Abstract

Background

Leptospirosis is a neglected zoonosis transmitted through urine of infected hosts or contaminated environments. The transmission of bacteria between humans, animals, and the environment underscores the necessity of a One Health approach.

Methods

We conducted a systematic review to identify significant findings and challenges in One Health research on leptospirosis, focusing on studies involving sampling in ≥2 of the 3 compartments: human, animal, and environment. We searched in PubMed, Web of Science, Medline, Scopus, and ScienceDirect from 1 January 1918 to 31 December 2022. We assessed risk of bias in studies using Joanna Briggs Institute tools and performed a meta-analysis to identify links between One Health compartments.

Results

Of 1082 leptospirosis studies with sampling, 102 multicompartmental studies conducted between 1972 and 2022 were included: 70 human-Animal, 18 animal-environment, 4 human-environment, and 10 across all compartments. Various methodological weaknesses were identified, from study design to statistical analysis. Meta-regressions identified positive associations between human and animal seroprevalences, particularly with livestock and with wild nonrodent animals, and a link between the environmental positivity rate and domestic animal seroprevalence. Our analysis was constrained by the limited number of studies included and by the quality of protocols.

Conclusions

This 50-year overview of One Health field approach to leptospirosis highlights the critical need for more robust, well-supported One Health research to clarify the transmission dynamics and identify risk factors of zoonoses.

Leptospirosis is a globally distributed bacterial zoonosis that affects mammals through leptospires penetration via wounds or mucous membranes. After colonization of the kidneys, the bacteria are excreted in urine [1]. Mammals may contract the infection directly from infected urine or through contact with environments contaminated by leptospires, where these bacteria can survive for several months [2].

The Leptospira genus comprises 69 species, classified into more than 250 serovars across more than 25 serogroups [3]. Due to its varied clinical manifestations, often characterized by influenzalike symptoms [3], leptospirosis is frequently misdiagnosed as other febrile illness like dengue or malaria, leading to its significant underestimation. With estimates of >1 million cases and about 60 000 deaths annually, predominantly in tropical regions [4], leptospirosis remains a neglected tropical disease [5, 6]. The diversity of serovars complicates serological diagnosis due to the low cross-reactivity of serovar-specific antibodies. The microscopic agglutination test (MAT), despite being the gold standard for serological diagnosis, has several limitations [7], contributing to the disease's neglect.

Host specificity of serovars varies widely, some serovars infect a broad range of hosts while others are host specific. Host roles in transmission also differ. Susceptible hosts might experience severe illness or death, excreting leptospires only during the acute phase, whereas maintenance hosts may show mild or no symptoms but continuously excrete leptospires for months or their entire lifespan, thus acting as reservoirs [3]. This enduring excretion is facilitated by coadaptation between host and serovar, like Icterohaemorrhagiae and rats or Hardjo and cattle [1].

Despite ongoing research, significant uncertainties about leptospires transmission remain, especially concerning regional and contextual variations. The environment's role is particularly unclear even though many outbreaks occur after heavy rainfalls or floods [2, 3]. The environment could serve as an intermediary between reservoirs and humans, potentially acting as a vector by dispersing leptospires. Heavy rainfalls might cause contaminated surface soil to slip into watercourses, carrying leptospires to humans. In addition, floods can transport leptospires, leading to new exposures [8]. This issue may grow with climate change and its effects on flooding [9] and rainfall [10]. Moreover, the role in disease transmission of dogs, often in close contact with humans [3], is not well understood.

Addressing uncertainties requires a One Health approach that integrates human, animal and environmental health disciplines [11] to clarify each compartment's role in pathogen dissemination, thereby enhancing our understanding of transmission dynamics and informing mitigation strategies.

This systematic review aims to provide a comprehensive overview of One Health field approaches to leptospirosis, identifying their strengths, challenges, and research quality. It also aims to guide future robust and integrated studies. Furthermore, through meta-analysis, this review seeks to identify factors linked to Leptospira presence or seroprevalence across the 3 compartments and explore intercompartment connections to elucidate transmission pathways.

METHODS

Study Design

We conducted a systematic review and meta-analysis following the Preferred Reporting Items of Systematic Review and Meta-Analysis (PRISMA) guidelines [12]. The protocol was registered on PROSPERO (CRD42023394574) through the National Institute for Health and Care Research [13] on 21 March 2023.

Study Eligibility

This review focused on field studies incorporating the One Health concept, specifically those involving ≥2 of the 3 One Health compartments: human, animal, and environmental. Eligible studies needed to report Leptospira presence or exposure across these compartments, with clear descriptions of sample sizes. We excluded single-compartment studies, reviews, case reports, editorial comments, and studies without original field data. No language restrictions were applied.

Data Source and Search Strategy

We searched databases including Scopus, Web of Science, PubMed, ScienceDirect and Medline from 1 January 1918 to 31 December 2022. The search strategy for Web of Science is detailed in Supplementary Material 1 and Supplementary Table 1. We excluded unpublished manuscripts and translated non-English and non-French studies using digital tools, verified by native speakers when necessary.

Data Extraction and Quality Assessment

Titles and abstracts were initially screened, followed by full-text evaluations. Two reviewers resolved disagreements through discussion, involving a third arbitrator if necessary. Data were independently extracted by 2 reviewers into a structured Microsoft Excel form, and the risk of bias was assessed. Extracted information included study design, population, sample types, laboratory tests, data analysis, study limitations, and conclusions. We also collected data on prevalence, type of laboratory test, number positive, and total tested for each sample type. Study designs were classified into 6 categories, including a “mixed” category for diverse designs. Populations were categorized into 5 groups, also including a mixed category for various types: general population, febrile population, exposure to positive cases, and population at risk due to a given practice or lifestyle. The sample size calculation was complete if it covered human and animal species and partial if it omitted any of these. Randomization was assessed similarly, with wildlife trapping considered inherently random and environmental sampling was considered unsuitable for randomization, given the difficulty of achieving representativeness.

The quality of each study was assessed using the Joanna Briggs Institute (JBI) critical appraisal tools (presented in Supplementary Figures 1 and 2) tailored to the study design [14, 15]. Populations were categorized into 4 groups: humans, domestic animals, wild animals, and the environment. Each group's protocol quality was evaluated independently, with inappropriate questions omitted from the JBI tool to ensure standardized scoring. Scores were normalized to 1 for comparability across groups.

Data Synthesis and Statistical Analysis

Data analyses were conducted using R software, version 4.3.1 [16]. Meta-analyses were performed via generalized linear random-effects models to estimate subgroup-aggregated proportions using the rma.glmm function from the metafor R package [17]. These models accounted for variability among studies due to heterogeneity [18]. Pooled proportions of individuals testing positive for bacteria or antibodies were expressed as percentages with 95% confidence intervals (CIs). Data were logit transformed for modeling and subsequently inverse-logit transformed for generating estimates and forest plots [19]. Heterogeneity was quantified using the I² statistic [19]. For the meta-analysis, all studies were included, regardless of their JBI score. For animal data, each species from a study was considered separately, and for environmental data, each sample type (water or soil) was treated individually. Consequently, multiple proportions from the same study could be included in the meta-analysis, appearing separately for different species or sample types. For environmental data, the positivity rate was calculated by combining findings of polymerase chain reaction (PCR) and culture. Subgroups were established based on study population type, geographic region, animal type, species or subfamilies, and environmental sample type. Subgroups of species were considered if included in ≥10 studies.

Generalized linear mixed-effects models were used to assess the impact of moderator variables on outcomes, incorporating fixed effects of variables like study population type, geographic region, country, animal type, species and observed proportion rates. Adjustments were based on study population type: febrile, general, at risk, exposed, or mixed. There were 2 conditions for testing an association by explaining one positivity rate by another. First, we fixed the minimum sample size at 10 studies: ≥10 studies had to measure the 2 positivity rates to be tested. Second, a positivity rate was used as an explanatory variable only if it was measured in ≥10 individuals.

RESULTS

Eligible Studies

We initially identified 3044 studies. After removing 1417 duplicates and screening 1627 studies, we included 102 in the review, covering the period from 1972 to 2022 (Figure 1A). We excluded 978 unicompartmental surveys and 1 study [20] with redundant data from a previous article [21]. Another study was excluded due to the unavailability of the full text [22].

Implementation of the One Health approach. A, Flowchart of study selection. B, Venn diagram showing the numbers of studies with sampling, according to the compartment(s) investigated. C, Numbers of unicompartmental and multicompartmental studies published per year.
Figure 1.

Implementation of the One Health approach. A, Flowchart of study selection. B, Venn diagram showing the numbers of studies with sampling, according to the compartment(s) investigated. C, Numbers of unicompartmental and multicompartmental studies published per year.

Figure 1B displays a Venn diagram illustrating intersections among the 102 One Health studies included. The environmental compartment was the least represented in unicompartmental studies (n = 60 [6.1%]) and appeared in only 30.7% of multicompartmental studies. In contrast, animals and humans were included in 94.2% and 82.4% of studies, respectively. Only 10 studies (9.8%) investigated all 3 compartments. The use of multicompartmental approaches studying leptospirosis significantly increased after the year 2000 (Figure 1C), but overall such approaches were used in only 9.6% of published studies.

Database Description

The investigation of the environment has progressed more gradually compared with the other 2 compartments (Figure 2A). Before 2000, only 6% of studies (1 of 15) involved the environment, compared with 36% (31 of 87) after 2000. Most studies were conducted in South America (n = 36 [35.3%]) or Asia (n = 34 [33.3%]) (Figure 2B). Supplementary Table 2 provides the detailed geographic distribution.

Spatiotemporal distribution of included studies. A, Number of studies included per year, showing compartments of the One Health concept investigated. B, Spatial distribution of the numbers of studies by country.
Figure 2.

Spatiotemporal distribution of included studies. A, Number of studies included per year, showing compartments of the One Health concept investigated. B, Spatial distribution of the numbers of studies by country.

Table 1 describes the characteristics of included studies. Among the 98 animal studies, 44% focused on domestic animals, 22% on wild animals and 34% on both. Of the 76 studies investigating domestic animals, 33% investigated livestock, 26% pets, and 41% both. Among the 32 environmental studies, 22 (69%) investigated water, 9 (28%) both water and soil, and 1 (3%) examined only the air. Environmental samples were mainly from nearby farms (38%) or houses (28%), with 34% involving domestic water and 34% waterways.

Table 1.

Characteristics of One Health Studies on Leptospirosis Included in the Current Review

