankton
2017Zone32.3820.2116.8790.001***
Residual778.8860.789
Total8011.2681
Stratum11.4740.13111.8920.001***
Residual799.7940.869
Total8011.2681
2019Zone33.6160.32410.5230.001***
Residual667.5610.676
Total6911.1771
Stratum10.8020.0725.2590.001***
Residual6810.3750.928
Total6911.17711
  DfSum Of SqsR2FPr (>F)
Hydrology
2017Zone3336.2800.42252.0550.001***
Stratum230.1400.0386.9990.001***
Zone*Stratum624.7600.0311.9160.017*
Residual188404.8200.509
2019Zone3247.3200.47245.8500.001***
Stratum228.0200.0537.7920.001***
Zone*Stratum632.9000.0633.0490.001***
Residual120215.7600.412
Zooplankton
2017Zone32.3820.2116.8790.001***
Residual778.8860.789
Total8011.2681
Stratum11.4740.13111.8920.001***
Residual799.7940.869
Total8011.2681
2019Zone33.6160.32410.5230.001***
Residual667.5610.676
Total6911.1771
Stratum10.8020.0725.2590.001***
Residual6810.3750.928
Total6911.17711
Table I

PERMANOVA analysis results testing the effect of the latitudinal zones and the sampling strata on the hydrological parameters at 10 m (two-way PERMANOVAs) and on the copepod and diplostracan (one-way PERMANOVAs) in 2017 and 2019

  DfSum Of SqsR2FPr (>F)
Hydrology
2017Zone3336.2800.42252.0550.001***
Stratum230.1400.0386.9990.001***
Zone*Stratum624.7600.0311.9160.017*
Residual188404.8200.509
2019Zone3247.3200.47245.8500.001***
Stratum228.0200.0537.7920.001***
Zone*Stratum632.9000.0633.0490.001***
Residual120215.7600.412
Zooplankton
2017Zone32.3820.2116.8790.001***
Residual778.8860.789
Total8011.2681
Stratum11.4740.13111.8920.001***
Residual799.7940.869
Total8011.2681
2019Zone33.6160.32410.5230.001***
Residual667.5610.676
Total6911.1771
Stratum10.8020.0725.2590.001***
Residual6810.3750.928
Total6911.17711
  DfSum Of SqsR2FPr (>F)
Hydrology
2017Zone3336.2800.42252.0550.001***
Stratum230.1400.0386.9990.001***
Zone*Stratum624.7600.0311.9160.017*
Residual188404.8200.509
2019Zone3247.3200.47245.8500.001***
Stratum228.0200.0537.7920.001***
Zone*Stratum632.9000.0633.0490.001***
Residual120215.7600.412
Zooplankton
2017Zone32.3820.2116.8790.001***
Residual778.8860.789
Total8011.2681
Stratum11.4740.13111.8920.001***
Residual799.7940.869
Total8011.2681
2019Zone33.6160.32410.5230.001***
Residual667.5610.676
Total6911.1771
Stratum10.8020.0725.2590.001***
Residual6810.3750.928
Total6911.17711

In both years, surface temperature showed a wide range, with a clear latitudinal shift around 21°N (Fig. 2a and b). The upper 50 m in Zones A-C experienced warmer and more stratified conditions in spring/summer 2017 compared to early winter 2019 (Fig. 3a and b). Cooler, less saline and Chl-a-rich waters dominated the nearshore region from Cape Spartel (36°N) to Cape Blanc (21°N), indicating coastal upwelling. Interestingly, elevated Chl-a and oxygen levels were detected between Cape Juby (28°N) and Cape Ghir (31°N) in 2019 (Fig. 2f). Significant differences among all Zones North of Cape Banc were found in 2019, with a stronger distinction of the inshore area (Str1) in 2017 (Table S3).

South of Cape Blanc (Zone D), higher surface water temperatures (Fig. 2a and b) and a well-stratified water column (Fig. 3a and b) with a gradual reduction of oxygen down to 50 m were observed in both years. Less saline and rich in Chl-a waters were predominantly found near Cape Blanc and south of Cape Vert (discharge of Gambia River and Casamance River, see Fig. 2), with this trend becoming more pronounced in 2019 (Figs 2c-d and 3c-d). Notably, low oxygen waters were observed in both years around Cape Blanc (i.e. frontal Zone). Differences between sampling strata were not significant South of Cape Blanc (Table S3).

Mesozooplankton total abundance and dry weight

Figure 4 shows the horizontal distribution of mesozooplankton stock. Both abundance and dry weight values varied largely across the CCLME (Fig. 4a and b; Table S4), with significantly higher mean values in 2017 (abundance: F = 28.07, df = 1, P < 0.001; dry weight: F = 11.06, df = 1, P < 0.01). Zones comparison in each year are shown in Fig. 4c and d. Mean abundance among Zones differed significantly only in 2019 (2017: H = 0.495, df = 3, P = 0.92; 2019: H = 20.218, df = 3, P < 0.001), with Zone D having higher values than A and B (Fig. 4b). For dry weight, significant differences were observed in both years (2017: H = 27.65, df = 3, P < 0.001; 2019: H = 19.11, df = 3, P < 0.001). In 2017, Zones C and D had higher values than A and B, whereas in 2019 only Zone D differed significantly from A and B (Fig. 4c and d).

Distribution maps of (a) total abundance and (b) total dry weight in 2017 (maximum of 30.25 g m−2 is indicated on the map) and 2019. Box plots of (c) total abundance and (d) total dry weight in the four upwelling Zones (A, B, C, and D) in 2017 and 2019. The size of the box plot is determined by the upper and lower quartiles, with the median indicated by a horizontal line within each box. Outliers are represented by dots outside the boxes. Dunn’s post hoc test output is displayed as letters above the box plots (the difference in letters signifies a statistically significant difference within each years). The number of stations of each zone is shown inside the boxes.
Fig. 4

Distribution maps of (a) total abundance and (b) total dry weight in 2017 (maximum of 30.25 g m−2 is indicated on the map) and 2019. Box plots of (c) total abundance and (d) total dry weight in the four upwelling Zones (A, B, C, and D) in 2017 and 2019. The size of the box plot is determined by the upper and lower quartiles, with the median indicated by a horizontal line within each box. Outliers are represented by dots outside the boxes. Dunn’s post hoc test output is displayed as letters above the box plots (the difference in letters signifies a statistically significant difference within each years). The number of stations of each zone is shown inside the boxes.

Taxonomic composition, assemblage structure and relation with the environment

In total, 25 mesozooplankton groups (Table II) and 152 copepod taxa were identified (Table III; 2017: 104, 2019: 134) in the samples. Copepods dominated both years, with a relative density of over 80%, while diplostracans, appendicularians, chaetognaths, doliolids and pteropods followed in rank order (Table II). Distribution maps for the major groups are presented in Fig. S2. The diplostracan taxa Penilia avirostris and Podon spp. contributed more in 2017 (Table II), with the latter mainly distributed north of Cape Blanc (Fig. S2).

Table II

Mean abundance (ind. m−2) and mean relative contribution (%) of mesozooplankton groups identified in the samples collected in 2017 (N = 81) and 2019 (N = 70).

 Mean AbundanceMean relative contribution |$ \boldsymbol{(\%)} $|
Taxa2017201920172019
Holoplankton
Copepods145 229.5 (10913.5)92 246 (9272.8)82.182.3
Calanoida69 405.1 (5886.8)46 224.8 (5191.7)39.241.3
Cyclopoida70 280.5 (5830.4)42 480.8 (4706.5)39.737.9
Harpacticoida5541.9 (987.5)3533.5 (512.3)3.13.2
Monstrilloida1.9 (1.9)6.9 (5.1)<0.01<0.01
non-Copepod groups31 729.8 (2648.5)19 813.5 (3001.5)17.917.7
Amphipoda77.0 (24.0)39.3 (20.7)0.040.04
Appendicularia6179.3 (671.2)5436.3 (939.7)3.54.9
Chaetognatha2177.4 (358.7)2157.0 (254.6)1.21.9
Cnidaria
 Leptothecata143.5 (66.6)54.9 (18.3)0.10.05
 Hydromedusae unidn.a0.6 (0.6)<0.01
 Siphonophorae1037.5 (148.9)754.9 (136.8)0.60.7
Diplostraca
 Ctenopoda6925.9 (1534.9)2112.4 (537.1)3.91.9
 Onychopoda2786.5 (608.9)149.0 (43.4)1.60.1
Decapoda – Lucifer spp.377.3 (229.5)236.0 (81.3)0.20.2
Doliolida2621.9 (688.5)1774.1 (929.2)1.51.6
Euphausiacea931.9 (177.2)979.5 (280.3)0.50.9
Isopoda23.7 (16.4)50.9 (14.3)0.010.05
Mysidacea13.1 (6.2)56.5 (21.2)0.010.1
Ostracoda1041.0 (299.1)911.4 (265.5)0.60.8
Pteropoda2511.8 (501.2)2862.4 (1179.7)1.42.6
Salpida126.4 (97.6)147.8 (95.7)0.10.1
Meroplankton
Cirripedia larvae1116.5 (452.7)80.9 (24.2)0.60.1
Decapoda larvae2038.3 (288.3)1153.0 (216.5)1.21.0
Echinodermata larvae41.5 (19.8)111.2 (58.2)0.020.1
Fish egg613.5 (318.2)279.6 (77.6)0.30.2
Fish larvae180.0 (46.9)311.3 (72.0)0.10.3
Phoronida15.8 (12.4)0.01
Polychaeta larvae746.0 (170.5)149.7 (55.3)0.40.1
Stomatopoda – Squilla spp.4.0 (4.0)4.9 (4.6)<0.01<0.01
 Mean AbundanceMean relative contribution |$ \boldsymbol{(\%)} $|
Taxa2017201920172019
Holoplankton
Copepods145 229.5 (10913.5)92 246 (9272.8)82.182.3
Calanoida69 405.1 (5886.8)46 224.8 (5191.7)39.241.3
Cyclopoida70 280.5 (5830.4)42 480.8 (4706.5)39.737.9
Harpacticoida5541.9 (987.5)3533.5 (512.3)3.13.2
Monstrilloida1.9 (1.9)6.9 (5.1)<0.01<0.01
non-Copepod groups31 729.8 (2648.5)19 813.5 (3001.5)17.917.7
Amphipoda77.0 (24.0)39.3 (20.7)0.040.04
Appendicularia6179.3 (671.2)5436.3 (939.7)3.54.9
Chaetognatha2177.4 (358.7)2157.0 (254.6)1.21.9
Cnidaria
 Leptothecata143.5 (66.6)54.9 (18.3)0.10.05
 Hydromedusae unidn.a0.6 (0.6)<0.01
 Siphonophorae1037.5 (148.9)754.9 (136.8)0.60.7
Diplostraca
 Ctenopoda6925.9 (1534.9)2112.4 (537.1)3.91.9
 Onychopoda2786.5 (608.9)149.0 (43.4)1.60.1
Decapoda – Lucifer spp.377.3 (229.5)236.0 (81.3)0.20.2
Doliolida2621.9 (688.5)1774.1 (929.2)1.51.6
Euphausiacea931.9 (177.2)979.5 (280.3)0.50.9
Isopoda23.7 (16.4)50.9 (14.3)0.010.05
Mysidacea13.1 (6.2)56.5 (21.2)0.010.1
Ostracoda1041.0 (299.1)911.4 (265.5)0.60.8
Pteropoda2511.8 (501.2)2862.4 (1179.7)1.42.6
Salpida126.4 (97.6)147.8 (95.7)0.10.1
Meroplankton
Cirripedia larvae1116.5 (452.7)80.9 (24.2)0.60.1
Decapoda larvae2038.3 (288.3)1153.0 (216.5)1.21.0
Echinodermata larvae41.5 (19.8)111.2 (58.2)0.020.1
Fish egg613.5 (318.2)279.6 (77.6)0.30.2
Fish larvae180.0 (46.9)311.3 (72.0)0.10.3
Phoronida15.8 (12.4)0.01
Polychaeta larvae746.0 (170.5)149.7 (55.3)0.40.1
Stomatopoda – Squilla spp.4.0 (4.0)4.9 (4.6)<0.01<0.01

The standard error is provided in parentheses.

aAssumed as holoplankton.

Table II

Mean abundance (ind. m−2) and mean relative contribution (%) of mesozooplankton groups identified in the samples collected in 2017 (N = 81) and 2019 (N = 70).

 Mean AbundanceMean relative contribution |$ \boldsymbol{(\%)} $|
Taxa2017201920172019
Holoplankton
Copepods145 229.5 (10913.5)92 246 (9272.8)82.182.3
Calanoida69 405.1 (5886.8)46 224.8 (5191.7)39.241.3
Cyclopoida70 280.5 (5830.4)42 480.8 (4706.5)39.737.9
Harpacticoida5541.9 (987.5)3533.5 (512.3)3.13.2
Monstrilloida1.9 (1.9)6.9 (5.1)<0.01<0.01
non-Copepod groups31 729.8 (2648.5)19 813.5 (3001.5)17.917.7
Amphipoda77.0 (24.0)39.3 (20.7)0.040.04
Appendicularia6179.3 (671.2)5436.3 (939.7)3.54.9
Chaetognatha2177.4 (358.7)2157.0 (254.6)1.21.9
Cnidaria
 Leptothecata143.5 (66.6)54.9 (18.3)0.10.05
 Hydromedusae unidn.a0.6 (0.6)<0.01
 Siphonophorae1037.5 (148.9)754.9 (136.8)0.60.7
Diplostraca
 Ctenopoda6925.9 (1534.9)2112.4 (537.1)3.91.9
 Onychopoda2786.5 (608.9)149.0 (43.4)1.60.1
Decapoda – Lucifer spp.377.3 (229.5)236.0 (81.3)0.20.2
Doliolida2621.9 (688.5)1774.1 (929.2)1.51.6
Euphausiacea931.9 (177.2)979.5 (280.3)0.50.9
Isopoda23.7 (16.4)50.9 (14.3)0.010.05
Mysidacea13.1 (6.2)56.5 (21.2)0.010.1
Ostracoda1041.0 (299.1)911.4 (265.5)0.60.8
Pteropoda2511.8 (501.2)2862.4 (1179.7)1.42.6
Salpida126.4 (97.6)147.8 (95.7)0.10.1
Meroplankton
Cirripedia larvae1116.5 (452.7)80.9 (24.2)0.60.1
Decapoda larvae2038.3 (288.3)1153.0 (216.5)1.21.0
Echinodermata larvae41.5 (19.8)111.2 (58.2)0.020.1
Fish egg613.5 (318.2)279.6 (77.6)0.30.2
Fish larvae180.0 (46.9)311.3 (72.0)0.10.3
Phoronida15.8 (12.4)0.01
Polychaeta larvae746.0 (170.5)149.7 (55.3)0.40.1
Stomatopoda – Squilla spp.4.0 (4.0)4.9 (4.6)<0.01<0.01
 Mean AbundanceMean relative contribution |$ \boldsymbol{(\%)} $|
Taxa2017201920172019
Holoplankton
Copepods145 229.5 (10913.5)92 246 (9272.8)82.182.3
Calanoida69 405.1 (5886.8)46 224.8 (5191.7)39.241.3
Cyclopoida70 280.5 (5830.4)42 480.8 (4706.5)39.737.9
Harpacticoida5541.9 (987.5)3533.5 (512.3)3.13.2
Monstrilloida1.9 (1.9)6.9 (5.1)<0.01<0.01
non-Copepod groups31 729.8 (2648.5)19 813.5 (3001.5)17.917.7
Amphipoda77.0 (24.0)39.3 (20.7)0.040.04
Appendicularia6179.3 (671.2)5436.3 (939.7)3.54.9
Chaetognatha2177.4 (358.7)2157.0 (254.6)1.21.9
Cnidaria
 Leptothecata143.5 (66.6)54.9 (18.3)0.10.05
 Hydromedusae unidn.a0.6 (0.6)<0.01
 Siphonophorae1037.5 (148.9)754.9 (136.8)0.60.7
Diplostraca
 Ctenopoda6925.9 (1534.9)2112.4 (537.1)3.91.9
 Onychopoda2786.5 (608.9)149.0 (43.4)1.60.1
Decapoda – Lucifer spp.377.3 (229.5)236.0 (81.3)0.20.2
Doliolida2621.9 (688.5)1774.1 (929.2)1.51.6
Euphausiacea931.9 (177.2)979.5 (280.3)0.50.9
Isopoda23.7 (16.4)50.9 (14.3)0.010.05
Mysidacea13.1 (6.2)56.5 (21.2)0.010.1
Ostracoda1041.0 (299.1)911.4 (265.5)0.60.8
Pteropoda2511.8 (501.2)2862.4 (1179.7)1.42.6
Salpida126.4 (97.6)147.8 (95.7)0.10.1
Meroplankton
Cirripedia larvae1116.5 (452.7)80.9 (24.2)0.60.1
Decapoda larvae2038.3 (288.3)1153.0 (216.5)1.21.0
Echinodermata larvae41.5 (19.8)111.2 (58.2)0.020.1
Fish egg613.5 (318.2)279.6 (77.6)0.30.2
Fish larvae180.0 (46.9)311.3 (72.0)0.10.3
Phoronida15.8 (12.4)0.01
Polychaeta larvae746.0 (170.5)149.7 (55.3)0.40.1
Stomatopoda – Squilla spp.4.0 (4.0)4.9 (4.6)<0.01<0.01

The standard error is provided in parentheses.

aAssumed as holoplankton.