Study Authors (Year)TypeDateCountryDesignPopulationTestPositivity Rate
Maronpot and Barsoum (1972) [23]H, A1968–1971EgyptPrevalence surveyH: mix; A: genMATH 52/513, cows 209/424, pigs 70/130, goats 135/195, sheep 57/330, horses 11/31, camels 29/50
Nelson et al (1973) [24]H, A1964USACluster investigationH: feb;
A: exp
MATH 61/245, cows 26/305
CARCows 9/43
Tsai et al (1973) [25]H, A1968TaiwanPrevalence surveyH: gen
A: gen
MATH 25/167, dogs 0/2, cows 18/57, pigs 0/64, goats 2/32, civets 1/2, rodents 3/47
CultureCivets 1/2, rodents 7/59
Limpias and Marcus (1973) [26]H, ABoliviaPrevalence surveyH: feb
A: mix
MATH 7/142, dogs 1/17, cows 372/520, pigs 7/102, goats 4/53, sheep 1/61, horses 76/101, monkeys 1/1, bats 0/9, rabbits 0/1, snakes 0/1, boars 1/1, deer 1/1, rodents 0/3
Ratnam et al (1983) [27]H, AIndiaCluster investigationH: mix
A: feb
MATH 35/75, cows 27/40
CultureCows 0/9
Prokopcaková and Pospisil (1984) [28]H, ASlovakiaPrevalence surveyH: gen; A: genALRH 28/876, cows 13/168, rodents 20/243
Gelosa and Manera (1984) [29]H, E1980–1983ItaliaLaboratory monitoringH: febMATH 34/168
CultureWater 0/40
Sebek et al (1987) [30]H, A1976–1982IranPrevalence surveyH: feb; A: genMATH 80/2448, cows 2/4, pigs 15/89, goats 6/65, sheep 9/328
Heisey et al (1988) [31]H, A1983–1984ThailandPrevalence surveyH: feb; A: febMAT/CultureH 33/110
MATDogs 56/293, cats 0/8, cows 54/204, pigs 3/17, rodents 84/174
CultureCows NA/150, rodents 23/75
Everard et al (1988) [32]H, A1982–1984BelizePrevalence surveyH: mix
A: mix
MATH 99/451, dogs 5/7, cows 136/155, pigs 32/71, goats and sheep 88/162
Sebek et al (1989) [33]H, A1987EgyptPrevalence surveyH: gen; A: genMATH 17/196, dogs 0/1, cows 0/1, pigs 4/28, goats 1/67, horses 2/12, rodent 36/65
Sebek et al (1989) [34]H, A1983Cape VerdePrevalence surveyH: mix;
A: gen
MATH 44/611, dogs 0/89, cows 3/150, pigs 0/316, goats 34/640, sheep 0/39, horses 3/64, rodents 0/211
Venkataraman and Nedunchelliyan (1992) [35]H, A1988IndiaCluster investigationH: feb; A: mixMATH 48/95, dogs 20/94, bandicoots 10/24, rodents 8/64
DFMH 10/48+,a dogs 8/20+, bandicoots 8/24+, rodents 5/32
CultureH 1/10+, dogs 1/8+
Prokopcáková et al (1994) [36]H, A1991–1993SlovakiaPrevalence surveyH: risk;
A: gen
MATH 56/1740, rodents 99/1038, shrews 1/68
Machang’u et al (1997) [37]H, ATanzaniaPrevalence surveyH: risk; A: genMATH 1/375, dogs 80/208, cows 28/374, rodents 10/537
CultureCows 7/1021
Campagnolo et al (2000) [38]H, A, E1998USACluster investigationH: risk; A: febIgMELISAH 9/17
MATPigs 97/302
CulturePigs 4/6, water 0/8
Ochoa et al (2000) [39]H, A1997–1998ColombiaPrevalence surveyH: risk; A: genMATH 15/67, cows 106/174, pigs 60/278
Vanasco et al (2000) [40]H, A, E1998ArgentinaCluster investigationH: mix;
A: exp
MATH 12/32, dogs 6/8
DFMWater 8 spirochete+/8
CultureWater 8 spirochete+/8
Ralaiarijaona et al (2001) [41]H, A2000MadagascarPrevalence surveyH: risk; A: genMATH 1/105
PCRCows 0/50, pigs 0/13, rodents 0/115
León et al (2002) [42]A, E1996–1998ColombiaPrevalence surveyA: febMATPigs 0/68
DFMWater 91/339
CultureWater 38/311
Natarajaseenivasan et al (2002) [43]H, A2000IndiaMixedH: mix; A: genIgGELISAH 241/268
MATH 231/338, dogs 2/4, cats 6/9, cows 18/34, rodents 12/23
Ramakrishnan et al (2003) [44]H, E2001IndiaCluster investigationH: expMATH 20/64
CultureWater 1/1
PCRWater 1/1
Cerri et al (2003) [45]H, A1995–2001ItaliaLaboratory monitoringH: feb; A: febMATH 14/250, dogs 278/4369, cows 7/644, pigs 123/1299, sheep 132/1088, horses 107/938, boars 11/459, deer 0/567, wolves 0/4, marmots 0/120, rodents 0/4
Ren et al (2005) [46]H, A1998–2003ChinaLongitudinal monitoringH: gen; A: genMATH 57/1777, pigs 10/232
CultureDogs 0/30, pigs 1/524, rodents 16/123
Kuriakose et al (2008) [47]H, A1993–1997IndiaLongitudinal monitoringH: gen; A: genMATH 38/376, bandicoot 4/9, shrews 0/5, rodents 2/40
DFMBandicoots 2/4, rodents 1/2
CultureBandicoots 0/2, shrews 0/2, rodents 1/6
Langoni et al (2008) [48]H, A2005BrazilPrevalence surveyH: risk; A: genMATH 8/34, cows 46/140, rodents 0/50
CultureCows 0/140, rodents 0/50
PCRRodents 0/50
Habuš et al (2008) [49]H, A2007CroatiaLaboratory monitoringH: feb; A: mixMATH 24/113, dogs 2/20, cows 295/9867, pigs 1397/15524, goats 24/1639, sheep 46/16278, horses 196/1212, foxes 36/70, wild animals (undefined) 0/100
Zhou et al (2009) [50]H, A2002ChinaPrevalence surveyH: gen; A: genMATH 444/772
CultureCows 11/225, rodents 22/726
Aviat et al (2009) [51]A, E2001–2004FrancePrevalence surveyA: expMATRodents 288/649
PCRRodents 41/516, water 6/151
Silva et al (2010) [52]H, A2006BrazilPrevalence surveyH: risk; A: genMATH 0/15, Snake 47/110, Fish 2/25, Bird 34/143, Wild undefined 11/49
Zakeri et al (2010) [53]H, A2005–2007IranPrevalence surveyH: feb; A: genPCRH 98/369, dogs 33/150, sheep 13/175
Romero et al (2011) [54]H, A2007ColombiaPrevalence surveyH: gen; A: genMATH 51/850, dogs 182/850
Bermúdez et al (2010) [55]H, AColombiaPrevalence surveyH: gen; A: genMATH 10/46, dogs 41/61
Cárdenas-Marrufo et al (2011) [56]A, E2004–2005MexicoPrevalence surveyA: genMATDogs 22/61, cows 97/212, pigs 26/203
PCRWater 0/68
De Castro et al (2011) [57]H, A2007–2009BrazilMixedH: feb; A: genMATH 7/97, dogs 76/268
Romero et al (2011) [54]H, A2009–2010ColombiaPrevalence surveyH: risk; A: genMATH 5/20, monkeys 15/65
Fonzar and Langoni (2012) [58]H, A2006–2008BrazilPrevalence surveyH: feb; A: genMATH 5/25, dogs 41/335
Romero-Vivas et al (2013) [59]H, A2007–2009ColombiaCluster investigationH: feb; A: expMATH 16/128, dogs 19/83, rodents 13/69
CultureH 0/10, dogs 0/54, rodents 1/69
PCRH 1/10 PCR, dogs 2/4 (2+), rodents 2/16
Calderón et al (2014) [60]H, A, E2009–2011ColombiaPrevalence surveyH: risk; A: genMATH 47/62, dogs 19/54, pigs 214/383, rodents 0/39
CultureDogs 2/54, pigs 3/171, rodents 1/39, water 9/57
PCRDogs 2/2+, pigs 3/3+, water 2/9+
Soman et al (2014) [61]H, AIndiaPrevalence surveyH: feb; A: mixMATH 84/154, dogs 44/121, wild animals (undefined) 9/42
CultureH 1/154, dogs 1/121, bandicoots 3/11, rodents 2/24
Vimala et al (2014) [62]H, A2009–2010IndiaPrevalence surveyH: feb; A: genMATH 10/129, rodents 9/24
Silva et al (2014) [63]H, A2013BrazilPrevalence surveyH: risk; A: genMATH 2/10, dogs 6/12, sheep 7/34, horses 6/10, rodents, 1/1, feral cats 0/1, foxes 1/2, tatous 0/16
Assenga et al (2015) [64]H, A2012–2013TanzaniaPrevalence surveyH: gen; A: genMATH 80/267, cows 346/1141, goats 22/248, lions 1/2, zebras 0/2, shrews 1/11, rodent 42/207
Samir et al (2015) [65]H, A, EEgyptCluster investigationH: exp; A: mixMATH 87/175, dogs 98/168, cows 239/651, sheep 45/99, horses 2/40, camels 0/22, rodents 205/270
CultureH 0/175, dogs 19/168, cows 7/651, sheep 0/99, horses 0/40, camels 0/22, rodents 17/270
PCRH 0/175, dogs 65/168, cows 7/651, horses 0/40, sheep 0/99, camels 0/22, rodents 65/270, water 10/45
Da Silva et al (2015) [66]H, A2012BrazilPrevalence surveyH: gen; A: genMATH 11/28, dogs 7/13, cows 6/17, goats 16/37, sheep 16/41, horses 30/57, foxes 6/11, opossums 1/1, tatous 4/4, monkeys 3/4, coatis 2/3, rodents 1/1
Lugo-Chávez et al (2015) [67]H, A2012MexicoCluster investigationH: exp; A: genMATH 22/36, dogs 19/29
Barragan et al (2016) [68]H, A2013–2015EcuadorPrevalence surveyH: feb; A: genPCRH 100/680, cows 59/165, pigs 27/128, rodents 3/101
Cibulski and Wollanke (2016) [69]A, EGermany and LuxembourgPrevalence surveyA: genPCRShrews 3/67, Mole 1/1, rodents 38/226, water 9/87
Parveen et al (2016) [70]H, AIndiaPrevalence surveyH: risk; A: genMATH 94/244, dogs 4/15, cows 39/86, goats 7/29, rodents 9/23
CultureRodents 2/23
Habus et al (2017) [71]H, A2009–2014CroatiaLaboratory monitoringH: feb; A: mixMATH 395/1917, dogs 85/364, cows 3251/22 669, pigs 2016/18 163, goats and sheep 376/41 752, horses 5595/41 538
Chadsuthi et al (2017) [72]H, A2010–2015ThailandLaboratory monitoringH: feb; A: febMATH 471/1990, cows 1133/4080, pigs 356/3138
Pui et al (2017) [73]A, E2014–2015MalaysiaPrevalence surveyA: genPCRRodents 23/107, water 13/324, soil 46/292
Kurilung et al (2017) [74]H, A, E2013–2016ThailandPrevalence surveyH: gen; A: genCultureH 0/37, dogs 4/58, cows 1/131, pigs 6/152, goats 0/1, horses 0/1, water 0/14
PCRH 1/37, dogs 6/58, cows 16/131, pigs 12/152, goats 1/1, water 3/14
Ensuncho-Hoyos et al (2017) [75]H, A, EColombiaPrevalence surveyH: risk; A: genMATH 14/20, dogs 5/11, cows 242/325, water 0/39
CultureCows 3/78
PCRCows 3/3+, water 1/39
Jorge et al (2017) [76]H, A2003–2007BrazilLaboratory monitoringH: feb; A: febMATH NA/997, dogs NA/1176, cows NA/1484, horses NA/240
Meny et al (2017) [77]H, E2010–2016UruguayCluster investigationH: febMATH 5/302
CultureH 8/302, water 7/36
PCRH 8/8+, water 6/7+
Pui et al (2017) [78]A, E2014–2015MalaysiaPrevalence surveyA: genPCRRodents 1/31, water 17/210, soil 8/210
Sanhueza et al (2017) [79]H, A2009–2013New ZealandPrevalence surveyH: risk
A: gen
MATH 12/178, cows 717/1374, sheep 939/2178, Deer 72/1133
Grevemeyer et al (2017) [80]A, ESaint Kitts and NevisPrevalence surveyA: genPCRHorses 22/124, water 0/2
Biscornet et al (2017) [81]H, A2013–2015SeychellesPrevalence surveyH: feb; A: genIgMELISAH 18/223
MATH 19/223
PCRH 32/223, dogs 1/24, cats 1/12, rodents 57/739
Chávez et al (2018) [82]A, E2014–2016NicaraguaCluster investigationA: expMATDogs NA/159, cats NA/1, cows NA/36, pigs NA/60, horses NA/7
CultureDogs NA/75, cows NA/15, pigs NA/22, water 61/129, soil 14/69
Shrestha et al (2018) [83]H, A2013NepalCluster investigationH: feb; A: expMATH 13/239, dogs 9/20, cows 60/155, goats 31/181, rodents 3/14
Zala et al (2018) [84]A, E2016–2017IndiaLongitudinal monitoringA: genPCRDogs 2/30, cows 20/121, goats 1/40, soil 8/60, water 80/216
Cortez et al (2018) [85]A, E2014–2015PeruLongitudinal monitoringA: genCultureWater 1/64
PCRRodents 23/97, water 23/64, soil 21/25
Tabo et al (2018) [86]H, A2015PhilippinesPrevalence surveyH: risk; A: genMATH 7/46, cows 3/9, pigs 37/69
Ukhovskyi et al (2018) [87]H, A2009–2016UkraineLaboratory monitoringH: feb; A: febMATH 3012/24 990, cats 52 310/1 238 876, pigs 31 181/989 659, horses 6734/70 674
Markovych et al (2019) [88]H, A2005–2015UkraineMixedH: feb; A: genMATH 401/2079, rodents 276/2820
Takhampunya et al (2019) [89]H, A2014–2018ThailandPrevalence surveyH: feb; A: genPCRH 3 pools/23 pools (200), rodents 3pools/64pools (309)
Salmon-Mulanovich (2019) [90]H, A2011–2014PeruPrevalence surveyH: gen; A: genMATH 229/2165, dogs 44/53, cats 2/10, Poultry 30/37, rodents 2/30
Jittimanee and Wongbutdee (2019) [91]A, E2014–2015ThailandPrevalence surveyA: genPCRRodents 0/270, water 0/100
Marinova-Petkova et al (2019) [92]H, A, E2017–2019US Virgin IslandsMixedH: feb; A: genMAT/RDTH 2/78
MATDogs 1/1
PCRH 1/2, dogs 0/1, water 1/5
Bakoss et al (2019) [93]H, ASlovakiaCluster investigationH: mix; A: genMATH 12/19, cows 9/15, rodents 2/44
Meny et al (2019) [94]H, A, E2015–2017UruguayPrevalence surveyH: risk; A: genMAT/IIFH 140/308
MATDogs 8/50, horses 11/22
CultureWater 6/25
Neela et al (2019) [95]H, A, E2016MalaysiaCluster investigationH: feb; A: genMAT/RDT/
IgMELISA
H 4/12
PCRRodents 6/12, water 6/18, soil 8/18
Nadia et al (2019) [96]H, AMalaysiaPrevalence surveyH: risk; A: genMATH 10/23, monkeys 5/10, shrews 1/1, rodents 4/43
Roqueplo et al (2019) [97]H, A2012–2014SenegalPrevalence surveyH: gen; A: genMATH 42/545, dogs 32/33, cows 17/56, goats 18/52, sheep 3/43, horses 16/20
PCRRodents 2/36
Verma et al (2019) [98]A, E2016–2017USAPrevalence surveyA: genMATCows 7/21, horses 13/31
PCRRabbit 0/1, squirrels 0/1, shrews 3/6, rodents 60/93, water 2/89
Calderón et al (2019) [99]H, AColombiaPrevalence surveyH: risk; A: riskMATH 4/123, horses 130/153
CultureHorses 99/153
PCRHorses 0/99+
Mgode et al (2019) [100]H, ATanzaniaPrevalence surveyH: mix
A: gen
MATH 72/455, shrews 1/5 rodents 3/21
CultureShrews 0/5, rodents 0/21
Goh et al (2019) [21]H, AMalaysiaPrevalence surveyH: risk; A: genMATH 67/194, dogs 70/266, cats 7/47
Rodriguez et al (2020) [101]H, AColombiaPrevalence surveyH: gen; A: genIgMELISAH 25/83
PCRRodents 4/53
Murcia et al (2020) [102]H, AColombiaPrevalence surveyH: risk; A: riskMATH 2/69, dogs 53/92
CultureDogs 54/92
Alashraf et al (2020) [103]H, AMalaysiaPrevalence surveyH: risk; A: genMATH 5/58, dogs 26/127, cats 7/47
Grimm et al (2020) [104]A, E2008–2009USALongitudinal monitoringA: genMATFeral cats 0/19, opossums 60/112, racoons 121/221
PCRWater 6/8
Wójcik-Fatla et al (2020) [105]A, EPolandPrevalence surveyA: genELISACows 0/80, pigs 51/86
PCRAir 2/50
Dushyant et al (2020) [106]A, EIndiaPrevalence surveyA: mixCultureDogs 0/5, cows 0/77, rodents 0/5, water 0/3
PCRDogs 0/10, cows 55/299, water 0/16, soil 0/4
Van et a (2017) [107]H, A, EThailandPrevalence surveyH: gen; A: genImmunoCH 199/280
PCRFish 8/11, water 4/12, soil 9/12
Ospina-Pinto and Hernández-Rodríguez (2021) [108]A, E2019ColombiaPrevalence surveyA: genMATPigs 58/65
CulturePigs 10/65, water 10/15
PCRPigs 10/10+, water 10/10+
Benitez et al (2021) [109]H, A2015–2016BrazilPrevalence surveyH: gen; A: genMATH 11/597, dogs 155/729
Mgode et al (2021) [110]H, ATanzaniaPrevalence surveyH: feb;
A: gen
MATH 15/50, goats 28/45, sheep 34/56, rodents 7/45
Machado et al (2021) [111]H, A2016–2018BrazilPrevalence surveyH: risk; A: genMATH 0/49, dogs 18/170, boars 9/74
Dreyfus et al (2021) [112]H, A2015BhutanPrevalence surveyH: gen; A: genMATH 14/864, dogs 40/84, cows 48/130
Msemwa et al (2021) [113]H, A2018TanzaniaPrevalence surveyH: risk; A: genMATH 33/205, dogs 66/414
Medkour et al (2021) [114]H, A2016–2019Congo Algeria Senegal DjiboutiPrevalence surveyH: gen; A: genPCRH 31/38, Gorilla 46/172
Shamsusah et al (2021) [115]A, E2017–2018MalaysiaPrevalence surveyA: genPCRGorilla 1/12, rodents 1/23, soil 22/123, water 7/37
Aghamohammad et al (2022) [116]H, A2019IranPrevalence surveyH: risk; A: mixIgGELISAH 1/51, cows 0/30, goats 1/31, sheep 2/30
Setyaningsih et al (2022) [117]H, E2017–2018IndonesiaCase controlH: mixPCRH 34 (in case-control studyb), water 6/100
de Souza Rocha et al (2022) [118]H, A2014–2015BrazilPrevalence surveyH: gen; A: genMATH 15/80, dogs 31/85, cats 0/10
PCRDogs 13/68
Cunha et al (2022) [119]H, A2017–2019BrazilPrevalence surveyH: risk; A: riskMATH 0/19, dogs 16/264
Richard et al (2022) [120]A, E2018–2020FranceLongitudinal monitoringA: genPCRRodents 68/189, water 158/1031
do Couto (2022) [121]H, ABrazilPrevalence surveyH: risk; A: riskMATH 0/200, dogs 5/40
Meny et al (2022) [122]H, A2017–2020UruguayPrevalence surveyH: risk; A: genMATH 6/150, horses 546/891