Table III

Mean abundance (ind. m−2) and the percent of positive stations (frequency of occurrence, %FO) of the copepod and diplostracan taxa identified in the samples collected in 2017 and 2019.

TaxaMean Abundance%FOTaxaMean Abundance%FO
Calanoida2017201920172019 2017201920172019
Acartia (Acanthacartia) tonsa25.4 (22.2)2.9Candacia bipinnata3.9 (3.9)35.8 (17.5)1.28.6
Acartia (Acartia) danae357.4 (70.2)793 (210.4)43.250.0Candacia elongata1.9 (1.9)119.7 (75.2)1.211.4
Acartia (Acartia) negligens181 (161)8.6Candacia longimana47.5 (44.0)2.9
Acartia (Acartiura) clausi1552.9 (251.5)2389.9 (538.2)56.854.3Candacia simplex35.6 (12.3)18.3 (8.9)11.17.1
Acartia (Acartiura) discaudata15.2 (13.8)2.9Candacia spp.110.6 (28.6)32.8 (11.0)21.014.3
Acartia (Acartiura) longiremis75.6 (47.2)5.7Candacia varicans19.2 (15.3)2.9
Acartia spp.2576.1 (507.7)2934.4 (669.9)79.064.3Centropages abdominalis15.2 (14.6)2.9
Acrocalanus spp.207.4 (73.2)52.6 (30.0)18.57.1Centropages bradyi61.2 (37.7)43.4 (24.1)8.67.1
Aetideopsis multiserrata4.6 (4.6)1.4Centropages chierchiae451.9 (133.6)252.6 (123.3)30.924.3
Aetideopsis rostrata12.8 (12.8)1.4Centropages velificatus300.2 (158.9)648.4 (217.0)14.827.1
Aetideopsis spp.1.9 (1.9)1.2Centropages hamatus20.1 (15.1)4.3
Aetideus armatus5.3 (4.1)97.5 (73.8)2.58.6Centropages spp.2699.8 (441.1)1321.6 (290.3)79.060.0
Aetideus bradyi1.3 (1.3)1.2Centropages typicus569.4 (158.5)951.7 (289.6)39.551.4
Aetideus giesbrechti4.0 (4.0)4.6 (4.6)1.21.4Centropages violaceus11.9 (6.8)29.3 (29.3)3.71.4
Aetideus spp.1.3 (1.3)1.2Chiridius gracilis13.7 (7.1)5.7
Anomalocera spp.3.9 (3.9)1.2Chiridius poppei11.9 (11.9)1.2
Augaptilus megalurus1.8 (1.8)1.4Chiridius spp.15.8 (9.6)4.6 (4.6)3.71.4
Bradycalanus spp.4.6 (4.6)1.4Clausocalanus arcuicornis253.5 (64.5)770.2 (230.5)23.542.9
Calanoida unidn.b177.8 (42.5)237.7 (83.4)28.432.9Clausocalanus furcatus3979.6 (578.1)4109.9 (604.4)85.292.9
Calanoides natalis2547.7 (995.7)888.3 (285.1)34.644.3Clausocalanus paululus11.9 (11.9)1.2
Calanus spp.802.5 (156.0)2287.2 (558.9)61.787.1Clausocalanus pergens1.8 (1.8)1.4
Calocalanus contractus33.8 (18.7)5.7Clausocalanus spp.10554.2 (1145.6)3720.3 (497.6)91.480.0
Calocalanus pavo1287.2 (175.1)1434.8 (231.7)65.475.7Ctenocalanus vanus2.4 (1.7)2.9
Calocalanus plumulosus18.3 (16.1)2.9Diaixis gambiensis69.1 (26.2)22.9 (11.9)11.15.7
Calocalanus spp.578.8 (102.0)412.8 (85.7)46.938.6Diaixis hibernica18.3 (18.3)1.4
Calocalanus styliremis3.9 (3.9)94.3 (47.1)1.210.0Diaixis pygmaea59.3 (17.7)61.0 (22.3)16.014.3
Calocalanus tenuis76.4 (20.8)90.1 (27.9)19.817.1Diaixis spp.128.4 (34.5)53.6 (22.5)19.811.4
Candacia ethiopica140.2 (131.8)2.9Euaugaptilus spp.1.5 (1.5)1.4
Candacia armata24.1 (14.5)5.7Eucalanus hyalinus11.9 (8.8)2.5
Euchaeta acuta83.6 (46.6)105.9 (42.5)9.911.4Microcalanus pusillus1.3 (1.3)124.0 (41.3)1.218.6
Euchaeta concinna3.9 (3.9)11.4 (6.8)1.24.3Microcalanus spp.13.8 (7.0)132.1 (46.1)4.921.4
Paraeuchaeta hebes11.0 (11.0)1.4Nannocalanus minor256.6 (45.0)528.9 (150.9)40.747.1
Euchaeta marina290.4 (75.3)252.1 (65.4)21.028.6Neocalanus gracilis108.6 (31.0)1148.3 (666.8)17.332.9
Euchaeta pubera5.9 (4.4)55.5 (20.4)2.514.3Paracalanus parvusa18300.1 (2638.7)8739.3 (1413.5)95.1100.0
Euchaeta spinosa21.6 (12.7)5.7Paracartia grani grani5.0 (3.5)2.9
Euchaeta spp.851.4 (228.1)449.0 (118.7)37.034.3Paraeuchaeta spp.7.9 (7.9)1.2
Gaetanus brevispinus1.8 (1.8)1.4Parapontella brevicornis3.7 (3.7)1.4
Gaetanus kruppii7.9 (7.9)1.2Pareucalanus spp.229.1 (160.5)40.7 (18.3)9.911.4
Gaetanus minor3.9 (3.9)1.2Pleuromamma gracilis52.0 (21.7)367.8 (135)9.937.1
Gaetanus spp.19.8 (12.7)3.7Pleuromamma piseki7.3 (7.3)1.4
Haloptilus acutifrons7.9 (5.6)2.5Pleuromamma robusta91.3 (47.7)15.7
Haloptilus longicornis19.8 (10.3)41.1 (19.2)4.98.6Pleuromamma spp.176.5 (55.9)199.9 (59.0)22.222.9
Haloptilus oxycephalus2.3 (2.3)1.4Pleuromamma xiphias1.3 (1.3)16.5 (14.7)1.22.9
Haloptilus spp.21.1 (8.7)18.4 (12.0)7.45.7Pontella atlantica9.9 (9.9)1.2
Isias clavipes39.5 (28.3)14.6 (11.5)2.52.9Pontella spp.
Labidocera acutifrons11.9 (6.8)3.7Pontellina plumata11.9 (8.8)5.7 (4.1)2.52.9
Labidocera nerii15.8 (9.6)3.7Pseudocalanus elongatus37.6 (23.9)7.1
Labidocera spp.37.5 (13.8)32.0 (27.7)9.92.9Pseudocalanus minutus13.7 (13.7)1.4
Labidocera wollastoni3.9 (3.9)4.6 (4.6)1.21.4Pseudocalanus spp.11.9 (11.9)64.9 (44.3)1.24.3
Lucicutia clausi1.5 (1.5)1.4Pseudophaenna typica15.8 (15.8)1.2
Lucicutia curta0.6 (0.6)1.4Rhincalanus cornutus13.8 (7.0)4.9
Lucicutia flavicornis247.6 (54.0)275.2 (57.9)33.340.0Rhincalanus nasutus50.6 (30.1)7.1
Lucicutia longiserrata6.9 (6.9)1.4Scottocalanus persecans0.6 (0.6)1.4
Mecynocera clausi565.6 (139.6)369.0 (97.8)34.641.4Spinocalanus spp.1388.1 (277.4)727.5 (119.1)81.568.6
Megacalanus princeps20.3 (9.9)7.1Subeucalanus spp.3283.0 (1042.1)2866.7 (476.1)63.080.0
Mesocalanus tenuicornis15.8 (11.1)68.0 (40.2)2.57.1Talacalanus greenii1.8 (1.8)1.4
Metridia lucens5.8 (4.7)2.9Temora longicornis108.6 (50.4)1382.6 (791.7)7.424.3
Metridia spp.6.7 (4.8)4.3Temora spp.8807.2 (1669.4)1176.6 (289.4)84.064.3
Metridia venusta22.6 (11.6)7.1Temora stylifera3631.6 (678.5)1744.8 (359.1)81.572.9
Microcalanus pygmaeus86.9 (27.7)118.6 (33.9)13.621.4Temora turbinata1108.1 (683.1)213.7 (108.3)11.117.1
Undeuchaeta plumosa5.7 (3.4)4.3Sapphirina spp.106.7 (67.5)276.1 (140.3)8.624.3
Undeuchaeta spp.9.1 (9.1)1.4Harpacticoida
Xanthocalanus hirtipes9.1 (9.1)1.4Aegisthus aculeatus2.9 (2.9)1.4
Xantocalanus spp.2.3 (2.3)1.4Clytemnestra gracilis27.7 (11.9)24.0 (11.7)7.47.1
CyclopoidaClytemnestra scutellata19.4 (14.9)4.3
Copilia mirabilis7.9 (5.6)8.4 (5.3)2.54.3Clytemnestra spp.59.3 (23.8)10.3 (6.5)9.94.3
Copilia quadrata3.9 (3.9)39.3 (23.4)1.27.1Euterpina acutifrons4225.8 (990.9)2116.6 (506.7)69.160.0
Copilia spp.13.8 (7.0)13.7 (7.8)4.94.3Harpacticoida unidn.b71.1 (37.2)7.4
Corycaeidae3766.1 (594.2)3115.4 (349.5)88.995.7Macrosetella gracilis365.4 (88.2)768.4 (205.7)28.437.1
Cyclopoida unidn.b17.1 (17.1)1.4Microsetella norvegica190.3 (65.9)111.8 (41.1)24.717.1
Lubbockia aculeata3.9 (3.9)13.7 (11.6)1.22.9Microsetella rosea392.9 (75.2)360.2 (56.9)45.760.0
Lubbockia squillimana99.4 (25.9)71.6 (17.7)19.824.3Microsetella spp.197.5 (52.8)91.4 (36.6)30.918.6
Oithona nana6598.0 (1521.3)5547.7 (1181.6)69.178.6Miracia efferata11.9 (7.3)28.5 (20.8)3.77.1
Oithona plumifera2407.2 (302.2)2305.8 (298.5)84.088.6Monstrilloida
Oithona spp.15935.5 (1602.0)6349.8 (895.7)97.591.4Monstrilla spp.1.9 (1.9)6.9 (5.1)1.22.9
Oncaea curta14964.1 (2881.6)5612.8 (1833.8)69.167.1Diplostraca
Oncaea venusta5436.7 (600.8)12509.0 (2243.6)91.498.6Penilia avirostris7093.2 (1549.9)2112.4 (537.1)67.955.7
Oncaeidae20937.1 (2448.6)6600.5 (1003.3)100.087.1Podon spp.2771.9 (614.7)149.0 (43.4)62.922.9
TaxaMean Abundance%FOTaxaMean Abundance%FO
Calanoida2017201920172019 2017201920172019
Acartia (Acanthacartia) tonsa25.4 (22.2)2.9Candacia bipinnata3.9 (3.9)35.8 (17.5)1.28.6
Acartia (Acartia) danae357.4 (70.2)793 (210.4)43.250.0Candacia elongata1.9 (1.9)119.7 (75.2)1.211.4
Acartia (Acartia) negligens181 (161)8.6Candacia longimana47.5 (44.0)2.9
Acartia (Acartiura) clausi1552.9 (251.5)2389.9 (538.2)56.854.3Candacia simplex35.6 (12.3)18.3 (8.9)11.17.1
Acartia (Acartiura) discaudata15.2 (13.8)2.9Candacia spp.110.6 (28.6)32.8 (11.0)21.014.3
Acartia (Acartiura) longiremis75.6 (47.2)5.7Candacia varicans19.2 (15.3)2.9
Acartia spp.2576.1 (507.7)2934.4 (669.9)79.064.3Centropages abdominalis15.2 (14.6)2.9
Acrocalanus spp.207.4 (73.2)52.6 (30.0)18.57.1Centropages bradyi61.2 (37.7)43.4 (24.1)8.67.1
Aetideopsis multiserrata4.6 (4.6)1.4Centropages chierchiae451.9 (133.6)252.6 (123.3)30.924.3
Aetideopsis rostrata12.8 (12.8)1.4Centropages velificatus300.2 (158.9)648.4 (217.0)14.827.1
Aetideopsis spp.1.9 (1.9)1.2Centropages hamatus20.1 (15.1)4.3
Aetideus armatus5.3 (4.1)97.5 (73.8)2.58.6Centropages spp.2699.8 (441.1)1321.6 (290.3)79.060.0
Aetideus bradyi1.3 (1.3)1.2Centropages typicus569.4 (158.5)951.7 (289.6)39.551.4
Aetideus giesbrechti4.0 (4.0)4.6 (4.6)1.21.4Centropages violaceus11.9 (6.8)29.3 (29.3)3.71.4
Aetideus spp.1.3 (1.3)1.2Chiridius gracilis13.7 (7.1)5.7
Anomalocera spp.3.9 (3.9)1.2Chiridius poppei11.9 (11.9)1.2
Augaptilus megalurus1.8 (1.8)1.4Chiridius spp.15.8 (9.6)4.6 (4.6)3.71.4
Bradycalanus spp.4.6 (4.6)1.4Clausocalanus arcuicornis253.5 (64.5)770.2 (230.5)23.542.9
Calanoida unidn.b177.8 (42.5)237.7 (83.4)28.432.9Clausocalanus furcatus3979.6 (578.1)4109.9 (604.4)85.292.9
Calanoides natalis2547.7 (995.7)888.3 (285.1)34.644.3Clausocalanus paululus11.9 (11.9)1.2
Calanus spp.802.5 (156.0)2287.2 (558.9)61.787.1Clausocalanus pergens1.8 (1.8)1.4
Calocalanus contractus33.8 (18.7)5.7Clausocalanus spp.10554.2 (1145.6)3720.3 (497.6)91.480.0
Calocalanus pavo1287.2 (175.1)1434.8 (231.7)65.475.7Ctenocalanus vanus2.4 (1.7)2.9
Calocalanus plumulosus18.3 (16.1)2.9Diaixis gambiensis69.1 (26.2)22.9 (11.9)11.15.7
Calocalanus spp.578.8 (102.0)412.8 (85.7)46.938.6Diaixis hibernica18.3 (18.3)1.4
Calocalanus styliremis3.9 (3.9)94.3 (47.1)1.210.0Diaixis pygmaea59.3 (17.7)61.0 (22.3)16.014.3
Calocalanus tenuis76.4 (20.8)90.1 (27.9)19.817.1Diaixis spp.128.4 (34.5)53.6 (22.5)19.811.4
Candacia ethiopica140.2 (131.8)2.9Euaugaptilus spp.1.5 (1.5)1.4
Candacia armata24.1 (14.5)5.7Eucalanus hyalinus11.9 (8.8)2.5
Euchaeta acuta83.6 (46.6)105.9 (42.5)9.911.4Microcalanus pusillus1.3 (1.3)124.0 (41.3)1.218.6
Euchaeta concinna3.9 (3.9)11.4 (6.8)1.24.3Microcalanus spp.13.8 (7.0)132.1 (46.1)4.921.4
Paraeuchaeta hebes11.0 (11.0)1.4Nannocalanus minor256.6 (45.0)528.9 (150.9)40.747.1
Euchaeta marina290.4 (75.3)252.1 (65.4)21.028.6Neocalanus gracilis108.6 (31.0)1148.3 (666.8)17.332.9
Euchaeta pubera5.9 (4.4)55.5 (20.4)2.514.3Paracalanus parvusa18300.1 (2638.7)8739.3 (1413.5)95.1100.0
Euchaeta spinosa21.6 (12.7)5.7Paracartia grani grani5.0 (3.5)2.9
Euchaeta spp.851.4 (228.1)449.0 (118.7)37.034.3Paraeuchaeta spp.7.9 (7.9)1.2
Gaetanus brevispinus1.8 (1.8)1.4Parapontella brevicornis3.7 (3.7)1.4
Gaetanus kruppii7.9 (7.9)1.2Pareucalanus spp.229.1 (160.5)40.7 (18.3)9.911.4
Gaetanus minor3.9 (3.9)1.2Pleuromamma gracilis52.0 (21.7)367.8 (135)9.937.1
Gaetanus spp.19.8 (12.7)3.7Pleuromamma piseki7.3 (7.3)1.4
Haloptilus acutifrons7.9 (5.6)2.5Pleuromamma robusta91.3 (47.7)15.7
Haloptilus longicornis19.8 (10.3)41.1 (19.2)4.98.6Pleuromamma spp.176.5 (55.9)199.9 (59.0)22.222.9
Haloptilus oxycephalus2.3 (2.3)1.4Pleuromamma xiphias1.3 (1.3)16.5 (14.7)1.22.9
Haloptilus spp.21.1 (8.7)18.4 (12.0)7.45.7Pontella atlantica9.9 (9.9)1.2
Isias clavipes39.5 (28.3)14.6 (11.5)2.52.9Pontella spp.
Labidocera acutifrons11.9 (6.8)3.7Pontellina plumata11.9 (8.8)5.7 (4.1)2.52.9
Labidocera nerii15.8 (9.6)3.7Pseudocalanus elongatus37.6 (23.9)7.1
Labidocera spp.37.5 (13.8)32.0 (27.7)9.92.9Pseudocalanus minutus13.7 (13.7)1.4
Labidocera wollastoni3.9 (3.9)4.6 (4.6)1.21.4Pseudocalanus spp.11.9 (11.9)64.9 (44.3)1.24.3
Lucicutia clausi1.5 (1.5)1.4Pseudophaenna typica15.8 (15.8)1.2
Lucicutia curta0.6 (0.6)1.4Rhincalanus cornutus13.8 (7.0)4.9
Lucicutia flavicornis247.6 (54.0)275.2 (57.9)33.340.0Rhincalanus nasutus50.6 (30.1)7.1
Lucicutia longiserrata6.9 (6.9)1.4Scottocalanus persecans0.6 (0.6)1.4
Mecynocera clausi565.6 (139.6)369.0 (97.8)34.641.4Spinocalanus spp.1388.1 (277.4)727.5 (119.1)81.568.6
Megacalanus princeps20.3 (9.9)7.1Subeucalanus spp.3283.0 (1042.1)2866.7 (476.1)63.080.0
Mesocalanus tenuicornis15.8 (11.1)68.0 (40.2)2.57.1Talacalanus greenii1.8 (1.8)1.4
Metridia lucens5.8 (4.7)2.9Temora longicornis108.6 (50.4)1382.6 (791.7)7.424.3
Metridia spp.6.7 (4.8)4.3Temora spp.8807.2 (1669.4)1176.6 (289.4)84.064.3
Metridia venusta22.6 (11.6)7.1Temora stylifera3631.6 (678.5)1744.8 (359.1)81.572.9
Microcalanus pygmaeus86.9 (27.7)118.6 (33.9)13.621.4Temora turbinata1108.1 (683.1)213.7 (108.3)11.117.1
Undeuchaeta plumosa5.7 (3.4)4.3Sapphirina spp.106.7 (67.5)276.1 (140.3)8.624.3
Undeuchaeta spp.9.1 (9.1)1.4Harpacticoida
Xanthocalanus hirtipes9.1 (9.1)1.4Aegisthus aculeatus2.9 (2.9)1.4
Xantocalanus spp.2.3 (2.3)1.4Clytemnestra gracilis27.7 (11.9)24.0 (11.7)7.47.1
CyclopoidaClytemnestra scutellata19.4 (14.9)4.3
Copilia mirabilis7.9 (5.6)8.4 (5.3)2.54.3Clytemnestra spp.59.3 (23.8)10.3 (6.5)9.94.3
Copilia quadrata3.9 (3.9)39.3 (23.4)1.27.1Euterpina acutifrons4225.8 (990.9)2116.6 (506.7)69.160.0
Copilia spp.13.8 (7.0)13.7 (7.8)4.94.3Harpacticoida unidn.b71.1 (37.2)7.4
Corycaeidae3766.1 (594.2)3115.4 (349.5)88.995.7Macrosetella gracilis365.4 (88.2)768.4 (205.7)28.437.1
Cyclopoida unidn.b17.1 (17.1)1.4Microsetella norvegica190.3 (65.9)111.8 (41.1)24.717.1
Lubbockia aculeata3.9 (3.9)13.7 (11.6)1.22.9Microsetella rosea392.9 (75.2)360.2 (56.9)45.760.0
Lubbockia squillimana99.4 (25.9)71.6 (17.7)19.824.3Microsetella spp.197.5 (52.8)91.4 (36.6)30.918.6
Oithona nana6598.0 (1521.3)5547.7 (1181.6)69.178.6Miracia efferata11.9 (7.3)28.5 (20.8)3.77.1
Oithona plumifera2407.2 (302.2)2305.8 (298.5)84.088.6Monstrilloida
Oithona spp.15935.5 (1602.0)6349.8 (895.7)97.591.4Monstrilla spp.1.9 (1.9)6.9 (5.1)1.22.9
Oncaea curta14964.1 (2881.6)5612.8 (1833.8)69.167.1Diplostraca
Oncaea venusta5436.7 (600.8)12509.0 (2243.6)91.498.6Penilia avirostris7093.2 (1549.9)2112.4 (537.1)67.955.7
Oncaeidae20937.1 (2448.6)6600.5 (1003.3)100.087.1Podon spp.2771.9 (614.7)149.0 (43.4)62.922.9