Study Authors (Year)TypeDateCountryDesignPopulationTestPositivity Rate
Maronpot and Barsoum (1972) [23]H, A1968–1971EgyptPrevalence surveyH: mix; A: genMATH 52/513, cows 209/424, pigs 70/130, goats 135/195, sheep 57/330, horses 11/31, camels 29/50
Nelson et al (1973) [24]H, A1964USACluster investigationH: feb;
A: exp
MATH 61/245, cows 26/305
CARCows 9/43
Tsai et al (1973) [25]H, A1968TaiwanPrevalence surveyH: gen
A: gen
MATH 25/167, dogs 0/2, cows 18/57, pigs 0/64, goats 2/32, civets 1/2, rodents 3/47
CultureCivets 1/2, rodents 7/59
Limpias and Marcus (1973) [26]H, ABoliviaPrevalence surveyH: feb
A: mix
MATH 7/142, dogs 1/17, cows 372/520, pigs 7/102, goats 4/53, sheep 1/61, horses 76/101, monkeys 1/1, bats 0/9, rabbits 0/1, snakes 0/1, boars 1/1, deer 1/1, rodents 0/3
Ratnam et al (1983) [27]H, AIndiaCluster investigationH: mix
A: feb
MATH 35/75, cows 27/40
CultureCows 0/9
Prokopcaková and Pospisil (1984) [28]H, ASlovakiaPrevalence surveyH: gen; A: genALRH 28/876, cows 13/168, rodents 20/243
Gelosa and Manera (1984) [29]H, E1980–1983ItaliaLaboratory monitoringH: febMATH 34/168
CultureWater 0/40
Sebek et al (1987) [30]H, A1976–1982IranPrevalence surveyH: feb; A: genMATH 80/2448, cows 2/4, pigs 15/89, goats 6/65, sheep 9/328
Heisey et al (1988) [31]H, A1983–1984ThailandPrevalence surveyH: feb; A: febMAT/CultureH 33/110
MATDogs 56/293, cats 0/8, cows 54/204, pigs 3/17, rodents 84/174
CultureCows NA/150, rodents 23/75
Everard et al (1988) [32]H, A1982–1984BelizePrevalence surveyH: mix
A: mix
MATH 99/451, dogs 5/7, cows 136/155, pigs 32/71, goats and sheep 88/162
Sebek et al (1989) [33]H, A1987EgyptPrevalence surveyH: gen; A: genMATH 17/196, dogs 0/1, cows 0/1, pigs 4/28, goats 1/67, horses 2/12, rodent 36/65
Sebek et al (1989) [34]H, A1983Cape VerdePrevalence surveyH: mix;
A: gen
MATH 44/611, dogs 0/89, cows 3/150, pigs 0/316, goats 34/640, sheep 0/39, horses 3/64, rodents 0/211
Venkataraman and Nedunchelliyan (1992) [35]H, A1988IndiaCluster investigationH: feb; A: mixMATH 48/95, dogs 20/94, bandicoots 10/24, rodents 8/64
DFMH 10/48+,a dogs 8/20+, bandicoots 8/24+, rodents 5/32
CultureH 1/10+, dogs 1/8+
Prokopcáková et al (1994) [36]H, A1991–1993SlovakiaPrevalence surveyH: risk;
A: gen
MATH 56/1740, rodents 99/1038, shrews 1/68
Machang’u et al (1997) [37]H, ATanzaniaPrevalence surveyH: risk; A: genMATH 1/375, dogs 80/208, cows 28/374, rodents 10/537
CultureCows 7/1021
Campagnolo et al (2000) [38]H, A, E1998USACluster investigationH: risk; A: febIgMELISAH 9/17
MATPigs 97/302
CulturePigs 4/6, water 0/8
Ochoa et al (2000) [39]H, A1997–1998ColombiaPrevalence surveyH: risk; A: genMATH 15/67, cows 106/174, pigs 60/278
Vanasco et al (2000) [40]H, A, E1998ArgentinaCluster investigationH: mix;
A: exp
MATH 12/32, dogs 6/8
DFMWater 8 spirochete+/8
CultureWater 8 spirochete+/8
Ralaiarijaona et al (2001) [41]H, A2000MadagascarPrevalence surveyH: risk; A: genMATH 1/105
PCRCows 0/50, pigs 0/13, rodents 0/115
León et al (2002) [42]A, E1996–1998ColombiaPrevalence surveyA: febMATPigs 0/68
DFMWater 91/339
CultureWater 38/311
Natarajaseenivasan et al (2002) [43]H, A2000IndiaMixedH: mix; A: genIgGELISAH 241/268
MATH 231/338, dogs 2/4, cats 6/9, cows 18/34, rodents 12/23
Ramakrishnan et al (2003) [44]H, E2001IndiaCluster investigationH: expMATH 20/64
CultureWater 1/1
PCRWater 1/1
Cerri et al (2003) [45]H, A1995–2001ItaliaLaboratory monitoringH: feb; A: febMATH 14/250, dogs 278/4369, cows 7/644, pigs 123/1299, sheep 132/1088, horses 107/938, boars 11/459, deer 0/567, wolves 0/4, marmots 0/120, rodents 0/4
Ren et al (2005) [46]H, A1998–2003ChinaLongitudinal monitoringH: gen; A: genMATH 57/1777, pigs 10/232
CultureDogs 0/30, pigs 1/524, rodents 16/123
Kuriakose et al (2008) [47]H, A1993–1997IndiaLongitudinal monitoringH: gen; A: genMATH 38/376, bandicoot 4/9, shrews 0/5, rodents 2/40
DFMBandicoots 2/4, rodents 1/2
CultureBandicoots 0/2, shrews 0/2, rodents 1/6
Langoni et al (2008) [48]H, A2005BrazilPrevalence surveyH: risk; A: genMATH 8/34, cows 46/140, rodents 0/50
CultureCows 0/140, rodents 0/50
PCRRodents 0/50
Habuš et al (2008) [49]H, A2007CroatiaLaboratory monitoringH: feb; A: mixMATH 24/113, dogs 2/20, cows 295/9867, pigs 1397/15524, goats 24/1639, sheep 46/16278, horses 196/1212, foxes 36/70, wild animals (undefined) 0/100
Zhou et al (2009) [50]H, A2002ChinaPrevalence surveyH: gen; A: genMATH 444/772
CultureCows 11/225, rodents 22/726
Aviat et al (2009) [51]A, E2001–2004FrancePrevalence surveyA: expMATRodents 288/649
PCRRodents 41/516, water 6/151
Silva et al (2010) [52]H, A2006BrazilPrevalence surveyH: risk; A: genMATH 0/15, Snake 47/110, Fish 2/25, Bird 34/143, Wild undefined 11/49
Zakeri et al (2010) [53]H, A2005–2007IranPrevalence surveyH: feb; A: genPCRH 98/369, dogs 33/150, sheep 13/175
Romero et al (2011) [54]H, A2007ColombiaPrevalence surveyH: gen; A: genMATH 51/850, dogs 182/850
Bermúdez et al (2010) [55]H, AColombiaPrevalence surveyH: gen; A: genMATH 10/46, dogs 41/61
Cárdenas-Marrufo et al (2011) [56]A, E2004–2005MexicoPrevalence surveyA: genMATDogs 22/61, cows 97/212, pigs 26/203
PCRWater 0/68
De Castro et al (2011) [57]H, A2007–2009BrazilMixedH: feb; A: genMATH 7/97, dogs 76/268
Romero et al (2011) [54]H, A2009–2010ColombiaPrevalence surveyH: risk; A: genMATH 5/20, monkeys 15/65
Fonzar and Langoni (2012) [58]H, A2006–2008BrazilPrevalence surveyH: feb; A: genMATH 5/25, dogs 41/335
Romero-Vivas et al (2013) [59]H, A2007–2009ColombiaCluster investigationH: feb; A: expMATH 16/128, dogs 19/83, rodents 13/69
CultureH 0/10, dogs 0/54, rodents 1/69
PCRH 1/10 PCR, dogs 2/4 (2+), rodents 2/16
Calderón et al (2014) [60]H, A, E2009–2011ColombiaPrevalence surveyH: risk; A: genMATH 47/62, dogs 19/54, pigs 214/383, rodents 0/39
CultureDogs 2/54, pigs 3/171, rodents 1/39, water 9/57
PCRDogs 2/2+, pigs 3/3+, water 2/9+
Soman et al (2014) [61]H, AIndiaPrevalence surveyH: feb; A: mixMATH 84/154, dogs 44/121, wild animals (undefined) 9/42
CultureH 1/154, dogs 1/121, bandicoots 3/11, rodents 2/24
Vimala et al (2014) [62]H, A2009–2010IndiaPrevalence surveyH: feb; A: genMATH 10/129, rodents 9/24
Silva et al (2014) [63]H, A2013BrazilPrevalence surveyH: risk; A: genMATH 2/10, dogs 6/12, sheep 7/34, horses 6/10, rodents, 1/1, feral cats 0/1, foxes 1/2, tatous 0/16
Assenga et al (2015) [64]H, A2012–2013TanzaniaPrevalence surveyH: gen; A: genMATH 80/267, cows 346/1141, goats 22/248, lions 1/2, zebras 0/2, shrews 1/11, rodent 42/207
Samir et al (2015) [65]H, A, EEgyptCluster investigationH: exp; A: mixMATH 87/175, dogs 98/168, cows 239/651, sheep 45/99, horses 2/40, camels 0/22, rodents 205/270
CultureH 0/175, dogs 19/168, cows 7/651, sheep 0/99, horses 0/40, camels 0/22, rodents 17/270
PCRH 0/175, dogs 65/168, cows 7/651, horses 0/40, sheep 0/99, camels 0/22, rodents 65/270, water 10/45
Da Silva et al (2015) [66]H, A2012BrazilPrevalence surveyH: gen; A: genMATH 11/28, dogs 7/13, cows 6/17, goats 16/37, sheep 16/41, horses 30/57, foxes 6/11, opossums 1/1, tatous 4/4, monkeys 3/4, coatis 2/3, rodents 1/1
Lugo-Chávez et al (2015) [67]H, A2012MexicoCluster investigationH: exp; A: genMATH 22/36, dogs 19/29
Barragan et al (2016) [68]H, A2013–2015EcuadorPrevalence surveyH: feb; A: genPCRH 100/680, cows 59/165, pigs 27/128, rodents 3/101
Cibulski and Wollanke (2016) [69]A, EGermany and LuxembourgPrevalence surveyA: genPCRShrews 3/67, Mole 1/1, rodents 38/226, water 9/87
Parveen et al (2016) [70]H, AIndiaPrevalence surveyH: risk; A: genMATH 94/244, dogs 4/15, cows 39/86, goats 7/29, rodents 9/23
CultureRodents 2/23
Habus et al (2017) [71]H, A2009–2014CroatiaLaboratory monitoringH: feb; A: mixMATH 395/1917, dogs 85/364, cows 3251/22 669, pigs 2016/18 163, goats and sheep 376/41 752, horses 5595/41 538
Chadsuthi et al (2017) [72]H, A2010–2015ThailandLaboratory monitoringH: feb; A: febMATH 471/1990, cows 1133/4080, pigs 356/3138
Pui et al (2017) [73]A, E2014–2015MalaysiaPrevalence surveyA: genPCRRodents 23/107, water 13/324, soil 46/292
Kurilung et al (2017) [74]H, A, E2013–2016ThailandPrevalence surveyH: gen; A: genCultureH 0/37, dogs 4/58, cows 1/131, pigs 6/152, goats 0/1, horses 0/1, water 0/14
PCRH 1/37, dogs 6/58, cows 16/131, pigs 12/152, goats 1/1, water 3/14
Ensuncho-Hoyos et al (2017) [75]H, A, EColombiaPrevalence surveyH: risk; A: genMATH 14/20, dogs 5/11, cows 242/325, water 0/39
CultureCows 3/78
PCRCows 3/3+, water 1/39
Jorge et al (2017) [76]H, A2003–2007BrazilLaboratory monitoringH: feb; A: febMATH NA/997, dogs NA/1176, cows NA/1484, horses NA/240
Meny et al (2017) [77]H, E2010–2016UruguayCluster investigationH: febMATH 5/302
CultureH 8/302, water 7/36
PCRH 8/8+, water 6/7+
Pui et al (2017) [78]A, E2014–2015MalaysiaPrevalence surveyA: genPCRRodents 1/31, water 17/210, soil 8/210
Sanhueza et al (2017) [79]H, A2009–2013New ZealandPrevalence surveyH: risk
A: gen
MATH 12/178, cows 717/1374, sheep 939/2178, Deer 72/1133
Grevemeyer et al (2017) [80]A, ESaint Kitts and NevisPrevalence surveyA: genPCRHorses 22/124, water 0/2
Biscornet et al (2017) [81]H, A2013–2015SeychellesPrevalence surveyH: feb; A: genIgMELISAH 18/223
MATH 19/223
PCRH 32/223, dogs 1/24, cats 1/12, rodents 57/739
Chávez et al (2018) [82]A, E2014–2016NicaraguaCluster investigationA: expMATDogs NA/159, cats NA/1, cows NA/36, pigs NA/60, horses NA/7
CultureDogs NA/75, cows NA/15, pigs NA/22, water 61/129, soil 14/69
Shrestha et al (2018) [83]H, A2013NepalCluster investigationH: feb; A: expMATH 13/239, dogs 9/20, cows 60/155, goats 31/181, rodents 3/14
Zala et al (2018) [84]A, E2016–2017IndiaLongitudinal monitoringA: genPCRDogs 2/30, cows 20/121, goats 1/40, soil 8/60, water 80/216
Cortez et al (2018) [85]A, E2014–2015PeruLongitudinal monitoringA: genCultureWater 1/64
PCRRodents 23/97, water 23/64, soil 21/25
Tabo et al (2018) [86]H, A2015PhilippinesPrevalence surveyH: risk; A: genMATH 7/46, cows 3/9, pigs 37/69
Ukhovskyi et al (2018) [87]H, A2009–2016UkraineLaboratory monitoringH: feb; A: febMATH 3012/24 990, cats 52 310/1 238 876, pigs 31 181/989 659, horses 6734/70 674
Markovych et al (2019) [88]H, A2005–2015UkraineMixedH: feb; A: genMATH 401/2079, rodents 276/2820
Takhampunya et al (2019) [89]H, A2014–2018ThailandPrevalence surveyH: feb; A: genPCRH 3 pools/23 pools (200), rodents 3pools/64pools (309)
Salmon-Mulanovich (2019) [90]H, A2011–2014PeruPrevalence surveyH: gen; A: genMATH 229/2165, dogs 44/53, cats 2/10, Poultry 30/37, rodents 2/30
Jittimanee and Wongbutdee (2019) [91]A, E2014–2015ThailandPrevalence surveyA: genPCRRodents 0/270, water 0/100
Marinova-Petkova et al (2019) [92]H, A, E2017–2019US Virgin IslandsMixedH: feb; A: genMAT/RDTH 2/78
MATDogs 1/1
PCRH 1/2, dogs 0/1, water 1/5
Bakoss et al (2019) [93]H, ASlovakiaCluster investigationH: mix; A: genMATH 12/19, cows 9/15, rodents 2/44
Meny et al (2019) [94]H, A, E2015–2017UruguayPrevalence surveyH: risk; A: genMAT/IIFH 140/308
MATDogs 8/50, horses 11/22
CultureWater 6/25
Neela et al (2019) [95]H, A, E2016MalaysiaCluster investigationH: feb; A: genMAT/RDT/
IgMELISA
H 4/12
PCRRodents 6/12, water 6/18, soil 8/18
Nadia et al (2019) [96]H, AMalaysiaPrevalence surveyH: risk; A: genMATH 10/23, monkeys 5/10, shrews 1/1, rodents 4/43
Roqueplo et al (2019) [97]H, A2012–2014SenegalPrevalence surveyH: gen; A: genMATH 42/545, dogs 32/33, cows 17/56, goats 18/52, sheep 3/43, horses 16/20
PCRRodents 2/36
Verma et al (2019) [98]A, E2016–2017USAPrevalence surveyA: genMATCows 7/21, horses 13/31
PCRRabbit 0/1, squirrels 0/1, shrews 3/6, rodents 60/93, water 2/89
Calderón et al (2019) [99]H, AColombiaPrevalence surveyH: risk; A: riskMATH 4/123, horses 130/153
CultureHorses 99/153
PCRHorses 0/99+
Mgode et al (2019) [100]H, ATanzaniaPrevalence surveyH: mix
A: gen
MATH 72/455, shrews 1/5 rodents 3/21
CultureShrews 0/5, rodents 0/21
Goh et al (2019) [21]H, AMalaysiaPrevalence surveyH: risk; A: genMATH 67/194, dogs 70/266, cats 7/47
Rodriguez et al (2020) [101]H, AColombiaPrevalence surveyH: gen; A: genIgMELISAH 25/83
PCRRodents 4/53
Murcia et al (2020) [102]H, AColombiaPrevalence surveyH: risk; A: riskMATH 2/69, dogs 53/92
CultureDogs 54/92
Alashraf et al (2020) [103]H, AMalaysiaPrevalence surveyH: risk; A: genMATH 5/58, dogs 26/127, cats 7/47
Grimm et al (2020) [104]A, E2008–2009USALongitudinal monitoringA: genMATFeral cats 0/19, opossums 60/112, racoons 121/221
PCRWater 6/8
Wójcik-Fatla et al (2020) [105]A, EPolandPrevalence surveyA: genELISACows 0/80, pigs 51/86
PCRAir 2/50
Dushyant et al (2020) [106]A, EIndiaPrevalence surveyA: mixCultureDogs 0/5, cows 0/77, rodents 0/5, water 0/3
PCRDogs 0/10, cows 55/299, water 0/16, soil 0/4
Van et a (2017) [107]H, A, EThailandPrevalence surveyH: gen; A: genImmunoCH 199/280
PCRFish 8/11, water 4/12, soil 9/12
Ospina-Pinto and Hernández-Rodríguez (2021) [108]A, E2019ColombiaPrevalence surveyA: genMATPigs 58/65
CulturePigs 10/65, water 10/15
PCRPigs 10/10+, water 10/10+
Benitez et al (2021) [109]H, A2015–2016BrazilPrevalence surveyH: gen; A: genMATH 11/597, dogs 155/729
Mgode et al (2021) [110]H, ATanzaniaPrevalence surveyH: feb;
A: gen
MATH 15/50, goats 28/45, sheep 34/56, rodents 7/45
Machado et al (2021) [111]H, A2016–2018BrazilPrevalence surveyH: risk; A: genMATH 0/49, dogs 18/170, boars 9/74
Dreyfus et al (2021) [112]H, A2015BhutanPrevalence surveyH: gen; A: genMATH 14/864, dogs 40/84, cows 48/130
Msemwa et al (2021) [113]H, A2018TanzaniaPrevalence surveyH: risk; A: genMATH 33/205, dogs 66/414
Medkour et al (2021) [114]H, A2016–2019Congo Algeria Senegal DjiboutiPrevalence surveyH: gen; A: genPCRH 31/38, Gorilla 46/172
Shamsusah et al (2021) [115]A, E2017–2018MalaysiaPrevalence surveyA: genPCRGorilla 1/12, rodents 1/23, soil 22/123, water 7/37
Aghamohammad et al (2022) [116]H, A2019IranPrevalence surveyH: risk; A: mixIgGELISAH 1/51, cows 0/30, goats 1/31, sheep 2/30
Setyaningsih et al (2022) [117]H, E2017–2018IndonesiaCase controlH: mixPCRH 34 (in case-control studyb), water 6/100
de Souza Rocha et al (2022) [118]H, A2014–2015BrazilPrevalence surveyH: gen; A: genMATH 15/80, dogs 31/85, cats 0/10
PCRDogs 13/68
Cunha et al (2022) [119]H, A2017–2019BrazilPrevalence surveyH: risk; A: riskMATH 0/19, dogs 16/264
Richard et al (2022) [120]A, E2018–2020FranceLongitudinal monitoringA: genPCRRodents 68/189, water 158/1031
do Couto (2022) [121]H, ABrazilPrevalence surveyH: risk; A: riskMATH 0/200, dogs 5/40
Meny et al (2022) [122]H, A2017–2020UruguayPrevalence surveyH: risk; A: genMATH 6/150, horses 546/891

Abbreviations: A, animals; ALR, agglutination-lyse reaction; CAR, cross-agglutination reaction; E, environment; ELISA, enzyme-linked immunosorbent assay; exp, exposed; feb, febrile; gen, general; H, humans; Ig, immunoglobulin; IIF, indirect immunofluorescence; ImmunoC, immunochromatography; MAT, microscopic agglutination test; mix, mixed; NA, not available; PCR, polymerase chain reaction; RDT, rapid diagnostic test; risk, at risk;

aPlus signs (+) indicate that tested samples were positive to a previous test.

bCase-control study without number of all tested patients.

Table 1.

Characteristics of One Health Studies on Leptospirosis Included in the Current Review

Study Authors (Year)TypeDateCountryDesignPopulationTestPositivity Rate
Maronpot and Barsoum (1972) [23]H, A1968–1971EgyptPrevalence surveyH: mix; A: genMATH 52/513, cows 209/424, pigs 70/130, goats 135/195, sheep 57/330, horses 11/31, camels 29/50
Nelson et al (1973) [24]H, A1964USACluster investigationH: feb;
A: exp
MATH 61/245, cows 26/305
CARCows 9/43
Tsai et al (1973) [25]H, A1968TaiwanPrevalence surveyH: gen
A: gen
MATH 25/167, dogs 0/2, cows 18/57, pigs 0/64, goats 2/32, civets 1/2, rodents 3/47
CultureCivets 1/2, rodents 7/59
Limpias and Marcus (1973) [26]H, ABoliviaPrevalence surveyH: feb
A: mix
MATH 7/142, dogs 1/17, cows 372/520, pigs 7/102, goats 4/53, sheep 1/61, horses 76/101, monkeys 1/1, bats 0/9, rabbits 0/1, snakes 0/1, boars 1/1, deer 1/1, rodents 0/3
Ratnam et al (1983) [27]H, AIndiaCluster investigationH: mix
A: feb
MATH 35/75, cows 27/40
CultureCows 0/9
Prokopcaková and Pospisil (1984) [28]H, ASlovakiaPrevalence surveyH: gen; A: genALRH 28/876, cows 13/168, rodents 20/243
Gelosa and Manera (1984) [29]H, E1980–1983ItaliaLaboratory monitoringH: febMATH 34/168
CultureWater 0/40
Sebek et al (1987) [30]H, A1976–1982IranPrevalence surveyH: feb; A: genMATH 80/2448, cows 2/4, pigs 15/89, goats 6/65, sheep 9/328
Heisey et al (1988) [31]H, A1983–1984ThailandPrevalence surveyH: feb; A: febMAT/CultureH 33/110
MATDogs 56/293, cats 0/8, cows 54/204, pigs 3/17, rodents 84/174
CultureCows NA/150, rodents 23/75
Everard et al (1988) [32]H, A1982–1984BelizePrevalence surveyH: mix
A: mix
MATH 99/451, dogs 5/7, cows 136/155, pigs 32/71, goats and sheep 88/162
Sebek et al (1989) [33]H, A1987EgyptPrevalence surveyH: gen; A: genMATH 17/196, dogs 0/1, cows 0/1, pigs 4/28, goats 1/67, horses 2/12, rodent 36/65
Sebek et al (1989) [34]H, A1983Cape VerdePrevalence surveyH: mix;
A: gen
MATH 44/611, dogs 0/89, cows 3/150, pigs 0/316, goats 34/640, sheep 0/39, horses 3/64, rodents 0/211
Venkataraman and Nedunchelliyan (1992) [35]H, A1988IndiaCluster investigationH: feb; A: mixMATH 48/95, dogs 20/94, bandicoots 10/24, rodents 8/64
DFMH 10/48+,a dogs 8/20+, bandicoots 8/24+, rodents 5/32
CultureH 1/10+, dogs 1/8+
Prokopcáková et al (1994) [36]H, A1991–1993SlovakiaPrevalence surveyH: risk;
A: gen
MATH 56/1740, rodents 99/1038, shrews 1/68
Machang’u et al (1997) [37]H, ATanzaniaPrevalence surveyH: risk; A: genMATH 1/375, dogs 80/208, cows 28/374, rodents 10/537
CultureCows 7/1021
Campagnolo et al (2000) [38]H, A, E1998USACluster investigationH: risk; A: febIgMELISAH 9/17
MATPigs 97/302
CulturePigs 4/6, water 0/8
Ochoa et al (2000) [39]H, A1997–1998ColombiaPrevalence surveyH: risk; A: genMATH 15/67, cows 106/174, pigs 60/278
Vanasco et al (2000) [40]H, A, E1998ArgentinaCluster investigationH: mix;
A: exp
MATH 12/32, dogs 6/8
DFMWater 8 spirochete+/8
CultureWater 8 spirochete+/8
Ralaiarijaona et al (2001) [41]H, A2000MadagascarPrevalence surveyH: risk; A: genMATH 1/105
PCRCows 0/50, pigs 0/13, rodents 0/115
León et al (2002) [42]A, E1996–1998ColombiaPrevalence surveyA: febMATPigs 0/68
DFMWater 91/339
CultureWater 38/311
Natarajaseenivasan et al (2002) [43]H, A2000IndiaMixedH: mix; A: genIgGELISAH 241/268
MATH 231/338, dogs 2/4, cats 6/9, cows 18/34, rodents 12/23
Ramakrishnan et al (2003) [44]H, E2001IndiaCluster investigationH: expMATH 20/64
CultureWater 1/1
PCRWater 1/1
Cerri et al (2003) [45]H, A1995–2001ItaliaLaboratory monitoringH: feb; A: febMATH 14/250, dogs 278/4369, cows 7/644, pigs 123/1299, sheep 132/1088, horses 107/938, boars 11/459, deer 0/567, wolves 0/4, marmots 0/120, rodents 0/4
Ren et al (2005) [46]H, A1998–2003ChinaLongitudinal monitoringH: gen; A: genMATH 57/1777, pigs 10/232
CultureDogs 0/30, pigs 1/524, rodents 16/123
Kuriakose et al (2008) [47]H, A1993–1997IndiaLongitudinal monitoringH: gen; A: genMATH 38/376, bandicoot 4/9, shrews 0/5, rodents 2/40
DFMBandicoots 2/4, rodents 1/2
CultureBandicoots 0/2, shrews 0/2, rodents 1/6
Langoni et al (2008) [48]H, A2005BrazilPrevalence surveyH: risk; A: genMATH 8/34, cows 46/140, rodents 0/50
CultureCows 0/140, rodents 0/50
PCRRodents 0/50
Habuš et al (2008) [49]H, A2007CroatiaLaboratory monitoringH: feb; A: mixMATH 24/113, dogs 2/20, cows 295/9867, pigs 1397/15524, goats 24/1639, sheep 46/16278, horses 196/1212, foxes 36/70, wild animals (undefined) 0/100
Zhou et al (2009) [50]H, A2002ChinaPrevalence surveyH: gen; A: genMATH 444/772
CultureCows 11/225, rodents 22/726
Aviat et al (2009) [51]A, E2001–2004FrancePrevalence surveyA: expMATRodents 288/649
PCRRodents 41/516, water 6/151
Silva et al (2010) [52]H, A2006BrazilPrevalence surveyH: risk; A: genMATH 0/15, Snake 47/110, Fish 2/25, Bird 34/143, Wild undefined 11/49
Zakeri et al (2010) [53]H, A2005–2007IranPrevalence surveyH: feb; A: genPCRH 98/369, dogs 33/150, sheep 13/175
Romero et al (2011) [54]H, A2007ColombiaPrevalence surveyH: gen; A: genMATH 51/850, dogs 182/850
Bermúdez et al (2010) [55]H, AColombiaPrevalence surveyH: gen; A: genMATH 10/46, dogs 41/61
Cárdenas-Marrufo et al (2011) [56]A, E2004–2005MexicoPrevalence surveyA: genMATDogs 22/61, cows 97/212, pigs 26/203
PCRWater 0/68
De Castro et al (2011) [57]H, A2007–2009BrazilMixedH: feb; A: genMATH 7/97, dogs 76/268
Romero et al (2011) [54]H, A2009–2010ColombiaPrevalence surveyH: risk; A: genMATH 5/20, monkeys 15/65
Fonzar and Langoni (2012) [58]H, A2006–2008BrazilPrevalence surveyH: feb; A: genMATH 5/25, dogs 41/335
Romero-Vivas et al (2013) [59]H, A2007–2009ColombiaCluster investigationH: feb; A: expMATH 16/128, dogs 19/83, rodents 13/69
CultureH 0/10, dogs 0/54, rodents 1/69
PCRH 1/10 PCR, dogs 2/4 (2+), rodents 2/16
Calderón et al (2014) [60]H, A, E2009–2011ColombiaPrevalence surveyH: risk; A: genMATH 47/62, dogs 19/54, pigs 214/383, rodents 0/39
CultureDogs 2/54, pigs 3/171, rodents 1/39, water 9/57
PCRDogs 2/2+, pigs 3/3+, water 2/9+
Soman et al (2014) [61]H, AIndiaPrevalence surveyH: feb; A: mixMATH 84/154, dogs 44/121, wild animals (undefined) 9/42
CultureH 1/154, dogs 1/121, bandicoots 3/11, rodents 2/24
Vimala et al (2014) [62]H, A2009–2010IndiaPrevalence surveyH: feb; A: genMATH 10/129, rodents 9/24
Silva et al (2014) [63]H, A2013BrazilPrevalence surveyH: risk; A: genMATH 2/10, dogs 6/12, sheep 7/34, horses 6/10, rodents, 1/1, feral cats 0/1, foxes 1/2, tatous 0/16
Assenga et al (2015) [64]H, A2012–2013TanzaniaPrevalence surveyH: gen; A: genMATH 80/267, cows 346/1141, goats 22/248, lions 1/2, zebras 0/2, shrews 1/11, rodent 42/207
Samir et al (2015) [65]H, A, EEgyptCluster investigationH: exp; A: mixMATH 87/175, dogs 98/168, cows 239/651, sheep 45/99, horses 2/40, camels 0/22, rodents 205/270
CultureH 0/175, dogs 19/168, cows 7/651, sheep 0/99, horses 0/40, camels 0/22, rodents 17/270
PCRH 0/175, dogs 65/168, cows 7/651, horses 0/40, sheep 0/99, camels 0/22, rodents 65/270, water 10/45
Da Silva et al (2015) [66]H, A2012BrazilPrevalence surveyH: gen; A: genMATH 11/28, dogs 7/13, cows 6/17, goats 16/37, sheep 16/41, horses 30/57, foxes 6/11, opossums 1/1, tatous 4/4, monkeys 3/4, coatis 2/3, rodents 1/1
Lugo-Chávez et al (2015) [67]H, A2012MexicoCluster investigationH: exp; A: genMATH 22/36, dogs 19/29
Barragan et al (2016) [68]H, A2013–2015EcuadorPrevalence surveyH: feb; A: genPCRH 100/680, cows 59/165, pigs 27/128, rodents 3/101
Cibulski and Wollanke (2016) [69]A, EGermany and LuxembourgPrevalence surveyA: genPCRShrews 3/67, Mole 1/1, rodents 38/226, water 9/87
Parveen et al (2016) [70]H, AIndiaPrevalence surveyH: risk; A: genMATH 94/244, dogs 4/15, cows 39/86, goats 7/29, rodents 9/23
CultureRodents 2/23
Habus et al (2017) [71]H, A2009–2014CroatiaLaboratory monitoringH: feb; A: mixMATH 395/1917, dogs 85/364, cows 3251/22 669, pigs 2016/18 163, goats and sheep 376/41 752, horses 5595/41 538
Chadsuthi et al (2017) [72]H, A2010–2015ThailandLaboratory monitoringH: feb; A: febMATH 471/1990, cows 1133/4080, pigs 356/3138
Pui et al (2017) [73]A, E2014–2015MalaysiaPrevalence surveyA: genPCRRodents 23/107, water 13/324, soil 46/292
Kurilung et al (2017) [74]H, A, E2013–2016ThailandPrevalence surveyH: gen; A: genCultureH 0/37, dogs 4/58, cows 1/131, pigs 6/152, goats 0/1, horses 0/1, water 0/14
PCRH 1/37, dogs 6/58, cows 16/131, pigs 12/152, goats 1/1, water 3/14
Ensuncho-Hoyos et al (2017) [75]H, A, EColombiaPrevalence surveyH: risk; A: genMATH 14/20, dogs 5/11, cows 242/325, water 0/39
CultureCows 3/78
PCRCows 3/3+, water 1/39
Jorge et al (2017) [76]H, A2003–2007BrazilLaboratory monitoringH: feb; A: febMATH NA/997, dogs NA/1176, cows NA/1484, horses NA/240
Meny et al (2017) [77]H, E2010–2016UruguayCluster investigationH: febMATH 5/302
CultureH 8/302, water 7/36
PCRH 8/8+, water 6/7+
Pui et al (2017) [78]A, E2014–2015MalaysiaPrevalence surveyA: genPCRRodents 1/31, water 17/210, soil 8/210
Sanhueza et al (2017) [79]H, A2009–2013New ZealandPrevalence surveyH: risk
A: gen
MATH 12/178, cows 717/1374, sheep 939/2178, Deer 72/1133
Grevemeyer et al (2017) [80]A, ESaint Kitts and NevisPrevalence surveyA: genPCRHorses 22/124, water 0/2
Biscornet et al (2017) [81]H, A2013–2015SeychellesPrevalence surveyH: feb; A: genIgMELISAH 18/223
MATH 19/223
PCRH 32/223, dogs 1/24, cats 1/12, rodents 57/739