The standard error is provided in parentheses.

aP. parvus species complex;

bunidn.: unidentified taxon

Table III

Mean abundance (ind. m−2) and the percent of positive stations (frequency of occurrence, %FO) of the copepod and diplostracan taxa identified in the samples collected in 2017 and 2019.

TaxaMean Abundance%FOTaxaMean Abundance%FO
Calanoida2017201920172019 2017201920172019
Acartia (Acanthacartia) tonsa25.4 (22.2)2.9Candacia bipinnata3.9 (3.9)35.8 (17.5)1.28.6
Acartia (Acartia) danae357.4 (70.2)793 (210.4)43.250.0Candacia elongata1.9 (1.9)119.7 (75.2)1.211.4
Acartia (Acartia) negligens181 (161)8.6Candacia longimana47.5 (44.0)2.9
Acartia (Acartiura) clausi1552.9 (251.5)2389.9 (538.2)56.854.3Candacia simplex35.6 (12.3)18.3 (8.9)11.17.1
Acartia (Acartiura) discaudata15.2 (13.8)2.9Candacia spp.110.6 (28.6)32.8 (11.0)21.014.3
Acartia (Acartiura) longiremis75.6 (47.2)5.7Candacia varicans19.2 (15.3)2.9
Acartia spp.2576.1 (507.7)2934.4 (669.9)79.064.3Centropages abdominalis15.2 (14.6)2.9
Acrocalanus spp.207.4 (73.2)52.6 (30.0)18.57.1Centropages bradyi61.2 (37.7)43.4 (24.1)8.67.1
Aetideopsis multiserrata4.6 (4.6)1.4Centropages chierchiae451.9 (133.6)252.6 (123.3)30.924.3
Aetideopsis rostrata12.8 (12.8)1.4Centropages velificatus300.2 (158.9)648.4 (217.0)14.827.1
Aetideopsis spp.1.9 (1.9)1.2Centropages hamatus20.1 (15.1)4.3
Aetideus armatus5.3 (4.1)97.5 (73.8)2.58.6Centropages spp.2699.8 (441.1)1321.6 (290.3)79.060.0
Aetideus bradyi1.3 (1.3)1.2Centropages typicus569.4 (158.5)951.7 (289.6)39.551.4
Aetideus giesbrechti4.0 (4.0)4.6 (4.6)1.21.4Centropages violaceus11.9 (6.8)29.3 (29.3)3.71.4
Aetideus spp.1.3 (1.3)1.2Chiridius gracilis13.7 (7.1)5.7
Anomalocera spp.3.9 (3.9)1.2Chiridius poppei11.9 (11.9)1.2
Augaptilus megalurus1.8 (1.8)1.4Chiridius spp.15.8 (9.6)4.6 (4.6)3.71.4
Bradycalanus spp.4.6 (4.6)1.4Clausocalanus arcuicornis253.5 (64.5)770.2 (230.5)23.542.9
Calanoida unidn.b177.8 (42.5)237.7 (83.4)28.432.9Clausocalanus furcatus3979.6 (578.1)4109.9 (604.4)85.292.9
Calanoides natalis2547.7 (995.7)888.3 (285.1)34.644.3Clausocalanus paululus11.9 (11.9)1.2
Calanus spp.802.5 (156.0)2287.2 (558.9)61.787.1Clausocalanus pergens1.8 (1.8)1.4
Calocalanus contractus33.8 (18.7)5.7Clausocalanus spp.10554.2 (1145.6)3720.3 (497.6)91.480.0
Calocalanus pavo1287.2 (175.1)1434.8 (231.7)65.475.7Ctenocalanus vanus2.4 (1.7)2.9
Calocalanus plumulosus18.3 (16.1)2.9Diaixis gambiensis69.1 (26.2)22.9 (11.9)11.15.7
Calocalanus spp.578.8 (102.0)412.8 (85.7)46.938.6Diaixis hibernica18.3 (18.3)1.4
Calocalanus styliremis3.9 (3.9)94.3 (47.1)1.210.0Diaixis pygmaea59.3 (17.7)61.0 (22.3)16.014.3
Calocalanus tenuis76.4 (20.8)90.1 (27.9)19.817.1Diaixis spp.128.4 (34.5)53.6 (22.5)19.811.4
Candacia ethiopica140.2 (131.8)2.9Euaugaptilus spp.1.5 (1.5)1.4
Candacia armata24.1 (14.5)5.7Eucalanus hyalinus11.9 (8.8)2.5
Euchaeta acuta83.6 (46.6)105.9 (42.5)9.911.4Microcalanus pusillus1.3 (1.3)124.0 (41.3)1.218.6
Euchaeta concinna3.9 (3.9)11.4 (6.8)1.24.3Microcalanus spp.13.8 (7.0)132.1 (46.1)4.921.4
Paraeuchaeta hebes11.0 (11.0)1.4Nannocalanus minor256.6 (45.0)528.9 (150.9)40.747.1
Euchaeta marina290.4 (75.3)252.1 (65.4)21.028.6Neocalanus gracilis108.6 (31.0)1148.3 (666.8)17.332.9
Euchaeta pubera5.9 (4.4)55.5 (20.4)2.514.3Paracalanus parvusa18300.1 (2638.7)8739.3 (1413.5)95.1100.0
Euchaeta spinosa21.6 (12.7)5.7Paracartia grani grani5.0 (3.5)2.9
Euchaeta spp.851.4 (228.1)449.0 (118.7)37.034.3Paraeuchaeta spp.7.9 (7.9)1.2
Gaetanus brevispinus1.8 (1.8)1.4Parapontella brevicornis3.7 (3.7)1.4
Gaetanus kruppii7.9 (7.9)1.2Pareucalanus spp.229.1 (160.5)40.7 (18.3)9.911.4
Gaetanus minor3.9 (3.9)1.2Pleuromamma gracilis52.0 (21.7)367.8 (135)9.937.1
Gaetanus spp.19.8 (12.7)3.7Pleuromamma piseki7.3 (7.3)1.4
Haloptilus acutifrons7.9 (5.6)2.5Pleuromamma robusta91.3 (47.7)15.7
Haloptilus longicornis19.8 (10.3)41.1 (19.2)4.98.6Pleuromamma spp.176.5 (55.9)199.9 (59.0)22.222.9
Haloptilus oxycephalus2.3 (2.3)1.4Pleuromamma xiphias1.3 (1.3)16.5 (14.7)1.22.9
Haloptilus spp.21.1 (8.7)18.4 (12.0)7.45.7Pontella atlantica9.9 (9.9)1.2
Isias clavipes39.5 (28.3)14.6 (11.5)2.52.9Pontella spp.
Labidocera acutifrons11.9 (6.8)3.7Pontellina plumata11.9 (8.8)5.7 (4.1)2.52.9
Labidocera nerii15.8 (9.6)3.7Pseudocalanus elongatus37.6 (23.9)7.1
Labidocera spp.37.5 (13.8)32.0 (27.7)9.92.9Pseudocalanus minutus13.7 (13.7)1.4
Labidocera wollastoni3.9 (3.9)4.6 (4.6)1.21.4Pseudocalanus spp.11.9 (11.9)64.9 (44.3)1.24.3
Lucicutia clausi1.5 (1.5)1.4Pseudophaenna typica15.8 (15.8)1.2
Lucicutia curta0.6 (0.6)1.4Rhincalanus cornutus13.8 (7.0)4.9
Lucicutia flavicornis247.6 (54.0)275.2 (57.9)33.340.0Rhincalanus nasutus50.6 (30.1)7.1
Lucicutia longiserrata6.9 (6.9)1.4Scottocalanus persecans0.6 (0.6)1.4
Mecynocera clausi565.6 (139.6)369.0 (97.8)34.641.4Spinocalanus spp.1388.1 (277.4)727.5 (119.1)81.568.6
Megacalanus princeps20.3 (9.9)7.1Subeucalanus spp.3283.0 (1042.1)2866.7 (476.1)63.080.0
Mesocalanus tenuicornis15.8 (11.1)68.0 (40.2)2.57.1Talacalanus greenii1.8 (1.8)1.4
Metridia lucens5.8 (4.7)2.9Temora longicornis108.6 (50.4)1382.6 (791.7)7.424.3
Metridia spp.6.7 (4.8)4.3Temora spp.8807.2 (1669.4)1176.6 (289.4)84.064.3
Metridia venusta22.6 (11.6)7.1Temora stylifera3631.6 (678.5)1744.8 (359.1)81.572.9
Microcalanus pygmaeus86.9 (27.7)118.6 (33.9)13.621.4Temora turbinata1108.1 (683.1)213.7 (108.3)11.117.1
Undeuchaeta plumosa5.7 (3.4)4.3Sapphirina spp.106.7 (67.5)276.1 (140.3)8.624.3
Undeuchaeta spp.9.1 (9.1)1.4Harpacticoida
Xanthocalanus hirtipes9.1 (9.1)1.4Aegisthus aculeatus2.9 (2.9)1.4
Xantocalanus spp.2.3 (2.3)1.4Clytemnestra gracilis27.7 (11.9)24.0 (11.7)7.47.1
CyclopoidaClytemnestra scutellata19.4 (14.9)4.3
Copilia mirabilis7.9 (5.6)8.4 (5.3)2.54.3Clytemnestra spp.59.3 (23.8)10.3 (6.5)9.94.3
Copilia quadrata3.9 (3.9)39.3 (23.4)1.27.1Euterpina acutifrons4225.8 (990.9)2116.6 (506.7)69.160.0
Copilia spp.13.8 (7.0)13.7 (7.8)4.94.3Harpacticoida unidn.b71.1 (37.2)7.4
Corycaeidae3766.1 (594.2)3115.4 (349.5)88.995.7Macrosetella gracilis365.4 (88.2)768.4 (205.7)28.437.1
Cyclopoida unidn.b17.1 (17.1)1.4Microsetella norvegica190.3 (65.9)111.8 (41.1)24.717.1
Lubbockia aculeata3.9 (3.9)13.7 (11.6)1.22.9Microsetella rosea392.9 (75.2)360.2 (56.9)45.760.0
Lubbockia squillimana99.4 (25.9)71.6 (17.7)19.824.3Microsetella spp.197.5 (52.8)91.4 (36.6)30.918.6
Oithona nana6598.0 (1521.3)5547.7 (1181.6)69.178.6Miracia efferata11.9 (7.3)28.5 (20.8)3.77.1
Oithona plumifera2407.2 (302.2)2305.8 (298.5)84.088.6Monstrilloida
Oithona spp.15935.5 (1602.0)6349.8 (895.7)97.591.4Monstrilla spp.1.9 (1.9)6.9 (5.1)1.22.9
Oncaea curta14964.1 (2881.6)5612.8 (1833.8)69.167.1Diplostraca
Oncaea venusta5436.7 (600.8)12509.0 (2243.6)91.498.6Penilia avirostris7093.2 (1549.9)2112.4 (537.1)67.955.7
Oncaeidae20937.1 (2448.6)6600.5 (1003.3)100.087.1Podon spp.2771.9 (614.7)149.0 (43.4)62.922.9
TaxaMean Abundance%FOTaxaMean Abundance%FO
Calanoida2017201920172019 2017201920172019
Acartia (Acanthacartia) tonsa25.4 (22.2)2.9Candacia bipinnata3.9 (3.9)35.8 (17.5)1.28.6
Acartia (Acartia) danae357.4 (70.2)793 (210.4)43.250.0Candacia elongata1.9 (1.9)119.7 (75.2)1.211.4
Acartia (Acartia) negligens181 (161)8.6Candacia longimana47.5 (44.0)2.9
Acartia (Acartiura) clausi1552.9 (251.5)2389.9 (538.2)56.854.3Candacia simplex35.6 (12.3)18.3 (8.9)11.17.1
Acartia (Acartiura) discaudata15.2 (13.8)2.9Candacia spp.110.6 (28.6)32.8 (11.0)21.014.3