Chávez et al (2018) [82]A, E2014–2016NicaraguaCluster investigationA: expMATDogs NA/159, cats NA/1, cows NA/36, pigs NA/60, horses NA/7
CultureDogs NA/75, cows NA/15, pigs NA/22, water 61/129, soil 14/69
Shrestha et al (2018) [83]H, A2013NepalCluster investigationH: feb; A: expMATH 13/239, dogs 9/20, cows 60/155, goats 31/181, rodents 3/14
Zala et al (2018) [84]A, E2016–2017IndiaLongitudinal monitoringA: genPCRDogs 2/30, cows 20/121, goats 1/40, soil 8/60, water 80/216
Cortez et al (2018) [85]A, E2014–2015PeruLongitudinal monitoringA: genCultureWater 1/64
PCRRodents 23/97, water 23/64, soil 21/25
Tabo et al (2018) [86]H, A2015PhilippinesPrevalence surveyH: risk; A: genMATH 7/46, cows 3/9, pigs 37/69
Ukhovskyi et al (2018) [87]H, A2009–2016UkraineLaboratory monitoringH: feb; A: febMATH 3012/24 990, cats 52 310/1 238 876, pigs 31 181/989 659, horses 6734/70 674
Markovych et al (2019) [88]H, A2005–2015UkraineMixedH: feb; A: genMATH 401/2079, rodents 276/2820
Takhampunya et al (2019) [89]H, A2014–2018ThailandPrevalence surveyH: feb; A: genPCRH 3 pools/23 pools (200), rodents 3pools/64pools (309)
Salmon-Mulanovich (2019) [90]H, A2011–2014PeruPrevalence surveyH: gen; A: genMATH 229/2165, dogs 44/53, cats 2/10, Poultry 30/37, rodents 2/30
Jittimanee and Wongbutdee (2019) [91]A, E2014–2015ThailandPrevalence surveyA: genPCRRodents 0/270, water 0/100
Marinova-Petkova et al (2019) [92]H, A, E2017–2019US Virgin IslandsMixedH: feb; A: genMAT/RDTH 2/78
MATDogs 1/1
PCRH 1/2, dogs 0/1, water 1/5
Bakoss et al (2019) [93]H, ASlovakiaCluster investigationH: mix; A: genMATH 12/19, cows 9/15, rodents 2/44
Meny et al (2019) [94]H, A, E2015–2017UruguayPrevalence surveyH: risk; A: genMAT/IIFH 140/308
MATDogs 8/50, horses 11/22
CultureWater 6/25
Neela et al (2019) [95]H, A, E2016MalaysiaCluster investigationH: feb; A: genMAT/RDT/
IgMELISA
H 4/12
PCRRodents 6/12, water 6/18, soil 8/18
Nadia et al (2019) [96]H, AMalaysiaPrevalence surveyH: risk; A: genMATH 10/23, monkeys 5/10, shrews 1/1, rodents 4/43
Roqueplo et al (2019) [97]H, A2012–2014SenegalPrevalence surveyH: gen; A: genMATH 42/545, dogs 32/33, cows 17/56, goats 18/52, sheep 3/43, horses 16/20
PCRRodents 2/36
Verma et al (2019) [98]A, E2016–2017USAPrevalence surveyA: genMATCows 7/21, horses 13/31
PCRRabbit 0/1, squirrels 0/1, shrews 3/6, rodents 60/93, water 2/89
Calderón et al (2019) [99]H, AColombiaPrevalence surveyH: risk; A: riskMATH 4/123, horses 130/153
CultureHorses 99/153
PCRHorses 0/99+
Mgode et al (2019) [100]H, ATanzaniaPrevalence surveyH: mix
A: gen
MATH 72/455, shrews 1/5 rodents 3/21
CultureShrews 0/5, rodents 0/21
Goh et al (2019) [21]H, AMalaysiaPrevalence surveyH: risk; A: genMATH 67/194, dogs 70/266, cats 7/47
Rodriguez et al (2020) [101]H, AColombiaPrevalence surveyH: gen; A: genIgMELISAH 25/83
PCRRodents 4/53
Murcia et al (2020) [102]H, AColombiaPrevalence surveyH: risk; A: riskMATH 2/69, dogs 53/92
CultureDogs 54/92
Alashraf et al (2020) [103]H, AMalaysiaPrevalence surveyH: risk; A: genMATH 5/58, dogs 26/127, cats 7/47
Grimm et al (2020) [104]A, E2008–2009USALongitudinal monitoringA: genMATFeral cats 0/19, opossums 60/112, racoons 121/221
PCRWater 6/8
Wójcik-Fatla et al (2020) [105]A, EPolandPrevalence surveyA: genELISACows 0/80, pigs 51/86
PCRAir 2/50
Dushyant et al (2020) [106]A, EIndiaPrevalence surveyA: mixCultureDogs 0/5, cows 0/77, rodents 0/5, water 0/3
PCRDogs 0/10, cows 55/299, water 0/16, soil 0/4
Van et a (2017) [107]H, A, EThailandPrevalence surveyH: gen; A: genImmunoCH 199/280
PCRFish 8/11, water 4/12, soil 9/12
Ospina-Pinto and Hernández-Rodríguez (2021) [108]A, E2019ColombiaPrevalence surveyA: genMATPigs 58/65
CulturePigs 10/65, water 10/15
PCRPigs 10/10+, water 10/10+
Benitez et al (2021) [109]H, A2015–2016BrazilPrevalence surveyH: gen; A: genMATH 11/597, dogs 155/729
Mgode et al (2021) [110]H, ATanzaniaPrevalence surveyH: feb;
A: gen
MATH 15/50, goats 28/45, sheep 34/56, rodents 7/45
Machado et al (2021) [111]H, A2016–2018BrazilPrevalence surveyH: risk; A: genMATH 0/49, dogs 18/170, boars 9/74
Dreyfus et al (2021) [112]H, A2015BhutanPrevalence surveyH: gen; A: genMATH 14/864, dogs 40/84, cows 48/130
Msemwa et al (2021) [113]H, A2018TanzaniaPrevalence surveyH: risk; A: genMATH 33/205, dogs 66/414
Medkour et al (2021) [114]H, A2016–2019Congo Algeria Senegal DjiboutiPrevalence surveyH: gen; A: genPCRH 31/38, Gorilla 46/172
Shamsusah et al (2021) [115]A, E2017–2018MalaysiaPrevalence surveyA: genPCRGorilla 1/12, rodents 1/23, soil 22/123, water 7/37
Aghamohammad et al (2022) [116]H, A2019IranPrevalence surveyH: risk; A: mixIgGELISAH 1/51, cows 0/30, goats 1/31, sheep 2/30
Setyaningsih et al (2022) [117]H, E2017–2018IndonesiaCase controlH: mixPCRH 34 (in case-control studyb), water 6/100
de Souza Rocha et al (2022) [118]H, A2014–2015BrazilPrevalence surveyH: gen; A: genMATH 15/80, dogs 31/85, cats 0/10
PCRDogs 13/68
Cunha et al (2022) [119]H, A2017–2019BrazilPrevalence surveyH: risk; A: riskMATH 0/19, dogs 16/264
Richard et al (2022) [120]A, E2018–2020FranceLongitudinal monitoringA: genPCRRodents 68/189, water 158/1031
do Couto (2022) [121]H, ABrazilPrevalence surveyH: risk; A: riskMATH 0/200, dogs 5/40
Meny et al (2022) [122]H, A2017–2020UruguayPrevalence surveyH: risk; A: genMATH 6/150, horses 546/891
Study Authors (Year)TypeDateCountryDesignPopulationTestPositivity Rate
Maronpot and Barsoum (1972) [23]H, A1968–1971EgyptPrevalence surveyH: mix; A: genMATH 52/513, cows 209/424, pigs 70/130, goats 135/195, sheep 57/330, horses 11/31, camels 29/50
Nelson et al (1973) [24]H, A1964USACluster investigationH: feb;
A: exp
MATH 61/245, cows 26/305
CARCows 9/43
Tsai et al (1973) [25]H, A1968TaiwanPrevalence surveyH: gen
A: gen
MATH 25/167, dogs 0/2, cows 18/57, pigs 0/64, goats 2/32, civets 1/2, rodents 3/47
CultureCivets 1/2, rodents 7/59
Limpias and Marcus (1973) [26]H, ABoliviaPrevalence surveyH: feb
A: mix
MATH 7/142, dogs 1/17, cows 372/520, pigs 7/102, goats 4/53, sheep 1/61, horses 76/101, monkeys 1/1, bats 0/9, rabbits 0/1, snakes 0/1, boars 1/1, deer 1/1, rodents 0/3
Ratnam et al (1983) [27]H, AIndiaCluster investigationH: mix
A: feb
MATH 35/75, cows 27/40
CultureCows 0/9
Prokopcaková and Pospisil (1984) [28]H, ASlovakiaPrevalence surveyH: gen; A: genALRH 28/876, cows 13/168, rodents 20/243
Gelosa and Manera (1984) [29]H, E1980–1983ItaliaLaboratory monitoringH: febMATH 34/168
CultureWater 0/40
Sebek et al (1987) [30]H, A1976–1982IranPrevalence surveyH: feb; A: genMATH 80/2448, cows 2/4, pigs 15/89, goats 6/65, sheep 9/328
Heisey et al (1988) [31]H, A1983–1984ThailandPrevalence surveyH: feb; A: febMAT/CultureH 33/110
MATDogs 56/293, cats 0/8, cows 54/204, pigs 3/17, rodents 84/174
CultureCows NA/150, rodents 23/75
Everard et al (1988) [32]H, A1982–1984BelizePrevalence surveyH: mix
A: mix
MATH 99/451, dogs 5/7, cows 136/155, pigs 32/71, goats and sheep 88/162
Sebek et al (1989) [33]H, A1987EgyptPrevalence surveyH: gen; A: genMATH 17/196, dogs 0/1, cows 0/1, pigs 4/28, goats 1/67, horses 2/12, rodent 36/65
Sebek et al (1989) [34]H, A1983Cape VerdePrevalence surveyH: mix;
A: gen
MATH 44/611, dogs 0/89, cows 3/150, pigs 0/316, goats 34/640, sheep 0/39, horses 3/64, rodents 0/211
Venkataraman and Nedunchelliyan (1992) [35]H, A1988IndiaCluster investigationH: feb; A: mixMATH 48/95, dogs 20/94, bandicoots 10/24, rodents 8/64
DFMH 10/48+,a dogs 8/20+, bandicoots 8/24+, rodents 5/32
CultureH 1/10+, dogs 1/8+
Prokopcáková et al (1994) [36]H, A1991–1993SlovakiaPrevalence surveyH: risk;
A: gen
MATH 56/1740, rodents 99/1038, shrews 1/68
Machang’u et al (1997) [37]H, ATanzaniaPrevalence surveyH: risk; A: genMATH 1/375, dogs 80/208, cows 28/374, rodents 10/537
CultureCows 7/1021
Campagnolo et al (2000) [38]H, A, E1998USACluster investigationH: risk; A: febIgMELISAH 9/17
MATPigs 97/302
CulturePigs 4/6, water 0/8
Ochoa et al (2000) [39]H, A1997–1998ColombiaPrevalence surveyH: risk; A: genMATH 15/67, cows 106/174, pigs 60/278
Vanasco et al (2000) [40]H, A, E1998ArgentinaCluster investigationH: mix;
A: exp
MATH 12/32, dogs 6/8
DFMWater 8 spirochete+/8
CultureWater 8 spirochete+/8
Ralaiarijaona et al (2001) [41]H, A2000MadagascarPrevalence surveyH: risk; A: genMATH 1/105
PCRCows 0/50, pigs 0/13, rodents 0/115
León et al (2002) [42]A, E1996–1998ColombiaPrevalence surveyA: febMATPigs 0/68
DFMWater 91/339
CultureWater 38/311
Natarajaseenivasan et al (2002) [43]H, A2000IndiaMixedH: mix; A: genIgGELISAH 241/268
MATH 231/338, dogs 2/4, cats 6/9, cows 18/34, rodents 12/23
Ramakrishnan et al (2003) [44]H, E2001IndiaCluster investigationH: expMATH 20/64
CultureWater 1/1
PCRWater 1/1
Cerri et al (2003) [45]H, A1995–2001ItaliaLaboratory monitoringH: feb; A: febMATH 14/250, dogs 278/4369, cows 7/644, pigs 123/1299, sheep 132/1088, horses 107/938, boars 11/459, deer 0/567, wolves 0/4, marmots 0/120, rodents 0/4
Ren et al (2005) [46]H, A1998–2003ChinaLongitudinal monitoringH: gen; A: genMATH 57/1777, pigs 10/232
CultureDogs 0/30, pigs 1/524, rodents 16/123
Kuriakose et al (2008) [47]H, A1993–1997IndiaLongitudinal monitoringH: gen; A: genMATH 38/376, bandicoot 4/9, shrews 0/5, rodents 2/40
DFMBandicoots 2/4, rodents 1/2
CultureBandicoots 0/2, shrews 0/2, rodents 1/6
Langoni et al (2008) [48]H, A2005BrazilPrevalence surveyH: risk; A: genMATH 8/34, cows 46/140, rodents 0/50
CultureCows 0/140, rodents 0/50
PCRRodents 0/50
Habuš et al (2008) [49]H, A2007CroatiaLaboratory monitoringH: feb; A: mixMATH 24/113, dogs 2/20, cows 295/9867, pigs 1397/15524, goats 24/1639, sheep 46/16278, horses 196/1212, foxes 36/70, wild animals (undefined) 0/100
Zhou et al (2009) [50]H, A2002ChinaPrevalence surveyH: gen; A: genMATH 444/772
CultureCows 11/225, rodents 22/726
Aviat et al (2009) [51]A, E2001–2004FrancePrevalence surveyA: expMATRodents 288/649
PCRRodents 41/516, water 6/151