Acartia (Acartiura) longiremis75.6 (47.2)5.7Candacia varicans19.2 (15.3)2.9
Acartia spp.2576.1 (507.7)2934.4 (669.9)79.064.3Centropages abdominalis15.2 (14.6)2.9
Acrocalanus spp.207.4 (73.2)52.6 (30.0)18.57.1Centropages bradyi61.2 (37.7)43.4 (24.1)8.67.1
Aetideopsis multiserrata4.6 (4.6)1.4Centropages chierchiae451.9 (133.6)252.6 (123.3)30.924.3
Aetideopsis rostrata12.8 (12.8)1.4Centropages velificatus300.2 (158.9)648.4 (217.0)14.827.1
Aetideopsis spp.1.9 (1.9)1.2Centropages hamatus20.1 (15.1)4.3
Aetideus armatus5.3 (4.1)97.5 (73.8)2.58.6Centropages spp.2699.8 (441.1)1321.6 (290.3)79.060.0
Aetideus bradyi1.3 (1.3)1.2Centropages typicus569.4 (158.5)951.7 (289.6)39.551.4
Aetideus giesbrechti4.0 (4.0)4.6 (4.6)1.21.4Centropages violaceus11.9 (6.8)29.3 (29.3)3.71.4
Aetideus spp.1.3 (1.3)1.2Chiridius gracilis13.7 (7.1)5.7
Anomalocera spp.3.9 (3.9)1.2Chiridius poppei11.9 (11.9)1.2
Augaptilus megalurus1.8 (1.8)1.4Chiridius spp.15.8 (9.6)4.6 (4.6)3.71.4
Bradycalanus spp.4.6 (4.6)1.4Clausocalanus arcuicornis253.5 (64.5)770.2 (230.5)23.542.9
Calanoida unidn.b177.8 (42.5)237.7 (83.4)28.432.9Clausocalanus furcatus3979.6 (578.1)4109.9 (604.4)85.292.9
Calanoides natalis2547.7 (995.7)888.3 (285.1)34.644.3Clausocalanus paululus11.9 (11.9)1.2
Calanus spp.802.5 (156.0)2287.2 (558.9)61.787.1Clausocalanus pergens1.8 (1.8)1.4
Calocalanus contractus33.8 (18.7)5.7Clausocalanus spp.10554.2 (1145.6)3720.3 (497.6)91.480.0
Calocalanus pavo1287.2 (175.1)1434.8 (231.7)65.475.7Ctenocalanus vanus2.4 (1.7)2.9
Calocalanus plumulosus18.3 (16.1)2.9Diaixis gambiensis69.1 (26.2)22.9 (11.9)11.15.7
Calocalanus spp.578.8 (102.0)412.8 (85.7)46.938.6Diaixis hibernica18.3 (18.3)1.4
Calocalanus styliremis3.9 (3.9)94.3 (47.1)1.210.0Diaixis pygmaea59.3 (17.7)61.0 (22.3)16.014.3
Calocalanus tenuis76.4 (20.8)90.1 (27.9)19.817.1Diaixis spp.128.4 (34.5)53.6 (22.5)19.811.4
Candacia ethiopica140.2 (131.8)2.9Euaugaptilus spp.1.5 (1.5)1.4
Candacia armata24.1 (14.5)5.7Eucalanus hyalinus11.9 (8.8)2.5
Euchaeta acuta83.6 (46.6)105.9 (42.5)9.911.4Microcalanus pusillus1.3 (1.3)124.0 (41.3)1.218.6
Euchaeta concinna3.9 (3.9)11.4 (6.8)1.24.3Microcalanus spp.13.8 (7.0)132.1 (46.1)4.921.4
Paraeuchaeta hebes11.0 (11.0)1.4Nannocalanus minor256.6 (45.0)528.9 (150.9)40.747.1
Euchaeta marina290.4 (75.3)252.1 (65.4)21.028.6Neocalanus gracilis108.6 (31.0)1148.3 (666.8)17.332.9
Euchaeta pubera5.9 (4.4)55.5 (20.4)2.514.3Paracalanus parvusa18300.1 (2638.7)8739.3 (1413.5)95.1100.0
Euchaeta spinosa21.6 (12.7)5.7Paracartia grani grani5.0 (3.5)2.9
Euchaeta spp.851.4 (228.1)449.0 (118.7)37.034.3Paraeuchaeta spp.7.9 (7.9)1.2
Gaetanus brevispinus1.8 (1.8)1.4Parapontella brevicornis3.7 (3.7)1.4
Gaetanus kruppii7.9 (7.9)1.2Pareucalanus spp.229.1 (160.5)40.7 (18.3)9.911.4
Gaetanus minor3.9 (3.9)1.2Pleuromamma gracilis52.0 (21.7)367.8 (135)9.937.1
Gaetanus spp.19.8 (12.7)3.7Pleuromamma piseki7.3 (7.3)1.4
Haloptilus acutifrons7.9 (5.6)2.5Pleuromamma robusta91.3 (47.7)15.7
Haloptilus longicornis19.8 (10.3)41.1 (19.2)4.98.6Pleuromamma spp.176.5 (55.9)199.9 (59.0)22.222.9
Haloptilus oxycephalus2.3 (2.3)1.4Pleuromamma xiphias1.3 (1.3)16.5 (14.7)1.22.9
Haloptilus spp.21.1 (8.7)18.4 (12.0)7.45.7Pontella atlantica9.9 (9.9)1.2
Isias clavipes39.5 (28.3)14.6 (11.5)2.52.9Pontella spp.
Labidocera acutifrons11.9 (6.8)3.7Pontellina plumata11.9 (8.8)5.7 (4.1)2.52.9
Labidocera nerii15.8 (9.6)3.7Pseudocalanus elongatus37.6 (23.9)7.1
Labidocera spp.37.5 (13.8)32.0 (27.7)9.92.9Pseudocalanus minutus13.7 (13.7)1.4
Labidocera wollastoni3.9 (3.9)4.6 (4.6)1.21.4Pseudocalanus spp.11.9 (11.9)64.9 (44.3)1.24.3
Lucicutia clausi1.5 (1.5)1.4Pseudophaenna typica15.8 (15.8)1.2
Lucicutia curta0.6 (0.6)1.4Rhincalanus cornutus13.8 (7.0)4.9
Lucicutia flavicornis247.6 (54.0)275.2 (57.9)33.340.0Rhincalanus nasutus50.6 (30.1)7.1
Lucicutia longiserrata6.9 (6.9)1.4Scottocalanus persecans0.6 (0.6)1.4
Mecynocera clausi565.6 (139.6)369.0 (97.8)34.641.4Spinocalanus spp.1388.1 (277.4)727.5 (119.1)81.568.6
Megacalanus princeps20.3 (9.9)7.1Subeucalanus spp.3283.0 (1042.1)2866.7 (476.1)63.080.0
Mesocalanus tenuicornis15.8 (11.1)68.0 (40.2)2.57.1Talacalanus greenii1.8 (1.8)1.4
Metridia lucens5.8 (4.7)2.9Temora longicornis108.6 (50.4)1382.6 (791.7)7.424.3
Metridia spp.6.7 (4.8)4.3Temora spp.8807.2 (1669.4)1176.6 (289.4)84.064.3
Metridia venusta22.6 (11.6)7.1Temora stylifera3631.6 (678.5)1744.8 (359.1)81.572.9
Microcalanus pygmaeus86.9 (27.7)118.6 (33.9)13.621.4Temora turbinata1108.1 (683.1)213.7 (108.3)11.117.1
Undeuchaeta plumosa5.7 (3.4)4.3Sapphirina spp.106.7 (67.5)276.1 (140.3)8.624.3
Undeuchaeta spp.9.1 (9.1)1.4Harpacticoida
Xanthocalanus hirtipes9.1 (9.1)1.4Aegisthus aculeatus2.9 (2.9)1.4
Xantocalanus spp.2.3 (2.3)1.4Clytemnestra gracilis27.7 (11.9)24.0 (11.7)7.47.1
CyclopoidaClytemnestra scutellata19.4 (14.9)4.3
Copilia mirabilis7.9 (5.6)8.4 (5.3)2.54.3Clytemnestra spp.59.3 (23.8)10.3 (6.5)9.94.3
Copilia quadrata3.9 (3.9)39.3 (23.4)1.27.1Euterpina acutifrons4225.8 (990.9)2116.6 (506.7)69.160.0
Copilia spp.13.8 (7.0)13.7 (7.8)4.94.3Harpacticoida unidn.b71.1 (37.2)7.4
Corycaeidae3766.1 (594.2)3115.4 (349.5)88.995.7Macrosetella gracilis365.4 (88.2)768.4 (205.7)28.437.1
Cyclopoida unidn.b17.1 (17.1)1.4Microsetella norvegica190.3 (65.9)111.8 (41.1)24.717.1
Lubbockia aculeata3.9 (3.9)13.7 (11.6)1.22.9Microsetella rosea392.9 (75.2)360.2 (56.9)45.760.0
Lubbockia squillimana99.4 (25.9)71.6 (17.7)19.824.3Microsetella spp.197.5 (52.8)91.4 (36.6)30.918.6
Oithona nana6598.0 (1521.3)5547.7 (1181.6)69.178.6Miracia efferata11.9 (7.3)28.5 (20.8)3.77.1
Oithona plumifera2407.2 (302.2)2305.8 (298.5)84.088.6Monstrilloida
Oithona spp.15935.5 (1602.0)6349.8 (895.7)97.591.4Monstrilla spp.1.9 (1.9)6.9 (5.1)1.22.9
Oncaea curta14964.1 (2881.6)5612.8 (1833.8)69.167.1Diplostraca
Oncaea venusta5436.7 (600.8)12509.0 (2243.6)91.498.6Penilia avirostris7093.2 (1549.9)2112.4 (537.1)67.955.7
Oncaeidae20937.1 (2448.6)6600.5 (1003.3)100.087.1Podon spp.2771.9 (614.7)149.0 (43.4)62.922.9

The standard error is provided in parentheses.

aP. parvus species complex;

bunidn.: unidentified taxon

Calanoids and cyclopoids primarily composed the copepod assemblage (Table II, Fig. S3). Important and broadly distributed copepod taxa in the region were Oithona spp. Oncaeidae, Corycaeidae, Clausocalanus furcatus, Acartia danae, Paracalanus parvus* and Temora stylifera (Fig. S4). Interestingly, different distribution patterns were observed among congeners (e.g. genera of Acartia, Centropages, Oithona, Temora), while some taxa (e.g. Oithona curta, Acartia clausi, Centropages typicus, Oithona nana) were mostly recorded north of Cape Blanc (Fig. S5a), some tropical taxa (e.g. Centropages velificatus, Macrosetella gracilis, Temora turbinata, Acrocalanus spp.) were found southern of Cape Blanc (Fig. S5b). Both taxonomic richness and Shannon index were found higher in 2019 with distinct latitudinal variations between years (Fig. 5). PERMANOVA analysis showed significant differences in the assemblage structure across Zones and strata for each year (Table I). Zone D differed markedly from the others in 2017, while differences across all Zones were observed in 2019 (Table S2). The inshore assemblage (Str1) differed significantly from the other strata in 2017, while in 2019, differences were detected against stations further offshore (Str3) (Table S2).