Silva et al (2010) [52]H, A2006BrazilPrevalence surveyH: risk; A: genMATH 0/15, Snake 47/110, Fish 2/25, Bird 34/143, Wild undefined 11/49
Zakeri et al (2010) [53]H, A2005–2007IranPrevalence surveyH: feb; A: genPCRH 98/369, dogs 33/150, sheep 13/175
Romero et al (2011) [54]H, A2007ColombiaPrevalence surveyH: gen; A: genMATH 51/850, dogs 182/850
Bermúdez et al (2010) [55]H, AColombiaPrevalence surveyH: gen; A: genMATH 10/46, dogs 41/61
Cárdenas-Marrufo et al (2011) [56]A, E2004–2005MexicoPrevalence surveyA: genMATDogs 22/61, cows 97/212, pigs 26/203
PCRWater 0/68
De Castro et al (2011) [57]H, A2007–2009BrazilMixedH: feb; A: genMATH 7/97, dogs 76/268
Romero et al (2011) [54]H, A2009–2010ColombiaPrevalence surveyH: risk; A: genMATH 5/20, monkeys 15/65
Fonzar and Langoni (2012) [58]H, A2006–2008BrazilPrevalence surveyH: feb; A: genMATH 5/25, dogs 41/335
Romero-Vivas et al (2013) [59]H, A2007–2009ColombiaCluster investigationH: feb; A: expMATH 16/128, dogs 19/83, rodents 13/69
CultureH 0/10, dogs 0/54, rodents 1/69
PCRH 1/10 PCR, dogs 2/4 (2+), rodents 2/16
Calderón et al (2014) [60]H, A, E2009–2011ColombiaPrevalence surveyH: risk; A: genMATH 47/62, dogs 19/54, pigs 214/383, rodents 0/39
CultureDogs 2/54, pigs 3/171, rodents 1/39, water 9/57
PCRDogs 2/2+, pigs 3/3+, water 2/9+
Soman et al (2014) [61]H, AIndiaPrevalence surveyH: feb; A: mixMATH 84/154, dogs 44/121, wild animals (undefined) 9/42
CultureH 1/154, dogs 1/121, bandicoots 3/11, rodents 2/24
Vimala et al (2014) [62]H, A2009–2010IndiaPrevalence surveyH: feb; A: genMATH 10/129, rodents 9/24
Silva et al (2014) [63]H, A2013BrazilPrevalence surveyH: risk; A: genMATH 2/10, dogs 6/12, sheep 7/34, horses 6/10, rodents, 1/1, feral cats 0/1, foxes 1/2, tatous 0/16
Assenga et al (2015) [64]H, A2012–2013TanzaniaPrevalence surveyH: gen; A: genMATH 80/267, cows 346/1141, goats 22/248, lions 1/2, zebras 0/2, shrews 1/11, rodent 42/207
Samir et al (2015) [65]H, A, EEgyptCluster investigationH: exp; A: mixMATH 87/175, dogs 98/168, cows 239/651, sheep 45/99, horses 2/40, camels 0/22, rodents 205/270
CultureH 0/175, dogs 19/168, cows 7/651, sheep 0/99, horses 0/40, camels 0/22, rodents 17/270
PCRH 0/175, dogs 65/168, cows 7/651, horses 0/40, sheep 0/99, camels 0/22, rodents 65/270, water 10/45
Da Silva et al (2015) [66]H, A2012BrazilPrevalence surveyH: gen; A: genMATH 11/28, dogs 7/13, cows 6/17, goats 16/37, sheep 16/41, horses 30/57, foxes 6/11, opossums 1/1, tatous 4/4, monkeys 3/4, coatis 2/3, rodents 1/1
Lugo-Chávez et al (2015) [67]H, A2012MexicoCluster investigationH: exp; A: genMATH 22/36, dogs 19/29
Barragan et al (2016) [68]H, A2013–2015EcuadorPrevalence surveyH: feb; A: genPCRH 100/680, cows 59/165, pigs 27/128, rodents 3/101
Cibulski and Wollanke (2016) [69]A, EGermany and LuxembourgPrevalence surveyA: genPCRShrews 3/67, Mole 1/1, rodents 38/226, water 9/87
Parveen et al (2016) [70]H, AIndiaPrevalence surveyH: risk; A: genMATH 94/244, dogs 4/15, cows 39/86, goats 7/29, rodents 9/23
CultureRodents 2/23
Habus et al (2017) [71]H, A2009–2014CroatiaLaboratory monitoringH: feb; A: mixMATH 395/1917, dogs 85/364, cows 3251/22 669, pigs 2016/18 163, goats and sheep 376/41 752, horses 5595/41 538
Chadsuthi et al (2017) [72]H, A2010–2015ThailandLaboratory monitoringH: feb; A: febMATH 471/1990, cows 1133/4080, pigs 356/3138
Pui et al (2017) [73]A, E2014–2015MalaysiaPrevalence surveyA: genPCRRodents 23/107, water 13/324, soil 46/292
Kurilung et al (2017) [74]H, A, E2013–2016ThailandPrevalence surveyH: gen; A: genCultureH 0/37, dogs 4/58, cows 1/131, pigs 6/152, goats 0/1, horses 0/1, water 0/14
PCRH 1/37, dogs 6/58, cows 16/131, pigs 12/152, goats 1/1, water 3/14
Ensuncho-Hoyos et al (2017) [75]H, A, EColombiaPrevalence surveyH: risk; A: genMATH 14/20, dogs 5/11, cows 242/325, water 0/39
CultureCows 3/78
PCRCows 3/3+, water 1/39
Jorge et al (2017) [76]H, A2003–2007BrazilLaboratory monitoringH: feb; A: febMATH NA/997, dogs NA/1176, cows NA/1484, horses NA/240
Meny et al (2017) [77]H, E2010–2016UruguayCluster investigationH: febMATH 5/302
CultureH 8/302, water 7/36
PCRH 8/8+, water 6/7+
Pui et al (2017) [78]A, E2014–2015MalaysiaPrevalence surveyA: genPCRRodents 1/31, water 17/210, soil 8/210
Sanhueza et al (2017) [79]H, A2009–2013New ZealandPrevalence surveyH: risk
A: gen
MATH 12/178, cows 717/1374, sheep 939/2178, Deer 72/1133
Grevemeyer et al (2017) [80]A, ESaint Kitts and NevisPrevalence surveyA: genPCRHorses 22/124, water 0/2
Biscornet et al (2017) [81]H, A2013–2015SeychellesPrevalence surveyH: feb; A: genIgMELISAH 18/223
MATH 19/223
PCRH 32/223, dogs 1/24, cats 1/12, rodents 57/739
Chávez et al (2018) [82]A, E2014–2016NicaraguaCluster investigationA: expMATDogs NA/159, cats NA/1, cows NA/36, pigs NA/60, horses NA/7
CultureDogs NA/75, cows NA/15, pigs NA/22, water 61/129, soil 14/69
Shrestha et al (2018) [83]H, A2013NepalCluster investigationH: feb; A: expMATH 13/239, dogs 9/20, cows 60/155, goats 31/181, rodents 3/14
Zala et al (2018) [84]A, E2016–2017IndiaLongitudinal monitoringA: genPCRDogs 2/30, cows 20/121, goats 1/40, soil 8/60, water 80/216
Cortez et al (2018) [85]A, E2014–2015PeruLongitudinal monitoringA: genCultureWater 1/64
PCRRodents 23/97, water 23/64, soil 21/25
Tabo et al (2018) [86]H, A2015PhilippinesPrevalence surveyH: risk; A: genMATH 7/46, cows 3/9, pigs 37/69
Ukhovskyi et al (2018) [87]H, A2009–2016UkraineLaboratory monitoringH: feb; A: febMATH 3012/24 990, cats 52 310/1 238 876, pigs 31 181/989 659, horses 6734/70 674
Markovych et al (2019) [88]H, A2005–2015UkraineMixedH: feb; A: genMATH 401/2079, rodents 276/2820
Takhampunya et al (2019) [89]H, A2014–2018ThailandPrevalence surveyH: feb; A: genPCRH 3 pools/23 pools (200), rodents 3pools/64pools (309)
Salmon-Mulanovich (2019) [90]H, A2011–2014PeruPrevalence surveyH: gen; A: genMATH 229/2165, dogs 44/53, cats 2/10, Poultry 30/37, rodents 2/30
Jittimanee and Wongbutdee (2019) [91]A, E2014–2015ThailandPrevalence surveyA: genPCRRodents 0/270, water 0/100
Marinova-Petkova et al (2019) [92]H, A, E2017–2019US Virgin IslandsMixedH: feb; A: genMAT/RDTH 2/78
MATDogs 1/1
PCRH 1/2, dogs 0/1, water 1/5
Bakoss et al (2019) [93]H, ASlovakiaCluster investigationH: mix; A: genMATH 12/19, cows 9/15, rodents 2/44
Meny et al (2019) [94]H, A, E2015–2017UruguayPrevalence surveyH: risk; A: genMAT/IIFH 140/308
MATDogs 8/50, horses 11/22
CultureWater 6/25
Neela et al (2019) [95]H, A, E2016MalaysiaCluster investigationH: feb; A: genMAT/RDT/
IgMELISA
H 4/12
PCRRodents 6/12, water 6/18, soil 8/18
Nadia et al (2019) [96]H, AMalaysiaPrevalence surveyH: risk; A: genMATH 10/23, monkeys 5/10, shrews 1/1, rodents 4/43
Roqueplo et al (2019) [97]H, A2012–2014SenegalPrevalence surveyH: gen; A: genMATH 42/545, dogs 32/33, cows 17/56, goats 18/52, sheep 3/43, horses 16/20
PCRRodents 2/36
Verma et al (2019) [98]A, E2016–2017USAPrevalence surveyA: genMATCows 7/21, horses 13/31
PCRRabbit 0/1, squirrels 0/1, shrews 3/6, rodents 60/93, water 2/89
Calderón et al (2019) [99]H, AColombiaPrevalence surveyH: risk; A: riskMATH 4/123, horses 130/153
CultureHorses 99/153
PCRHorses 0/99+
Mgode et al (2019) [100]H, ATanzaniaPrevalence surveyH: mix
A: gen
MATH 72/455, shrews 1/5 rodents 3/21
CultureShrews 0/5, rodents 0/21
Goh et al (2019) [21]H, AMalaysiaPrevalence surveyH: risk; A: genMATH 67/194, dogs 70/266, cats 7/47
Rodriguez et al (2020) [101]H, AColombiaPrevalence surveyH: gen; A: genIgMELISAH 25/83
PCRRodents 4/53
Murcia et al (2020) [102]H, AColombiaPrevalence surveyH: risk; A: riskMATH 2/69, dogs 53/92
CultureDogs 54/92
Alashraf et al (2020) [103]H, AMalaysiaPrevalence surveyH: risk; A: genMATH 5/58, dogs 26/127, cats 7/47
Grimm et al (2020) [104]A, E2008–2009USALongitudinal monitoringA: genMATFeral cats 0/19, opossums 60/112, racoons 121/221
PCRWater 6/8
Wójcik-Fatla et al (2020) [105]A, EPolandPrevalence surveyA: genELISACows 0/80, pigs 51/86
PCRAir 2/50
Dushyant et al (2020) [106]A, EIndiaPrevalence surveyA: mixCultureDogs 0/5, cows 0/77, rodents 0/5, water 0/3
PCRDogs 0/10, cows 55/299, water 0/16, soil 0/4
Van et a (2017) [107]H, A, EThailandPrevalence surveyH: gen; A: genImmunoCH 199/280
PCRFish 8/11, water 4/12, soil 9/12
Ospina-Pinto and Hernández-Rodríguez (2021) [108]A, E2019ColombiaPrevalence surveyA: genMATPigs 58/65
CulturePigs 10/65, water 10/15
PCRPigs 10/10+, water 10/10+
Benitez et al (2021) [109]H, A2015–2016BrazilPrevalence surveyH: gen; A: genMATH 11/597, dogs 155/729
Mgode et al (2021) [110]H, ATanzaniaPrevalence surveyH: feb;
A: gen
MATH 15/50, goats 28/45, sheep 34/56, rodents 7/45
Machado et al (2021) [111]H, A2016–2018BrazilPrevalence surveyH: risk; A: genMATH 0/49, dogs 18/170, boars 9/74
Dreyfus et al (2021) [112]H, A2015BhutanPrevalence surveyH: gen; A: genMATH 14/864, dogs 40/84, cows 48/130
Msemwa et al (2021) [113]H, A2018TanzaniaPrevalence surveyH: risk; A: genMATH 33/205, dogs 66/414
Medkour et al (2021) [114]H, A2016–2019Congo Algeria Senegal DjiboutiPrevalence surveyH: gen; A: genPCRH 31/38, Gorilla 46/172
Shamsusah et al (2021) [115]A, E2017–2018MalaysiaPrevalence surveyA: genPCRGorilla 1/12, rodents 1/23, soil 22/123, water 7/37
Aghamohammad et al (2022) [116]H, A2019IranPrevalence surveyH: risk; A: mixIgGELISAH 1/51, cows 0/30, goats 1/31, sheep 2/30
Setyaningsih et al (2022) [117]H, E2017–2018IndonesiaCase controlH: mixPCRH 34 (in case-control studyb), water 6/100
de Souza Rocha et al (2022) [118]H, A2014–2015BrazilPrevalence surveyH: gen; A: genMATH 15/80, dogs 31/85, cats 0/10
PCRDogs 13/68
Cunha et al (2022) [119]H, A2017–2019BrazilPrevalence surveyH: risk; A: riskMATH 0/19, dogs 16/264
Richard et al (2022) [120]A, E2018–2020FranceLongitudinal monitoringA: genPCRRodents 68/189, water 158/1031
do Couto (2022) [121]H, ABrazilPrevalence surveyH: risk; A: riskMATH 0/200, dogs 5/40
Meny et al (2022) [122]H, A2017–2020UruguayPrevalence surveyH: risk; A: genMATH 6/150, horses 546/891

Abbreviations: A, animals; ALR, agglutination-lyse reaction; CAR, cross-agglutination reaction; E, environment; ELISA, enzyme-linked immunosorbent assay; exp, exposed; feb, febrile; gen, general; H, humans; Ig, immunoglobulin; IIF, indirect immunofluorescence; ImmunoC, immunochromatography; MAT, microscopic agglutination test; mix, mixed; NA, not available; PCR, polymerase chain reaction; RDT, rapid diagnostic test; risk, at risk;

aPlus signs (+) indicate that tested samples were positive to a previous test.

bCase-control study without number of all tested patients.

Sampling and Study Designs

Homo sapiens was the most studied species, with a median number of 160 samples (range, 10–24 990), followed by dogs (Supplementary Table 3). Domestic animals had a median of 219 samples (range, 1–2 299 209); wild animals, a median of 88 (5–2820); and the environment, a median of 47 (1–1031).

Of the studies, 70.6% were cross-sectional, and 23.5% were repeated cross-sectional. Only 6 studies (5.9%) were longitudinal, including 2 serological human-animal [46, 47] and 4 animal-environment studies. The predominant study design was prevalence survey (n = 70 [68.6%]) (Supplementary Figure 3A). Most cluster investigations (10 of 14) were initiated after only human cases. Samples from different One Health compartments originated from the same household in 17 studies (16.7%) and from the same establishment in 25 (24.5%) (eg, farms [39, 42, 43, 48, 60, 63, 69, 75, 79, 80, 93, 94, 106, 108], zoos [52, 54, 115], slaughterhouses [86, 116], police stations [99, 102], or shelters [21, 103]). More than half of the studies (n = 60 [58.8%]) did not define the spatial distance between compartments, and temporal distances were often inadequately described, with 24 studies (23.5%) failing to specify the study date.

Among the 70 prevalence surveys, 56 (80%) did not specify a sample size calculation, 9 provided partial calculation, and 5 conducted complete calculation for each species [56, 91, 100, 102, 108]. Only 9% of the prevalence studies (6 of 70) were fully randomized, with partial randomization in 10% (7 of 70) and 81% (57 of 70) not randomized at all.

The febrile population was the most common in human studies (n = 27 [32%]), while the general population was most common in animal studies (Supplementary Figure 3B). Twenty-six human studies (29%) targeted at-risk populations, including animal care workers [21, 38, 52, 54, 96, 103, 113, 122], farmers [37, 39, 48, 60, 63, 75, 79], meat industry workers [41, 86, 116], security personnel handling animals [99, 102], miners [70], people engaged in high-risk practices like hunting [111] or animal hoarding disorder [119], and homeless people owning animals [121]. In animal studies, only 4% targeted at-risk populations, including police-owned horses [99] and dogs [102].

Diagnostic Methods

The MAT was the predominant diagnostic method, in 88% of human studies (74 of 84) and 76% of animal studies (74 of 98) (Supplementary Figure 3C). Sixty-six studies used this test for both humans and animals. Threshold titers for positive MAT results varied significantly across studies, ranging from 20 [100, 110] to 500 [49], and 14 studies had different thresholds depending on the species [21, 30, 34, 39, 40, 43, 46, 49, 59, 71, 76, 86, 87, 99]. Six studies used 4-fold titer increase to diagnosis [38, 49, 59, 81, 83, 95]. The number of antigens tested ranged from 2 representing 2 serogroups [79] to 39 covering 23 [86], compared to the World Health Organization's recommended 19 antigens across 16 serogroups as of 2003 [123]. Through 2003, the median was 10 antigens (interquartile range, 7–12) and 9 serogroups (6–12); after 2003, it increased to 15 antigens (10–23) and 13 serogroups (9–19). The inclusion of serovar Patoc, recommended for its cross-reactivity with pathogenic serogroups [123, 124], was reported in 27% (6 of 22; 3 missing values) of studies before 2003 and 34% (20 of 59; 3NA) thereafter.

A quarter of studies integrated various tests (additional biospecimen details in Supplementary Table 4). A minority of studies in humans (13%) and animals (33%) used molecular approaches that can provide more precise insight into the infecting strains.

Risk Factors

Sociodemographic or animal data were collected in more than half of the studies (n = 60). Statistical analyses of data were conducted in 39 studies (38.2%). One third of studies used χ² and/or Fisher tests, and another third used multivariate logistic regression [21, 39, 81, 83, 90, 94, 99, 102, 104, 109, 112, 113, 122]. The majority of studies conducting statistical analysis (n = 29) investigated One Health compartments interactions, notably between humans and animals, and human and the environment (Supplementary Table 5).

Animal contact was the most frequent risk factor identified for humans (Supplementary Table 6). Eight studies highlighted occupational risks including livestock farming [39, 94] and field working [43, 83, 117]. At-risk practices were identified, such as time spent in rodent-infested houses [112], poor food and waste management [99, 117], and a high number of outings for animals [99].

Limitations and Recommendations

Limitations related to MATs, such as lack of sensitivity or suitability to identify serovars, were cited in 24.5% of studies. Issues regarding false-negatives were cited in 22.5% of studies, and small sample sizes were reported in 12.7%. More than half of studies did not report any limitations. Recommendations by authors included increased leptospirosis awareness (26.5%), better hygiene practices (21.6%), more local bacterial strain identification (15.7%), routine diagnostic inclusion (13.7%), and enhanced animal vaccination (8.8%).

Study Quality

Study quality assessed via the JBI tool showed mean scores of 0.47 (95% CI, .44–.50) for humans, 0.47 (.43–.50) for domestic animals, 0.64 (.60–.67) for wild animals, and 0.79 (.76–.83) for the environment. Study design mean scores ranged from 0.50 to 0.66. In prevalence surveys, 51% of JBI scores exceeded 0.5. Full details are provided in Supplementary Figure 4.

Meta-Analyses and Meta-Regressions

The meta-analysis revealed that the exposed population had a higher seroprevalence than the general population (Figure 3A and Supplementary Table 7A). No difference in seroprevalence was identified among the occupations and lifestyles of the at-risk population (Supplementary Table 7B). About the geographic situation, East Asia Pacific (P = .02), West Asia (P = .046) and North America (P = .02) showed significantly higher seroprevalence (Supplementary Table 7C). In addition, Thailand (P = .005), Malaysia (P = .12), India (P = .01), the United States (P = .02), and Colombia (P = .01) had higher seroprevalence (Supplementary Table 7D).