Mean taxonomic richness (left y-axis) and Shannon-Weiner index (right y-axis) calculated at the genus level for (a) 2017 and 2019 and for (b) the upwelling Zones (A, B, C, D) for each year. Vertical bars indicate standard errors. The number of stations for each zone is the same as in Fig. 4c.
Fig. 5

Mean taxonomic richness (left y-axis) and Shannon-Weiner index (right y-axis) calculated at the genus level for (a) 2017 and 2019 and for (b) the upwelling Zones (A, B, C, D) for each year. Vertical bars indicate standard errors. The number of stations for each zone is the same as in Fig. 4c.

Hierarchical clustering further highlighted the spatial differentiation in the assemblage structure along the northwest African coast in both years (Figs 6 and S6). The station grouping, also evidenced in the nMDS ordination (Fig. 7), reflected latitudinal changes, which were more pronounced in 2019. In spring/summer 2017, five main clusters were found at 51% dissimilarity (Fig. S6). Stations located South of Cape Blanc (Zone D) were clustered in three distinct groups (G1-G3), with G1 representing their majority (n = 19), plus five stations in Str3 north of Canary Islands (Fig. 6). Cluster G2 comprised five coastal stations, while five others between Cape Blanc and Cape Timiris (19°N), influenced by frontal waters, formed G3 (Fig. 6). Stations north of Cape Blanc (n = 43) formed G4 (n = 43), except two offshore stations in Zones A and C (G5 Group). Figure 8 presents the associations of major taxa (>3% relative abundance) and their contribution to the station clusters. SIMPER analysis results are listed in Table S5. Oncaeidae, Oithona spp., Oncaea venusta and P. parvus* were important across all clusters (Fig. 8, Table S5). However, C. furcatus, Corycaeidae and Oithona plumifera were more influential in clusters South of Cape Blanc, while sites at the frontal area (G3) exhibited overall high abundances of Calanoides natalis. In 2019, cluster analysis revealed five major station groups at 56% dissimilarity (Fig. S6). All stations sampled South of Cape Blanc (n = 27) were grouped in one cluster, G1 (Fig. 6). Samples collected within the permanent strong upwelling Zone C were grouped as G2 cluster (n = 13), except two offshore sites of higher abundances and diversity that formed G3 (Figs S6 and S7). North of Cape Bojador (Zones A, B) was separated into two clusters: one offshore with stations mainly located at Str2 and Str3 (G4, n = 20), and one coastal at Str1 (G5; n = 8) characterized by a neritic assemblage of O. nana, Euterpina acutifrons and A. clausi (Fig. 9, Table S6). Taxa such as Oncaeidae, O. nana, O. venusta, Oncaea curta and A. clausi made the major differences among the clusters identified north and south of Cape Blanc (Fig. 9, Table S6).

Distribution maps of the cluster groups defined by the hierarchical clustering in 2017 and 2019 (O1, O2: outliers stations shown in Fig. S6).
Fig. 6

Distribution maps of the cluster groups defined by the hierarchical clustering in 2017 and 2019 (O1, O2: outliers stations shown in Fig. S6).

Ordination plots of Non-Metric Multi-Dimensional Scaling (nMDS) for (a) 2017, (b) 2019, and (c) the combined data of 2017 and 2019 based on Bray–Curtis distance and square-root transformed abundance data of copepods and diplostracans (stress value is given on the top left). Environmental vectors (Temp: temperature, Sal: salinity, Chl-a: Chlorophyll-a, Depth: sampling depth) fitted to nMDS and having a significant correlation (P < 0.05) as identified with the envfit function are shown. Information of the cluster groups (G1–G5) has been superimposed in (a) and (b). Information of the combination of the upwelling Zones (A, B, C, D) and the bathymetric strata (1, 2, 3) have been superimposed in (c). Outlier stations have been omitted from the ordination. Stations sampled in 2017 have been distinguished by dots inside the symbols.
Fig. 7

Ordination plots of Non-Metric Multi-Dimensional Scaling (nMDS) for (a) 2017, (b) 2019, and (c) the combined data of 2017 and 2019 based on Bray–Curtis distance and square-root transformed abundance data of copepods and diplostracans (stress value is given on the top left). Environmental vectors (Temp: temperature, Sal: salinity, Chl-a: Chlorophyll-a, Depth: sampling depth) fitted to nMDS and having a significant correlation (P < 0.05) as identified with the envfit function are shown. Information of the cluster groups (G1–G5) has been superimposed in (a) and (b). Information of the combination of the upwelling Zones (A, B, C, D) and the bathymetric strata (1, 2, 3) have been superimposed in (c). Outlier stations have been omitted from the ordination. Stations sampled in 2017 have been distinguished by dots inside the symbols.

Heatmap of the square-root transformed abundances (ind. m−2) for taxa accounting for > 3% of the copepod and diplostracan total abundance in 2017. The colors indicate abundance values (ind m−2). The colored bars indicate groups of stations (Groups) identified by cluster analysis (Fig. S6), the bathymetric strata (1, 2, and 3), and the distinct upwelling latitudinal Zones (A, B, C, D). Copepod and diplostracan are clustered (group average) based on the Bray–Curtis distance matrix of their relative abundance. Bold font refers to taxa contributing to 70% similarity described in the SIMPER Table S5. Numbers along the bottom of the heatmap correspond to the station number as shown in Figs S1 and S6.
Fig. 8

Heatmap of the square-root transformed abundances (ind. m−2) for taxa accounting for > 3% of the copepod and diplostracan total abundance in 2017. The colors indicate abundance values (ind m−2). The colored bars indicate groups of stations (Groups) identified by cluster analysis (Fig. S6), the bathymetric strata (1, 2, and 3), and the distinct upwelling latitudinal Zones (A, B, C, D). Copepod and diplostracan are clustered (group average) based on the Bray–Curtis distance matrix of their relative abundance. Bold font refers to taxa contributing to 70% similarity described in the SIMPER Table S5. Numbers along the bottom of the heatmap correspond to the station number as shown in Figs S1 and S6.

Heatmap of the square-root transformed abundances (ind. m−2) for taxa accounting for > 3% of the copepod and diplostracan total abundance in 2019. The colors indicate abundance values (ind m−2). The colored bars indicate groups of stations (Groups) identified by cluster analysis (Fig. S6), the bathymetric strata (1,2, and 3), and the distinct upwelling latitudinal Zones (A, B, C, D). Copepod and diplostracan are clustered (group average) based on the Bray–Curtis distance matrix of their relative abundance. Bold font refers to taxa contributing to 70% similarity described in the SIMPER Table S6. Numbers along the bottom of the heatmap correspond to the station number as shown in Figs S1 and S6.
Fig. 9

Heatmap of the square-root transformed abundances (ind. m−2) for taxa accounting for > 3% of the copepod and diplostracan total abundance in 2019. The colors indicate abundance values (ind m−2). The colored bars indicate groups of stations (Groups) identified by cluster analysis (Fig. S6), the bathymetric strata (1,2, and 3), and the distinct upwelling latitudinal Zones (A, B, C, D). Copepod and diplostracan are clustered (group average) based on the Bray–Curtis distance matrix of their relative abundance. Bold font refers to taxa contributing to 70% similarity described in the SIMPER Table S6. Numbers along the bottom of the heatmap correspond to the station number as shown in Figs S1 and S6.

The output of multiple regressions done through the envfit function is provided in Table IV, and the averaged environmental parameters per group in Table V. All parameters significantly correlated with the nMDS ordination scores in both years apart, except for the oxygen (Fig. 7a and b). In 2017, temperature differentiated stations north and south of Cape Blanc (G4 vs. G1, G2), while salinity distinguished the clusters associated with the frontal Zone and riverine outflow, G2 and G3, respectively. Depth and Chl-a mainly appeared related to the differentiation of G1 from G4 and G3. In 2019, temperature also explained strongly the separation of stations south of Cape Blanc (G1) from the rest. Notably, Chl-a was related to the differentiation of stations in Zone C (G2, G3), while salinity mainly explained the differentiation of the clusters north of Cape Bojador (G4 and G5). Sampling depth mostly explained the differentiation of coastal stations north of Cape Bojador (G5). The nMDS ordination on all samples revealed the similarity of stations South of Cap Blanc in both years (Zone D) strongly associated with the increase in temperature (Fig. 7c). Depth and Chl-a mostly explained the differentiation of inshore stations (Str1) from other strata across all Zones in both years. Salinity was associated with the differentiation of stations in deeper waters (Str2, 3), particularly in Zones B and C.

Table IV

Fits of selected environmental vectors to the nMDS ordination of the copepod and diplostracan assemblage structure.

VectorsnMDS1nMDS2r2Pr (> r)p adj.
2017
Temp0.864840.502050.72380.0010.005**
Sal−0.2092−0.97790.60060.0010.005**
Chl-a−0.84870.52890.41120.0010.005**
Oxy−0.0621−0.99810.07810.0420.21
Depth0.84493−0.53490.35910.0010.005**
2019
Temp−0.99280.119460.71930.0010.005**
Sal0.7407−0.67180.25860.0010.005**
Chl-a0.61770.786410.13220.0090.005**
Oxy−0.0437−0.9990.10520.0250.125
Depth−0.7297−0.68370.16630.0020.005**
All years
Temp0.67317−0.739490.29390.0010.005**
Sal0.990280.139070.67220.0010.005**
Chl-a−0.51312−0.858320.31730.0010.005**
Oxy−0.813370.581750.22550.0990.52
Depth0.35057−0.936530.03030.0010.005**
VectorsnMDS1nMDS2r2Pr (> r)p adj.
2017
Temp0.864840.502050.72380.0010.005**
Sal−0.2092−0.97790.60060.0010.005**
Chl-a−0.84870.52890.41120.0010.005**
Oxy−0.0621−0.99810.07810.0420.21
Depth0.84493−0.53490.35910.0010.005**
2019
Temp−0.99280.119460.71930.0010.005**
Sal0.7407−0.67180.25860.0010.005**
Chl-a0.61770.786410.13220.0090.005**
Oxy−0.0437−0.9990.10520.0250.125
Depth−0.7297−0.68370.16630.0020.005**
All years
Temp0.67317−0.739490.29390.0010.005**
Sal0.990280.139070.67220.0010.005**
Chl-a−0.51312−0.858320.31730.0010.005**
Oxy−0.813370.581750.22550.0990.52
Depth0.35057−0.936530.03030.0010.005**

Environmental vectors: mean Temperature (Temp), Salinity (Sal), Chl-a, Oxygen (Oxy) in the 0–30 m layer and station sampling depth (Depth). r2: Correlation coefficient and Pr(>r): P-value. P-values were adjusted (p adj.) using the Bonferroni method to account for multiple testing, with significance levels indicated by p < 0.01(**)

Table IV

Fits of selected environmental vectors to the nMDS ordination of the copepod and diplostracan assemblage structure.

VectorsnMDS1nMDS2r2Pr (> r)p adj.
2017
Temp0.864840.502050.72380.0010.005**
Sal−0.2092−0.97790.60060.0010.005**
Chl-a−0.84870.52890.41120.0010.005**
Oxy−0.0621−0.99810.07810.0420.21
Depth0.84493−0.53490.35910.0010.005**
2019
Temp−0.99280.119460.71930.0010.005**
Sal0.7407−0.67180.25860.0010.005**
Chl-a0.61770.786410.13220.0090.005**
Oxy−0.0437−0.9990.10520.0250.125
Depth−0.7297−0.68370.16630.0020.005**
All years
Temp0.67317−0.739490.29390.0010.005**
Sal0.990280.139070.67220.0010.005**
Chl-a−0.51312−0.858320.31730.0010.005**
Oxy−0.813370.581750.22550.0990.52
Depth0.35057−0.936530.03030.0010.005**
VectorsnMDS1nMDS2r2Pr (> r)p adj.
2017
Temp0.864840.502050.72380.0010.005**
Sal−0.2092−0.97790.60060.0010.005**
Chl-a−0.84870.52890.41120.0010.005**
Oxy−0.0621−0.99810.07810.0420.21
Depth0.84493−0.53490.35910.0010.005**
2019
Temp−0.99280.119460.71930.0010.005**
Sal0.7407−0.67180.25860.0010.005**
Chl-a0.61770.786410.13220.0090.005**
Oxy−0.0437−0.9990.10520.0250.125
Depth−0.7297−0.68370.16630.0020.005**
All years
Temp0.67317−0.739490.29390.0010.005**
Sal0.990280.139070.67220.0010.005**
Chl-a−0.51312−0.858320.31730.0010.005**
Oxy−0.813370.581750.22550.0990.52
Depth0.35057−0.936530.03030.0010.005**

Environmental vectors: mean Temperature (Temp), Salinity (Sal), Chl-a, Oxygen (Oxy) in the 0–30 m layer and station sampling depth (Depth). r2: Correlation coefficient and Pr(>r): P-value. P-values were adjusted (p adj.) using the Bonferroni method to account for multiple testing, with significance levels indicated by p < 0.01(**)

Table V

Mean temperature (Temp), salinity (Sal), Chlorophyll-a (Chl-a), Oxygen in the 0–30 m sampling layer (Oxy), and the sampling depth of the station groups defined by the cluster analysis in 2017 and 2019 (O1, O2: outliers stations shown in Fig. S6).

2017G1G2G3G4G5O1O2
Temp25.9 (0.7)27.0 (0.8)20.2 (0.2)19.0 (0.3)20.6 (0.8)26.716.0
Sal36.1 (0.02)35.9 (0.1)35.8 (0.02)36.3 (0.04)36.5 (0.1)36.036.2
Chl-a0.3 (0.04)0.7 (0.1)2.6 (0.5)1.1 (0.2)0.2 (0.1)0.51.3
Oxy4.7 (0.1)4.6 (0.1)4.8 (0.2)4.9 (0.1)5.2 (0.1)4.53.9
Depth142.3 (12.6)26.0 (1.9)122.0 (33.7)84.2 (10.7)200.0100.040.0
N245543211
2019G1G2G3G4G5
Temp26.5 (0.4)19.4 (0.6)19.7 (0.5)18.7 (0.3)16.2 (0.4)
Sal35.8 (0.1)36.3 (0.1)36.3 (0.1)36.5 (0.03)36.2 (0.1)
Chl-a0.7 (0.1)1.5 (0.4)2.4 (1.3)1.0 (0.3)0.8 (0.1)
Oxy4.2 (0.1)4.4 (0.3)4.9 (0.2)5.2 (0.02)4.0 (0.3)
Depth105.7 (14.2)99.0 (18.3)200.0145.9 (14.4)26.3 (0.8)
N27132208
2017G1G2G3G4G5O1O2
Temp25.9 (0.7)27.0 (0.8)20.2 (0.2)19.0 (0.3)20.6 (0.8)26.716.0
Sal36.1 (0.02)35.9 (0.1)35.8 (0.02)36.3 (0.04)36.5 (0.1)36.036.2
Chl-a0.3 (0.04)0.7 (0.1)2.6 (0.5)1.1 (0.2)0.2 (0.1)0.51.3
Oxy4.7 (0.1)4.6 (0.1)4.8 (0.2)4.9 (0.1)5.2 (0.1)4.53.9
Depth142.3 (12.6)26.0 (1.9)122.0 (33.7)84.2 (10.7)200.0100.040.0
N245543211
2019G1G2G3G4G5
Temp26.5 (0.4)19.4 (0.6)19.7 (0.5)18.7 (0.3)16.2 (0.4)
Sal35.8 (0.1)36.3 (0.1)36.3 (0.1)36.5 (0.03)36.2 (0.1)
Chl-a0.7 (0.1)1.5 (0.4)2.4 (1.3)1.0 (0.3)0.8 (0.1)
Oxy4.2 (0.1)4.4 (0.3)4.9 (0.2)5.2 (0.02)4.0 (0.3)
Depth105.7 (14.2)99.0 (18.3)200.0145.9 (14.4)26.3 (0.8)
N27132208

The standard error is provided in parentheses. N: number of stations.

Table V

Mean temperature (Temp), salinity (Sal), Chlorophyll-a (Chl-a), Oxygen in the 0–30 m sampling layer (Oxy), and the sampling depth of the station groups defined by the cluster analysis in 2017 and 2019 (O1, O2: outliers stations shown in Fig. S6).

2017G1G2G3G4G5O1O2
Temp25.9 (0.7)27.0 (0.8)20.2 (0.2)19.0 (0.3)20.6 (0.8)26.716.0
Sal36.1 (0.02)35.9 (0.1)35.8 (0.02)36.3 (0.04)36.5 (0.1)36.036.2
Chl-a0.3 (0.04)0.7 (0.1)2.6 (0.5)1.1 (0.2)0.2 (0.1)0.51.3
Oxy4.7 (0.1)4.6 (0.1)4.8 (0.2)4.9 (0.1)5.2 (0.1)4.53.9
Depth142.3 (12.6)26.0 (1.9)122.0 (33.7)84.2 (10.7)200.0100.040.0
N245543211
2019G1G2G3G4G5
Temp26.5 (0.4)19.4 (0.6)19.7 (0.5)18.7 (0.3)16.2 (0.4)
Sal35.8 (0.1)36.3 (0.1)36.3 (0.1)36.5 (0.03)36.2 (0.1)
Chl-a0.7 (0.1)1.5 (0.4)2.4 (1.3)1.0 (0.3)0.8 (0.1)
Oxy4.2 (0.1)4.4 (0.3)4.9 (0.2)5.2 (0.02)4.0 (0.3)
Depth105.7 (14.2)99.0 (18.3)200.0145.9 (14.4)26.3 (0.8)
N27132208
2017G1G2G3G4G5O1O2
Temp25.9 (0.7)27.0 (0.8)20.2 (0.2)19.0 (0.3)20.6 (0.8)26.716.0
Sal36.1 (0.02)35.9 (0.1)35.8 (0.02)36.3 (0.04)36.5 (0.1)36.036.2
Chl-a0.3 (0.04)0.7 (0.1)2.6 (0.5)1.1 (0.2)0.2 (0.1)0.51.3
Oxy4.7 (0.1)4.6 (0.1)4.8 (0.2)4.9 (0.1)5.2 (0.1)4.53.9
Depth142.3 (12.6)26.0 (1.9)122.0 (33.7)84.2 (10.7)200.0100.040.0
N245543211
2019G1G2G3G4G5
Temp26.5 (0.4)19.4 (0.6)19.7 (0.5)18.7 (0.3)16.2 (0.4)
Sal35.8 (0.1)36.3 (0.1)36.3 (0.1)36.5 (0.03)36.2 (0.1)
Chl-a0.7 (0.1)1.5 (0.4)2.4 (1.3)1.0 (0.3)0.8 (0.1)
Oxy4.2 (0.1)4.4 (0.3)4.9 (0.2)5.2 (0.02)4.0 (0.3)
Depth105.7 (14.2)99.0 (18.3)200.0145.9 (14.4)26.3 (0.8)
N27132208

The standard error is provided in parentheses. N: number of stations.

DISCUSSION

Our work revealed significant latitudinal and seasonal/interannual variability in mesozooplankton stock and assemblage structure along the Northwest African coast, closely linked to the dominant oceanographic conditions of the CCLME. In both sampling periods (spring/summer 2017 and autumn/winter 2019), we observed a pronounced shift in the oceanographic regime at the Cape Blanc boundary (21°N) off Mauritania, linked to the convergence of NACW and SACW at the Cape Verde frontal Zone (Zenk et al., 1991; Pérez-Rodríguez et al., 2001). This appeared closely tied to the upwelling dynamics prevailing in each subregion on a seasonal basis, as documented by previous studies (Arístegui et al., 2009; Cropper et al., 2014).

Permanent upwelling activity, albeit with variations in intensity depending on latitude and season, characterizes Zones B and C north of Cape Blanc (e.g. Arístegui et al., 2009; Cropper et al., 2014). In both years, we observed lower temperatures and high Chl-a inshore, indicating the presence of cooler, productive, upwelled waters in areas with bathymetry 0–50 m (Benazzouz et al., 2014b). In spring/summer 2017, Zones B and C showed similar hydrological conditions, and offshore waters (Str2, 3) exhibited higher temperatures and stronger stratification, than in late autumn/winter 2019. Mesozooplankton stock was found to be overall higher during this sampling period, likely linked to the seasonal upwelling dynamics and partly also to the diplostracan distribution known for their population explosions during warmer periods in temperate ecosystems (e.g. Isari et al., 2007; Atienza et al., 2016). Summer marks the time of year when seasonal upwelling intensity north of Cape Bojador (26oN) is expected to intensify (e.g. Arístegui et al., 2009; Cropper et al., 2014; Benazzouz et al., 2014a). Wind stress and upwelling activity typically strengthen around the primary upwelling centres of Cape Juby (27oN) and Cape Ghir (31oN) (Marcello et al., 2011), with a filament development around these capes to peak during summer (Marcello et al., 2011), and therefore enhancing offshore organic export (Pelegrí et al., 2005). Interestingly, in late autumn/winter 2019, a strong band of upwelled cooler waters emerged along the Moroccan coastline between Cape Bojador and Cape Cantin (31oN) (Zone B) marked by elevated Chl-a and oxygen concentrations. Nevertheless, this unusual upwelling event for the season was not reflected on the mesozooplankton stock during our surveys, likely due to either time lag in mesozooplankton response to lower trophic levels, or more complex food web processes, including prey–predator interactions.

The region from north of Cape Blanc to Cape Bojador (Zone C), characterized by a broad and shallow continental shelf, experiences strong year-round upwelling (Arístegui et al., 2009; Fréon et al., 2009; Cropper et al., 2014; Benazzouz et al., 2014a) and serves as an optimal spawning, and nursery ground for small pelagic fish species (Ettahiri et al., 2003; Brochier et al., 2018). During the current work, this area south of Morocco exhibited relatively higher zooplankton stocks than other Zones north of Cape Blanc (A and B). In summer, no strong differences in assemblage structure were observed north of Cap Blanc in line with the similarity of hydrological conditions among Zones. Notably, the stronger hydrographic variability encountered among Zones in 2019, was clearly reflected on the station clustering. Zone C was characterized by a distinct and more diverse assemblage, likely influenced by higher Chl-a concentrations, while stations north of Cape Bojador (Zones A and B) were separated based on station depth.

In contrast, the southern CCLME (Zone D) experiences large seasonal variability in upwelling activity (Arístegui et al., 2009; Cropper et al., 2014) primarily occurring in winter due to the northern migration of the Intertropical Convergence Zone (Cropper et al., 2014; Sylla et al., 2019). Acoustic surveys across the CCLME have reported higher plankton and fish abundances in this sub-region (Diogoul et al., 2021), while the high levels of productivity south of Cape Blanc are attributed to the combined influence of the nutrient-rich SACW, high rates of deposition of Sahara Dust and freshwater runoff (Arístegui et al., 2009). Our sampling in both years, taking place during the upwelling relaxation in Zone D, revealed an overall southward increase in mesozooplankton stock. The warmer and well-stratified waters south of Cape Blanc exhibited overall higher mesozooplankton stock and distinct taxonomic composition compared to the north. In 2017, higher values of abundance and dry weight were observed, and also stronger spatial variability in assemblage structure, largely linked to salinity gradients and high Chl-a levels at the convergence Zone (off Banc d’Arguin) and at the southern tip of the CCLME. Seasonal/interannual variations of mesozooplankton during the monsoon season off Mauritania are associated with shifts of the northern boundary of SACW (Sirota et al., 2004), while intensive development around Cape Blanc particularly in winter (Kuipers et al., 1993) is linked to the Senegal-Mauritanian front and the coastal upwelling. Such processes highlight the role of local productivity hotspots within the Mauritanian-Senegalese system, essential for the recruitment of small pelagic fish (Guénette et al., 2014; Brochier et al., 2018; Tiedemann et al., 2018). Similarly, low salinity waters over the extended shelf south of Cape Vert in 2017, likely connected with intensification of the onshore monsoonal winds, precipitation and freshwater runoff (Gómez-Letona et al., 2017), shaped a distinct neritic assemblage as previously observed by Lidvanov et al. (2022).

Cape Blanc is recognized as a boundary for tropical copepod species extending north and for temperate/subtropical extending south (Berraho et al., 2015), as well as a general faunistic limit for planktonic communities (Hamann et al., 1981; Weikert, 1982). In both years of the study, increased temperatures south of Cape Blanc emerged as the main driver of the shift in assemblage structure. Copepod taxa associated with the northward advection of SACW (Sirota et al., 2004; Glushko and Lidvanov, 2012) were prominent in Zone D, but were nearly absent north of Cape Blanc, aligning with previous observations along the Moroccan coast (Lidvanov et al., 2013). Observed differences during our work in the latitudinal distribution patterns among taxa, including congeners, reflect taxon-specific environmental preferences (e.g. thermal window) and ecophysiological traits (Hays et al., 2005; Richardson, 2008). Commonly found in upwelling waters of western Africa (Verheye et al., 2005; Wiafe et al., 2008; Bode et al., 2014) and associated with the SACW, the species Calanoides natalis (formerly identified as C. carinatus; Bradford-Grieve et al., 2017) showed affinity for frontal waters near Cape Blanc but also a broader northern distribution in the CCLME, likely facilitated by the Canary Undercurrent (Postel et al., 1995) in agreement with other observations in the region (e.g. Kuipers et al., 1993; Hernández-León et al., 2007; Salah et al., 2012; Lidvanov et al., 2018).

Overall, our results highlight the influence of seasonal upwelling dynamics along CCLME on the zooplankton, with increased standing stock and lower taxonomic richness and diversity in spring/summer 2017. The latitudinal upwelling Zones represent approximate boundaries that may vary over the years due to the meridional shift of the upwelling winds (Gómez-Letona et al., 2017). Thus, there is a sub-regional variability in the mesozooplankton assemblage structure that is dynamically influenced by the upwelling and associated mesoscale activity. Variations in the position of the convergence Zone of the water masses as well as other mesoscale processes shape the spatial variability of environmental parameters and subsequently influence the ranges of distribution of the different species among seasons and years. This was reflected both on the migration of Chl-a maxima around Cape Blanc in the two sampling periods and the grouping of stations within different Zones based on their assemblage structure. An important seasonal signal in total zooplankton biomass characterized by higher values in upwelling periods and often changes in communities’ structures has been found for other EBUS as Benguela (Verheye et al., 2016), Humboldt (e.g. Aronés et al., 2019; Medellín-Mora et al., 2020) and California (Mackas et al., 2001, 2006). Interannual variation through multi-year time series has shown significant anomalies in biomass and community structure related to El Niño events (Mackas et al., 2006; Lavaniegos and Ohman, 2007), strong shifts in size spectra with smaller copepod to dominate the assemblage (Verheye et al., 2016), or, in other cases, no clear trends (Medellín-Mora et al., 2020).

Unfortunately, due to the absence of monitoring programs in the CCLME (Berraho et al., 2015) and the lack of regional studies, our understanding of long-term zooplankton dynamics in the region is rather poor. Our work is the first to explore the regional variability in mesozooplankton assemblage structure across all CCLME, while studies dating back to expeditions since 1994 through African-Russian partnerships, focused either on the Moroccan coastal waters (i.e. Somoue et al., 2005; Lidvanov et al., 2018), or on the south of Cape Blanc (Sirota et al., 2004; Glushko and Lidvanov, 2012; Lidvanov et al., 2022). Differences and/or uncertainties in the methods for sample collection and processing, the taxonomic resolution, but also the language used in several of these publications (i.e. Russian) pose serious challenges in meaningful comparisons within the CCLME. Our study is based on 180 μm-WPII net collections down to 200 m depth reflecting estimations of food availability for fish and their offspring within the CCLME epipelagic Zone. The mesozooplankton stock and assemblage structure at Str3 (station depth ≥ 500 m) within the study area may have been influenced, to some extent, by the light conditions during sampling. Stratified sampling in oceanic waters near the Canary Islands has shown evidence of DVM, with the > 1 mm fraction of mesozooplankton biomass (measured as protein content) migrating upwards to around 500 m during the day (Hernández-León et al., 2001, 2007).

Recent studies from the broader CCLME region further demonstrate that the biomass migrating into the epipelagic layer at night is strongly linked to hydrological conditions and station-specific primary production (Hernández-León et al., 2019, 2024). This suggests that the impact of DVM in Str3 may have varied latitudinally. However, the unbalanced sampling effort between day and night limited our ability to assess this effect. Notably, typical diel migrators such as euphausiids, had a small contribution in our WPII samples and were not included in the assemblage comparison across CCLME. Therefore, the impact of DVM only on the copepod-diplostracan assemblage could likely be considered minor, aligning with similar sampling challenges documented in other EBUS as discussed by Huggett et al. (2009). Assuming carbon content values to be 40% of the dry mass (Omori and Ikeda, 1984; Escribano et al., 2007), mean values of the total mesozooplankton biomass across the CCLME in the current study ranged from 0.72 to 2.44 g C m−2 in 2017, and between 0.76 and 1.56 g C m−2 in 2019. These values are not only in concordance with the estimations reported for the area around the Canary Islands during the coastal upwelling season as well as for the open ocean (Hernández-León et al., 2007; Couret et al., 2023a), but also comparable to what has been reported for other EBUS as already summarized by Huggett et al. (2009) and Medellín-Mora et al. (2020).

Significant interannual trends in environmental variables, such as sea surface temperature, wind intensity, stratification and Chl-a, have been reported across CCLME, often showing varying responses at subregional scales (e.g. Arístegui et al., 2009; Gómez-Letona et al., 2017; Sylla et al., 2019; Diogoul et al., 2021; Vázquez et al., 2023). While sea surface warming has impacted fish populations (Sarre et al., 2024), studies on lower trophic levels, such as zooplankton, remain limited. Recent work by Couret et al. (2023b) documented a significant decline in mesozooplankton biomass around the Canary Islands, while Diogoul et al. (2021), found stable zooplankton abundance north and south of Cape Blanc using acoustic surveys. Nonetheless, we are still lacking knowledge about zooplankton assemblage structure, taxon-specific distribution, or size spectra in the region. To address these gaps, long-term and regional-scale monitoring efforts in CCLME must be enhanced, and inter-calibration efforts in taxonomic identification must be prioritized through strengthening intra-regional collaboration. In-situ broad-scale and spatially comprehensive data collection on lower trophic levels will help to better predict the responses of CCLME zooplankton communities to climate change.