Meta-analysis of human serology, animal serology and environmental positivity rate. A, Forest plot for human serology. B, Forest plot for animal serology. C, Forest plot for environmental positivity rate. The overall prevalence in humans and animals was not calculated because of the variety of population types included. A sample from multiple domestic species without distinction was not included for either pet or livestock. Two samples from multiple wild species without distinction were not included in either rodent or nonrodent categories. Results from the air sampling were not include in the meta-analysis because of difficulties of comparability with water and soil. Africa does not appear for the environment because there only 1 occurrence. Abbreviation: CI, confidence interval.
Figure 3.

Meta-analysis of human serology, animal serology and environmental positivity rate. A, Forest plot for human serology. B, Forest plot for animal serology. C, Forest plot for environmental positivity rate. The overall prevalence in humans and animals was not calculated because of the variety of population types included. A sample from multiple domestic species without distinction was not included for either pet or livestock. Two samples from multiple wild species without distinction were not included in either rodent or nonrodent categories. Results from the air sampling were not include in the meta-analysis because of difficulties of comparability with water and soil. Africa does not appear for the environment because there only 1 occurrence. Abbreviation: CI, confidence interval.

For animal seroprevalence, the general population exhibited a higher rate, (23.7% [95% CI, 18.9–29.3]) than the febrile population (6.5% [3.0–13.]) (P < .001) (Figure 3B and Supplementary Table 8A). Europe had the lowest seroprevalence, significantly lower than the 5 other regions (Supplementary Table 8B). Argentina (P = .048) and Belize (P = .01) had higher seroprevalence (Supplementary Table 8C). No significant differences were found within the various animal categories (Supplementary Tables 8D–8AF). Dogs (P = .005), cows (P = .01), horses (P = .005), poultry (P = .04), foxes (P = .37), and monkeys (P = .03) had higher seroprevalence than rodents (Supplementary Table 8G).

Environmental sample positivity was 14.5% (95% CI, 9.0–22.6) (Figure 3C), with no significant difference between water and soil (P = .17) (Supplementary Table 9A). North America (P = .08) and Europe (P = .03) were identified as having a lower seroprevalence than South America (Supplementary Table 9B).

Meta-regression showed a positive association between human and animal seroprevalences (P = .02) (Figure 4A). Human seroprevalence was positively associated with that of domestic animal (P = .009), livestock (P = .03), and wild nonrodents (P = .002). Some livestock species including cows (P = .008), pigs (0.02), and small ruminants (goats and sheep) (P = .007) were identified as being associated with humans (Supplementary Table 10A). Positive associations were found between environmental positivity rate and domestic animal seroprevalence (P = .04), particularly for livestock (P = .02), but no link was identified between humans and the environment (Supplementary Table 10B).

Interconnections between compartments. A, Meta-regression analyses of human seroprevalence explained by animal seroprevalence and animal seroprevalence explained by environmental positivity rate, with seroprevalence defined as every outcome and association tested for in humans and animals. *P < .05; **P < .01. Abbreviation: CI, confidence interval. B, Significant links of Leptospira presence or exposure identified by the overview of One Health studies, with presentation of β coefficients of variable with significant effects generated by meta-regressions. Abbreviations: b, bovine seroprevalence; d, dog seroprevalence; h, human seroprevalence; l, livestock seroprevalence; p, pig seroprevalence; r, rodent seroprevalence; s, small ruminant seroprevalence; w, wild nonrodent seroprevalence.
Figure 4.

Interconnections between compartments. A, Meta-regression analyses of human seroprevalence explained by animal seroprevalence and animal seroprevalence explained by environmental positivity rate, with seroprevalence defined as every outcome and association tested for in humans and animals. *P < .05; **P < .01. Abbreviation: CI, confidence interval. B, Significant links of Leptospira presence or exposure identified by the overview of One Health studies, with presentation of β coefficients of variable with significant effects generated by meta-regressions. Abbreviations: b, bovine seroprevalence; d, dog seroprevalence; h, human seroprevalence; l, livestock seroprevalence; p, pig seroprevalence; r, rodent seroprevalence; s, small ruminant seroprevalence; w, wild nonrodent seroprevalence.

Seroprevalence links between various animals have been identified: bovines with rodents, rodents with dogs, and dogs with livestock, as well as within livestock species (Figure 4B). Results are detailed in Supplementary Table 10C. Explorations of PCR data, revealing a link between an animal's PCR result and its own seroprevalence, are presented in Supplementary Table 11.

DISCUSSION

Our systematic review highlights a significant gap in comprehensive One Health studies on leptospirosis, particularly noting the scarcity of studies incorporating the environmental compartment. This deficiency restricts understanding of the full transmission dynamics of this zoonotic disease. While 94.2% of studies included animals and 82.4% included humans, only 31.4% incorporated environmental factors. Furthermore, only 9.8% of the studies explored all 3 compartments, a trend also observed in One Health networks [125] and reviews of other multicompartmental public health issues like antimicrobial resistance [126–130], salmonellosis [131], and giardiasis [132]. Reviews of leptospirosis in Africa also show a predominance of animal studies, with multicompartmental studies representing only 6.5% of studies [133–136]. One Health's historical focus on human-animal interactions has gradually expanded to include environmental aspects [137], but dynamic environmental complexities [11] and anthropocentrism [125] may have limited this inclusion. In recent years, more attention has been given to the environment, aided by developments like selective media for growing Leptospira, which allow easier bacteria isolation [138] and increased awareness of climate change's impact on environmental factors, anchoring the environmental compartment into the One Health approach in the future [11].

Methodological issues were widespread within the studies examined. Only 7 studies used longitudinal monitoring, limiting the potential to understand the disease's dynamics across transmission pathways and seasonal variations, mirroring gaps in One Health research on antimicrobial resistance [126]. In addition, most prevalence surveys lacked adequate sample size calculations, and many did not use randomized sampling strategies. Unclear spatiotemporal distances between sampling units in different compartments may complicate conclusions about transmission routes. Moreover, many studies lacked detailed sociodemographic or animal collected data and comprehensive statistical analyses. The methodological shortcomings, reflected in low JBI scores, underscore an urgent need for improved, more rigorous, study designs and analytical methods in One Health research. A standardized, peer-reviewed tool tailored to evaluate One Health studies is also necessary. Indeed, the JBI evaluation tool used here is designed for prevalence studies and was not well suited to all the studies included in this review, especially those focused on environmental or wildlife research. This highlights the need for more tailored assessment tools specifically designed for environmental and wildlife protocols. This resulted in the exclusion of risk of bias scoring as a criterion for inclusion in the meta-analysis.

Addressing critical questions regarding the connections between human, animal, and environmental contamination requires comprehensive longitudinal molecular studies or rigorously designed multicompartmental cross-sectional research to investigate spatial correlations between compartments. These studies would not only help determine whether the same Leptospira strains are transmitted between compartments but would also pinpoint the primary sources of contamination.

Our meta-analysis revealed a significant positive association between human and animal seroprevalences and with animal seroprevalence and environmental positivity rate. This highlights the interconnectedness of humans, animals, and the environment in leptospirosis spread and underscores the need for more rigorous One Health research methods.

Human seroprevalence was associated with seroprevalence in livestock (cows, pigs, and small ruminants) but not with canine seroprevalence, suggesting that livestock's denser populations and larger daily urine excretion, along with larger leptospiruria [139], enhance pathogen spread. This supports the hypothesis that the risk of transmission to a human from a dog is low [140]. However, links between seroprevalence in dogs and that in rodents and small ruminants have been demonstrated. In addition, there were links between livestock and the environment, and between humans and wildlife. These connections can reveal a transmission network and simultaneous contaminations.

Our meta-analysis also revealed a lower seroprevalence in febrile animals, potentially due to early sampling before antibody formation. Higher seroprevalences were mostly identified in South America and Asia across the 3 compartments, coinciding with estimates of leptospirosis morbidity [4]. However, it is crucial to note that these regional or species-type estimates are derived from studies with varying designs and populations. Therefore, they should not be considered as replacements for targeted, ad hoc prevalence estimates.

Using seroprevalence as a variable in meta-regressions can bias interpretations with false-negatives, particularly for healthy carrier animals like rodents. Implementing a longitudinal design with 3-month intervals between sample collections could minimize underestimation in serology [141, 142]. However, there were only 2 longitudinal studies of 89 studies with serology [46, 61]. Moreover, the MAT, widely used, is the main source of data for the meta-analysis, while it has limitations in estimating seroprevalence, especially regarding sensitivity and subjective interpretation. World Health Organization recommendations, in 2003 to include 19 serovars representing 16 serogroups [123] and the Patoc serovar, which cross-reacts with several antigens, have been partially followed, affecting the test's robustness. Indeed, the median number of antigens was 15 (interquartile range, 10–23) after 2003, and only 34% of MAT studies used the Patoc serovar.

These challenges in implementing leptospirosis diagnosis make it impossible for some countries to detect cases. Using MAT with a limited number of serovars or missing key serovars can result in underestimation. Both biases distort our understanding of global leptospirosis distribution. Despite these challenges, MAT remains a primary diagnostic tool, though accuracy could be improved by integrating additional tests and Bayesian classification with clinical data [7]. Knowledge of local serovars is crucial for effective surveillance, improving MAT's sensitivity, and allowing optimization of vaccination strategies, as demonstrated by successful vaccination programs in New Zealand during the 1970s and 1980s [143], but a minority of studies used a molecular approach.

Our meta-analysis faced limitations due to the small number and size of included studies, preventing certain meta-regressions and diminishing the robustness of our findings. The limited number of studies included made some analyses unfeasible, such as advanced analyses of the environmental compartment. A precision failure on spatiotemporal distance between compartments reduced the robustness of our hypotheses about transmissions. Moreover, it is clear that the lack of rigor, particularly the absence of randomization, in the data collection used for the meta-analysis leads to problems of representativeness and therefore weakens the robustness of the results. These methodological weaknesses are reflected in low JBI scores, indicating a high risk of bias, and high I² values suggest considerable heterogeneity among studies, complicating interpretation, but a high I² value does not necessarily reflect overly heterogeneous and nonpoolable data [144, 145].

Despite these issues, we adjusted for population types in our meta-regression models to maintain biological relevance and methodological consistency. Associations identified should be considered with caution; they are probable hypotheses that need to be confirmed with rigorous protocols. However, to compensate for the lack of representativeness of the studies used to measure associations between compartments, we explored the association between human seroprevalence and that in animals, more specifically domestic animals, in a subset presenting a more rigorous methodology than most of the included studies. A small sample of randomized human and animal studies also showed a positive association between human and animal seroprevalences, but this was not significant (Supplementary Table 12). The fact that similar results are obtained when including only more robust studies helps support our results. In addition, due to our chosen eligibility criteria, our review did not consider multicompartmental studies that presented results from various compartments in different publications, potentially limiting the evidence already available.

The choices and strategy in our review aimed to evaluate the ability of multicompartmental field-collected data to assess transmission risks and patterns. Other approaches, such as combining unicompartmental data and existing phylogenetic data available in specific geographic areas, not included in our review, have shown their value [146, 147]. While our focus was on applying One Health approach using prevalence data across samples from multiple compartments, other methods, such as using questionnaires to gather animal contact data or models incorporating environmental data, are steps toward a One Health approach.

In conclusion, our systematic review and meta-analysis highlighted significant gaps in One Health research, particularly the need for more comprehensive studies that include environmental factors alongside human and animal factors. The challenges of laboratory diagnostics and the need for larger, more rigorous studies are evident. We advocate for the One Health approach to better understand and manage leptospirosis, emphasizing the need for holistic studies to accurately determine disease prevalence, ecology, and transmission routes. This approach should be well supported, and high methodological standards should be maintained to ensure reliable outcomes and effective interventions. Ultimately, this strategy will allow for the development of targeted prevention, enhanced surveillance systems, improved diagnostics, and effective vaccination campaigns, all grounded in a thorough understanding of the epidemiological interactions between humans, animals and their environments.

Supplementary Data

Supplementary materials are available at Open Forum Infectious Diseases online. Consisting of data provided by the authors to benefit the reader, the posted materials are not copyedited and are the sole responsibility of the authors, so questions or comments should be addressed to the corresponding author.

Acknowledgments

Potential conflicts of interest. All authors: No reported conflicts.

References

1

Adler
 
B
,
de la Peña Moctezuma
 
A
.
Leptospira and leptospirosis
.
Vet Microbiol
 
2010
;
140
:
287
96
.

2

Bierque
 
E
,
Thibeaux
 
R
,
Girault
 
D
,
Soupé-Gilbert
 
ME
,
Goarant
 
C
.
A systematic review of Leptospira in water and soil environments
.
PLoS One
 
2020
;
15
:
e0227055
.

3

Goarant
 
C
.
Leptospirosis: risk factors and management challenges in developing countries
.
Res Rep Trop Med
 
2016
;
7
:
49
62
.

4

Costa
 
F
,
Hagan
 
JE
,
Calcagno
 
J
, et al.  
Global morbidity and mortality of leptospirosis: a systematic review
.
PLoS Negl Trop Dis
 
2015
;
9
:
e0003898
.

5

Taniguchi
 
LU
,
Póvoa
 
P
.
Leptospirosis: one of the forgotten diseases
.
Intensive Care Med
 
2019
;
45
:
1816
8
.

6

Goarant
 
C
,
Picardeau
 
M
,
Morand
 
S
,
McIntyre
 
KM
.
Leptospirosis under the bibliometrics radar: evidence for a vicious circle of neglect
.
J Glob Health
 
2019
;
9
:
010302
.

7

Sykes
 
JE
,
Reagan
 
KL
,
Nally
 
JE
,
Galloway
 
RL
,
Haake
 
DA
.
Role of diagnostics in epidemiology, management, surveillance, and control of leptospirosis
.
Pathogens
 
2022
;
11