CONCLUSIONS

The present study indicates that upwelling dynamics and associated mesoscale processes as well as hydrological parameters variability influence the mesozooplankton standing stock and assemblage structure across the CCLME. Our results highlighted the presence of cooler productive upwelled waters along the shore north of Cape Blanc in both spring/summer 2017 and autumn/winter 2019, shaping the spatiotemporal mesozooplankton distribution patterns. Upwelling relaxation south of Cape Blanc resulted in warm and well stratified waters in both years characterized by high mesozooplankton stock and distinct species assemblages. Seasonality played an important role in modifying assemblage composition, with notable shifts in species dominance between sampling periods. Notably, Cape Blanc biogeographically served as a key boundary in both years; however, the mesozooplankton assemblages did not align strictly with the upwelling latitudinal zones but were more likely influenced by the complex hydrodynamics of the region.

FUNDING

This work was supported as a studentship by the EAF-Nansen Programme, funded by the Norad, and executed by FAO with the scientific support of the IMR in Bergen, Norway.

ACKNOWLEDGEMENTS

This paper uses data generated through the activities under the EAF-Nansen Programme as part of the collaboration between the FAO on behalf of the EAF-Nansen Programme and Morocco, Mauritania, Senegal and the Gambia. The EAF-Nansen Programme is a partnership between the FAO, the Norwegian Agency for Development Cooperation (Norad) and the Institute of Marine Research (IMR) in Norway for sustainable fisheries management in partner countries and regions. The authors thank the captains and crews of the R/V Dr Fridtjof Nansen who assisted in the surveys as well as all the participants. Furthermore, we thank all our colleagues at the National Institute of Fisheries Research (INRH, Casablanca) who supported us regarding our work and generated a motivating work environment. The authors thank the IMR (Bergen) for opening their laboratory to us to analyze some of the samples and for providing the dry weight estimation data. In addition to the EAF-Nansen Programme, the authors extend their gratitude to Institut Mauritanien de Recherches Océanographiques et des Pêches, Centre de Recherche Océanographique de Dakar Thiaroye and the Fisheries Department of the Ministry of Fisheries and Water Resources of The Gambia, for granting permission for using the data. Finally, we are thankful to Prof. Mark Gibbons and an anonymous reviewer, for their insightful and constructive comments, which have greatly improved the manuscript.

DATA AVAILABILITY

The data were collected within the framework of the EAF-Nansen Programme and can be requested through the FAO webpage (https://www.fao.org/in-action/eaf-nansen/data-access-requests/en/). A metadata catalogue is available online to search for data used in this study and beyond (https://figisapps.fao.org/fishery/eafnansen/en/eafnansen/survey/search).

REFERENCES

Anderson
,
M. J.
(
2001
)
A new method for non-parametric multivariate analysis of variance
.
Austral Ecol
,
26
,
32
46
.

Anderson
,
M. J.
(
2017
) Permutational Multivariate Analysis of Variance (PERMANOVA). In
Balakrishnan
,
N.
,
Colton
,
T.
,
Everitt
,
B.
,
Piegorsch
,
W.
,
Ruggeri
,
F.
and
Teugels
,
J. L.
(eds.),
Wiley StatsRef: Statistics Reference Online
,
John Wiley & Sons
, Hoboken, NJ, pp.
1
15
. .

Arístegui
,
J.
,
Álvarez-Salgado
,
X. A.
,
Barton
,
E. D.
,
Figueiras
,
F. G.
,
Hernández-León
,
S.
,
Roy
,
C.
and
Santos
,
A. M. P.
(
2006
) Oceanography and fisheries of the Canary Current / Iberian Region of the Eastern North Atlantic (18a,E). In
Allan
,
R. R.
and
Kenneth
,
H. B.
(eds.),
The Sea: The Global Coastal Ocean: Interdisciplinary Regional Studies and Syntheses (the Sea: Ideas and Observations on Progress in the Study of the Seas)
,
Harvard University Press
, Cambridge MA, pp.
877
931
.

Arístegui
,
J.
,
Barton
,
E. D.
,
Álvarez-Salgado
,
X. A.
,
Santos
,
A. M. P.
,
Figueiras
,
F. G.
,
Kifani
,
S.
,
Hernández-León
,
S.
,
Mason
,
E.
. et al. (
2009
)
Sub-regional ecosystem variability in the canary current upwelling
.
Prog. Oceanogr.
,
83
,
33
48
. .

Aronés
,
K.
,
Grados
,
D.
,
Ayón
,
P.
and
Bertrand
,
A.
(
2019
)
Spatio-temporal trends in zooplankton biomass in the northern Humboldt current system off Peru from 1961-2012
.
Deep Sea Res 2 Top Stud Oceanogr
,
169
,
104656
104170
.

Atienza
,
D.
,
Sabatés
,
A.
,
Isari
,
S.
,
Saiz
,
E.
and
Calbet
,
A.
(
2016
)
Environmental boundaries of marine cladoceran distributions in the NW Mediterranean: implications for their expansion under global warming
.
J. Mar. Syst.
,
164
,
30
41
.

Barton
,
E. D.
,
Aristegui
,
J.
,
Tett
,
P.
,
Canton
,
M.
,
García-Braun
,
J.
,
Hernández-León
,
S.
,
Nykjaer
,
L.
,
Almeida
,
C.
. et al. (
1998
)
The transition zone of the canary current upwelling region
.
Prog. Oceanogr.
,
41
,
455
504
. .

Batten
,
S. D.
,
Chiba
,
S.
,
Edwards
,
M.
and
Muxagata
,
E.
(
2016
) Chapter 5.3: The Status of Zooplankton Populations. In
Saunders
,
P.
(ed.),
UNESCO IOC and UNEP (2016). The Open Ocean: Status and Trends
,
United Nations Environment Programme
,
Nairobi
, pp.
154
165
.

Benazzouz
,
A.
,
Mordane
,
S.
,
Orbi
,
A.
,
Chagdali
,
M.
,
Hilmi
,
K.
,
Atillah
,
A.
,
Lluís Pelegrí
,
J.
and
Hervé
,
D.
(
2014b
)
An improved coastal upwelling index from sea surface temperature using satellite-based approach - the case of the canary current upwelling system
.
Cont. Shelf Res.
,
81
,
38
54
.

Benazzouz
,
A.
,
Pelegri
,
J. L.
,
Demarcq
,
H.
,
Machiın
,
F.
,
Mason
,
E.
,
Orbi
,
A.
,
Pena-Izquierdo
,
J.
and
Soumia
,
M.
(
2014a
)
On the temporal memory of coastal upwelling off NW Africa
.
J. Geophys. Res.
,
119
,
6356
6380
. .

Berraho
,
A.
,
Abdelouahab
,
H.
,
Baibai
,
T.
,
Charib
,
S.
,
Larissi
,
J.
,
Agouzouk
,
A.
and
Makaoui
,
A.
(
2019b
)
Short-term variation of zooplankton community in Cintra Bay (Northwest Africa)
.
Oceanologia
,
61
,
368
383
.

Berraho
,
A.
,
Abdelouahab
,
H.
,
Larissi
,
J.
,
Baibai
,
T.
,
Charib
,
S.
,
Idrissi
,
M.
,
Belbchir
,
Y.
,
Ettahiri
,
O.
. et al. (
2019a
)
Biodiversity and spatio-temporal variability of copepods community in Dakhla Bay (southern Moroccan coast)
.
Reg. Stud. Mar. Sci.
,
28
,
100437
.

Berraho
,
A.
,
Somoue
,
L.
,
Hernández-León
,
S.
and
Valdés
,
L.
(
2015
) Zooplankton in the Canary Current Large Marine Ecosystem. In
Valdés
,
L.
and
Déniz-González
,
I.
(eds.),
Oceanographic and Biological Features in the Canary Current Large Marine Ecosystem
,
IOC-UNESCO
,
Paris
, pp.
183
195
.

Bode
,
M.
,
Kreiner
,
A.
,
Van Der Plas
,
A. K.
,
Louw
,
D. C.
,
Horaeb
,
R.
,
Auel
,
H.
and
Hagen
,
W.
(
2014
)
Spatio-temporal variability of copepod abundance along the 20°S monitoring transect in the northern Benguela upwelling system from 2005 to 2011
.
PLoS One
,
9
,
e97738
. .

Bradford-Grieve
,
J. M.
,
Blanco-Bercial
,
L.
and
Prusova
,
I.
(
2017
)
Calanoides natalis Brady, 1914 (Copepoda: Calanoida: Calanidae): identity and distribution in relation to coastal oceanography of the eastern Atlantic and western Indian oceans
.
J. Nat. Hist.
,
51
,
807
836
. .

Brochier
,
T.
,
Auger
,
P. A.
,
Pecquerie
,
L.
,
Machu
,
E.
,
Capet
,
X.
,
Thiaw
,
M.
,
Mbaye
,
B. C.
,
Braham
,
C. B.
. et al. (
2018
)
Complex small pelagic fish population patterns arising from individual behavioral responses to their environment
.
Prog. Oceanogr.
,
164
,
12
27
. .

Chavez
,
F. P.
and
Messié
,
M.
(
2009
)
A comparison of eastern boundary upwelling ecosystems
.
Prog. Oceanogr.
,
83
,
80
96
. .

Clarke
,
K. R.
,
Gorley
,
R. N.
,
Somerfield
,
P. J.
and
Warwick
,
R. M.
(
2014
)
Change in Marine Communities: An Approach to Statistical Analysis and Interpretation
, 3rd edn,
PRIMER-E
,
Plymouth, Plymouth
.

Couret
,
M.
,
Landeira
,
J. M.
,
Santana del Pino
,
Á.
and
Hernández-León
,
S.
(
2023b
)
A 50-year (1971–2021) mesozooplankton biomass data collection in the canary current system: base line, gaps, trends, and future prospect
.
Prog. Oceanogr.
,
216
,
103073
. .

Couret
,
M.
,
Landeira
,
J. M.
,
Tuset
,
V. M.
,
Sarmiento-Lezcano
,
A. N.
,
Vélez-Belchí
,
P.
and
Hernández-León
,
S.
(
2023a
)
Mesozooplankton size structure in the canary current system
.
Mar. Environ. Res.
,
188
,
105976
. .

Cropper
,
T. E.
,
Hanna
,
E.
and
Bigg
,
G. R.
(
2014
)
Spatial and temporal seasonal trends in coastal upwelling off Northwest Africa, 1981-2012
.
Deep Sea Res 1 Oceanogr Res Pap
,
86
,
94
111
.

Déniz-González
,
I.
,
Pascual-Alayón
,
P. J.
,
Chioua
,
J.
,
García-Santamaría
,
M. T.
and
Valdés
,
J. L.
(
2016
)
Directory of Atmospheric, Hydrographic and Biological Datasets for the Canary Current Large Marine Ecosystem
, 2nd edn edn
Revised
,
IOC Technical Series, IOC-UNESCO
,
Paris
.

Diogoul
,
N.
,
Brehmer
,
P.
,
Demarcq
,
H.
,
El Ayoubi
,
S.
,
Thiam
,
A.
,
Sarre
,
A.
,
Mouget
,
A.
and
Perrot
,
Y.
(
2021
)
On the robustness of an eastern boundary upwelling ecosystem exposed to multiple stressors
.
Sci. Rep.
,
11
,
1
12
. .

Escribano
,
R.
,
Hidalgo
,
P.
,
González
,
H.
,
Giesecke
,
R.
,
Riquelme-Bugueño
,
R.
and
Manríquez
,
K.
(
2007
)
Seasonal and inter-annual variation of mesozooplankton in the coastal upwelling zone off central-southern Chile
.
Prog. Oceanogr.
,
75
,
470
485
. .

Ettahiri
,
O.
,
Berraho
,
A.
,
Vidy
,
G.
,
Ramdani
,
M.
and
Do chi, T.
(
2003
)
Observation on the spawning of Sardina and Sardinella off the south Moroccan Atlantic coast (21-26°N)
.
Fish. Res.
,
60
,
207
222
. .

Fréon
,
P.
,
Barange
,
M.
and
Arístegui
,
J.
(
2009
)
Eastern boundary upwelling ecosystems: integrative and comparative approaches
.
Prog. Oceanogr.
,
83
,
1
14
. .

Glushko
,
O. G.
and
Lidvanov
,
V. V.
(
2012
)
Composition and structure of zooplankton in coastal waters of Mauritania in winter
.
J. Sib. Fed. Univ., Bio.
,
5
,
136
150
[in Russian]
. .

Gómez-Letona
,
M.
,
Ramos
,
A. G.
,
Coca
,
J.
and
Arístegui
,
J.
(
2017
)
Trends in primary production in the canary current upwelling system-a regional perspective comparing remote sensing models
.
Front. Mar. Sci.
,
4
,
1
18
. .

Grasshoff
,
K.
,
Kremling
,
K.
and
Ehrhardt
,
M.
(
1983
)
Methods of Seawater Analysis
, 2nd edn,
Verlag Chemie Weinhein
,
New York
.

Guénette
,
S.
,
Meissa
,
B.
and
Gascuel
,
D.
(
2014
)
Assessing the contribution of marine protected areas to the trophic functioning of ecosystems: a model for the banc d’Arguin and the Mauritanian shelf
.
PLoS One
,
9
,
e94742
. .

Hamann
,
I.
,
John
,
H.-C.
and
Mittelstaedt
,
E.
(
1981
)
Hydrography and its effect on fish larvae in the Mauritanian upwelling area
.
Deep-Sea Res.
,
28
,
561
575
. .

Hays
,
G. C.
,
Richardson
,
A. J.
and
Robinson
,
C.
(
2005
)
Climate change and marine plankton
.
Trends Ecol. Evol.
,
20
,
337
344
. .

Hernández-León
,
S.
,
Gómez
,
M.
and
Arístegui
,
J.
(
2007
)
Mesozooplankton in the canary current system: the coastal-ocean transition zone
.
Prog. Oceanogr.
,
74
,
397
421
. .

Hernández-León
,
S.
,
Gómez
,
M.
,
Pagazaurtundua
,
M.
,
Portillo-Hahnefeld
,
A.
,
Montero
,
I.
and
Almeida
,
C.
(
2001
)
Vertical distribution of zooplankton in Canary Island waters: implications for export flux
.
Deep Sea Res 1 Oceanogr Res Pap
,
48
,
1071
1092
. .

Hernández-León
,
S.
,
Putzeys
,
S.
,
Almeida
,
C.
,
Bécognée
,
P.
,
Marrero-Díaz
,
A.
,
Arístegui
,
J.
and
Yebra
,
L.
(
2019
)
Carbon export through zooplankton active flux in the canary current
.
J. Mar. Syst.
,
189
,
12
21
. .

Hernández-León
,
S.
,
Sarmiento-Lezcano
,
A.
,
Couret
,
M.
,
Armengol
,
L.
,
Medina-Suárez
,
I.
,
Fatira
,
E.
,
Tuset
,
V.
,
Limam
,
A.
. et al. (
2024
)
Seasonality of zooplankton active flux in subtropical waters
.
Limnol. Oceanogr.
,
69
,
2564
2579
. .

Huggett
,
J.
,
Verheye
,
H.
,
Escribano
,
R.
and
Fairweather
,
T.
(
2009
)
Copepod biomass, size composition and production in the southern Benguela: Spatio-temporal patterns of variation, and comparison with other eastern boundary upwelling systems
.
Prog. Oceanogr.
,
83
,
197
207
. .

Isari
,
S.
,
Psarra
,
S.
,
Pitta
,
P.
,
Mara
,
P.
,
Tomprou
,
M. O.
,
Ramfos
,
A.
,
Somarakis
,
S.
,
Tselepides
,
A.
. et al. (
2007
)
Differential patterns of mesozooplankters’ distribution in relation to physical and biological variables of the northeastern Aegean Sea (eastern Mediterranean)
.
Mar. Biol.
,
151
,
1035
1050
. .

Jeffrey
,
S. W.
and
Humphrey
,
G. F.
(
1975
)
New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton
.
Biochem. Physiol. Pflanz.
,
167
,
191
194
. .

Kämpf
,
J.
and
Chapman
,
P.
(
2016
) In
Kämpf
,
J.
and
Chapman
,
P.
(eds.),
Upwelling Systems of the World: A Scientific Journey to the most Productive Marine Ecosystems
, 1st edn,
Springer International Publishing
,
Switzerland
.

Kasapidis
,
P.
,
Siokou
,
I.
,
Khelifi-Touhami
,
M.
,
Mazzocchi
,
M. G.
,
Matthaiaki
,
M.
,
Christou
,
E.
,
Fernandez De Puelles
,
M. L.
,
Gubanova
,
A.
. et al. (
2018
)
Revising the taxonomic status and distribution of the Paracalanus parvus species complex (Copepoda, Calanoida) in the Mediterranean and black seas through an integrated analysis of morphology and molecular taxonomy
.
J. Plankton Res.
,
40
,
595
605
. .

Kuipers
,
B. R.
,
Witte
,
H. J.
and
Gonzalez
,
S. R.
(
1993
)
Zooplankton distribution in the coastal upwelling system along the banc d’Arguin, Mauritania
.
Hydrobiologia
,
258
,
133
149
. .

Lavaniegos
,
B. E.
and
Ohman
,
M. D.
(
2007
)
Coherence of long-term variations of zooplankton in two sectors of the California current system
.
Prog. Oceanogr.
,
75
,
42
69
. .

Lidvanov
,
V. V.
,
Grabko
,
O. G.
,
Kukuev
,
E. I.
and
Korolkova
,
T. G.
(
2018
)
Structure of Mesozooplankton communities in the coastal waters of Morocco
.
Oceanology (Wash D C)
,
58
,
213
227
. .

Lidvanov
,
V. V.
,
Kukuev
,
E. I.
,
Kudersky
,
S. K.
and
Grabko
,
O. G.
(
2013
)
Mesozooplankton taxonomic composition of the canary current ecosystem (coast of Morocco)
.
J. Sib. Fed. Univ., Bio. 3
,
6
,
290
312
 
[in Russian]
.

Lidvanov
,
V. V.
,
Shnar
,
V. V.
and
Korolkova
,
T. G.
(
2022
)
Mesozooplankton of the coastal waters of Senegal and Guinea-Bissau
.
J. Sib. Fed. Univ., Bio.
,
15
,
529
551
 
[in Russian]
.

Mackas
,
D. L.
,
Peterson
,
W. T.
,
Ohman
,
M. D.
and
Lavaniegos
,
B. E.
(
2006
)
Zooplankton anomalies in the California current system before and during the warm ocean conditions of 2005
.
Geophys. Res. Lett.
,
33
,
L22S07
. .

Mackas
,
D. L.
,
Thomson
,
R. E.
and
Galbraith
,
M.
(
2001
)
Changes in the zooplankton community of the British Columbia continental margin, 1985-1999, and their covariation with oceanographic conditions
.
Can. J. Fish. Aquat. Sci.
,
58
,
685
702
. .

Marcello
,
J.
,
Hernández-Guerra
,
A.
,
Eugenio
,
F.
and
Fonte
,
A.
(
2011
)
Seasonal and temporal study of the northwest African upwelling system
.
Int. J. Remote Sens.
,
32
,
1843
1859
. .

Martinez Arbizu
,
P.
(
2020
)
PairwiseAdonis: Pairwise multilevel comparison using Adonis
. R package version 0.4, 1. https://github.com/pmartinezarbizu/pairwiseAdonis.

Medellín-Mora
,
J.
,
Atkinson
,
A.
and
Escribano
,
R.
(
2020
)
Community structured production of zooplankton in the eastern boundary upwelling system off central/southern Chile (2003-2012)
.
ICES J. Mar. Sci.
,
77
,
419
435
.

Oksanen
,
J.
,
Simpson
,
G. L.
,
Blanchet
,
F. G.
,
Kindt
,
R.
,
Legendre
,
P.
,
Minchin
,
P. R.
,
O’Hara
,
R. B.
,
Solymos
,
P.
. et al. (
2022
)
Vegan: community ecology package
. R package version 2.6-4. https://github.com/vegandevs/vegan.

Omori
,
M.
and
Ikeda
,
T.
(
1984
)
Methods in Marine Zooplankton Ecology
,
John Wiley and Sons
,
NY
.

Pelegrí
,
J. L.
,
Arístegui
,
J.
,
Cana
,
L.
,
González-Dávila
,
M.
,
Hernández-Guerra
,
A.
,
Hernández-León
,
S.
,
Marrero-Díaz
,
A.
,
Montero
,
M. F.
. et al. (
2005
)
Coupling between the open ocean and the coastal upwelling region off Northwest Africa: water recirculation and offshore pumping of organic matter
.
J. of Mar. Sys.
,
54
,
3
37
. .

Pérez-Rodríguez
,
P.
,
Pelegrí
,
J. L.
and
Marrero-Díaz
,
A.
(
2001
)
Dynamical characteristics of the Cape Verde frontal zone
.
Sci. Mar.
,
65
,
241
250
. .

Postel
,
L.
,
Arndt
,
E. A.
and
Brenning
,
U.
(
1995
)
Rostock zooplankton studies off West Africa
.
Helgoländer Meeresuntersuchungen
,
49
,
829
847
. .

R Core Team
(
2024
)
R: A Language and Environment for Statistical Computing
. R Foundation for Statistical Computing, Vienna, Austria. Version 4.3.2. https://www.r-project.org/.

R Studio Team
(
2024
)
RStudio: Integrated Development for R
. RStudio, PBC, Boston, MA. Version 4.3.1. http://www.rstudio.com/.

Ratnarajah
,
L.
,
Abu-Alhaija
,
R.
,
Atkinson
,
A.
,
Batten
,
S.
,
Bax
,
N. J.
,
Bernard
,
K. S.
,
Canonico
,
G.
,
Cornils
,
A.
. et al. (
2023
)
Monitoring and modelling marine zooplankton in a changing climate
.
Nat. Commun.
,
14
,
1
17
. .

Razouls
,
C.
,
Desreumaux
,
N.
,
Kouwenberg
,
J.
and
de
 
Bovée
,
F.
(
2024
)
Biodiversity of Marine Planktonic Copepods (Morphology, Geographical Distribution and Biological Data). 2005–2024
,
Sorbonne University, CNRS
. https://copepodes.obs-banyuls.fr/en/.

Richardson
,
A. J.
(
2008
)
In hot water: zooplankton and climate change
.
ICES J. Mar. Sci.
,
65
,
279
295
. .

Richardson
,
A. J.
,
Davies
,
C.
,
Slotwinski
,
A.
,
Coman
,
F.
,
Tonks
,
M.
,
Rochester
,
W.
,
Murphy
,
N.
,
Beard
,
J.
. et al. (
2013
)
Australian marine zooplankton: taxonomic sheets
. 294 pp.

Rose
,
M.
(
1933
) In
Lechevalier
,
P.
(ed.),
Faune de France : Copépodes pélagiques
,
Kraus Reprint
,
Paris
.

Salah
,
S.
,
Ettahiri
,
O.
,
Berraho
,
A.
,
Benazzouz
,
A.
,
Elkalay
,
K.
and
Errhif
,
A.
(
2012
)
Copepods distribution in relation to a Cape Ghir upwelling filament (Moroccan Atlantic coast)
.
C R Biol
,
335
,
155
167
. .

Sangrà
,
P.
,
Pascual
,
A.
,
Rodríguez-Santana
,
Á.
,
Machín
,
F.
,
Mason
,
E.
,
McWilliams
,
J. C.
,
Pelegrí
,
J. L.
,
Dong
,
C.
. et al. (
2009
)
The canary Eddy corridor: a major pathway for long-lived eddies in the subtropical North Atlantic
.
Deep Sea Res 1 Oceanogr Res Pap
,
56
, 2100–
2114
.

Sangrà
,
P.
,
Troupin
,
C.
,
Barreiro-González
,
B.
,
Desmond Barton
,
E.
,
Orbi
,
A.
and
Arístegui
,
J.
(
2015
)
The cape Ghir filament system in august 2009 (NW Africa)
.
J Geophys Res Oceans
,
120
,
4516
4533
.

Sarre
,
A.
,
Demarq
,
H.
,
Keenlyside
,
N.
,
Krakstad
,
J.-O.
,
ElAyoubi
,
S.
,
Jeyid
,
A. M.
,
Faye
,
S.
,
Mbaye
,
A
. et al. (
2024
)
Climate change impacts on small pelagic fish distribution in Northwest Africa: trends, shifts, and risk for food security
.
Sci. Rep.
,
14
, 12684,
1
30
. .

Schlitzer
,
R.
(
2024
)
Ocean Data View
. Version 5.7.0. https://odv.awi.de/.

Shannon
,
C. E.
and
Weaver
,
W.
(
1949
)
The Mathematical Theory of Communication
,
The University of Illinois Press
,
Urbana
.

Shukhgalter
,
O. A.
and
Lidvanov
,
V. V.
(
2018
)
Long-term dynamics of mesozooplankton communities and parasite fauna of the European pilchard (Sardina pilchardus Walbaum, 1792) from the coastal zone of Morocco in 1994–2011
.
Journal of General Biology
,
79
,
1
16
 
[in Russian]
.

Sirota
,
A. M.
,
Chernyshkov
,
P. P.
and
Zhigalova
,
N. N.
(
2004
)
Water masses distribution, currents intensity and zooplankton assemblage off northwest African coast
.
ICES CM 2004/N:2
,
1
18
.

Somoue
,
L.
,
Elkhiati
,
N.
,
Ramdani
,
M.
,
Lam Hoai
,
T.
,
Ettahiri
,
O.
,
Berraho
,
A.
and
Do Chi
,
T.
(
2005
)
Abundance and structure of copepod communities along the Atlantic coast of southern Morocco
.
Acta Adriat.
,
46
,
63
76
.

Steinberg
,
D. K.
and
Landry
,
M. R.
(
2017
)
Zooplankton and the ocean carbon cycle
.
Annu. Rev. Mar. Sci.
,
9
,
413
444
. .

Sylla
,
A.
,
Mignot
,
J.
,
Capet
,
X.
and
Gaye
,
A. T.
(
2019
)
Weakening of the Senegalo–Mauritanian upwelling system under climate change
.
Clim. Dyn.
,
53
,
4447
4473
. .

Tiedemann
,
M.
,
Fock
,
H. O.
,
Döring
,
J.
,
Badji
,
L. B.
and
Möllmann
,
C.
(
2018
)
Water masses and oceanic eddy regulation of larval fish assemblages along the Cape Verde frontal zone
.
J. of Mar. Sys.
,
183
,
42
55
. .

Trégouboff
,
G.
and
Rose
,
M.
(
1957
)
Manuel de Planctologie Méditerranéenne
,
Tome II. Centre National de la Recherche Scientifique
,
Paris
.

Vázquez
,
R.
,
Parras-Berrocal
,
I. M.
,
Koseki
,
S.
,
Cabos
,
W.
,
Sein
,
D. V.
and
Izquierdo
,
A.
(
2023
)
Seasonality of coastal upwelling trends in the Mauritania-Senegalese region under RCP8.5 climate change scenario
.
Sci. Total Environ.
,
898
,
166391
. .

Venegas
,
A.
,
Auger
,
P. A.
,
Escribano
,
R.
and
Parada
,
C.
(
2024
)
Understanding seasonal variability of mesozooplankton biomass in the upwelling system of central-southern Chile: a modelling approach
.
Prog. Oceanogr.
,
220
,
103193
. .

Verheye
,
H. M.
,
Hagen
,
W.
,
Auel
,
H.
,
Ekau
,
W.
,
Loick
,
N.
,
Rheenen
,
I.
,
Wencke
,
P.
and
Jones
,
S.
(
2005
)
Life strategies, energetics and growth characteristics of Calanoides carinatus (Copepoda) in the Angola-Benguela frontal region
.
Afr. J. Mar. Sci.
,
27
,
641
651
. .

Verheye
,
H. M.
,
Lamont
,
T.
,
Huggett
,
J. A.
,
Kreiner
,
A.
and
Hampton
,
I.
(
2016
)
Plankton productivity of the Benguela current large marine ecosystem (BCLME)
.
Environ Dev
,
17
,
75
92
. .

Vihtakari
,
M.
(
2023
)
ggOceanMaps: Plot Data on Oceanographic Maps Using ‘ggplot2’
. R package version 2.1.1. https://CRAN.R-project.org/package=ggOceanMaps.

Weikert
,
H.
(
1982
)
Some features of zooplankton distribution in upper 200 m in the upwelling region off Northwest Africa
.
Rapp. P.-v. Réun. Cons. Int. Explor. Mer
,
180
,
280
288
.

Welschmeyer
,
N. A.
(
1994
)
Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments
.
Limnol. Oceanogr.
,
39
,
1985
1992
. .

Wiafe
,
G.
and
Frid
,
C.
(
2001
)
Marine zooplankton of West Africa
.
Darwin Initiative Report 5
, UK. Ref. 162/7/451, 1-
120
.

Wiafe
,
G.
,
Yaqub
,
H. B.
,
Mensah
,
M. A.
and
Frid
,
C. L. J.
(
2008
)
Impact of climate change on long-term zooplankton biomass in the upwelling region of the Gulf of Guinea
.
ICES J. Mar. Sci.
,
65
,
318
324
. .

Wickham
,
H.
(
2016
) In
Gentleman
,
R.
,
Hornik
,
K.
and
Parmigiani
,
G.
(eds.),
ggplot2: Elegant Graphics for Data Analysis
, Second edn,
Springer
,
Houston
, .

Zaafa
,
A.
,
Ettahiri
,
O.
,
Berraho
,
A.
,
Elkhiati
,
N.
,
Somoue
,
L.
,
Zizah
,
S.
,
Ramdani
,
M.
,
Blaghen
,
M.
. et al. (
2014
)
A comparative study of marine zooplankton communities in the tangier and M’Diq (Gibraltar strait) regions
.
Hydroécol. Appl.
,
18
,
67
80
. .

Zenk
,
W.
,
Klein
,
B.
and
Schroder
,
M.
(
1991
)
Cape Verde frontal zone
.
Deep-Sea Res.
,
38
,
505
530
.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding Editor: Marja Koski
Marja Koski
Corresponding Editor
Search for other works by this author on: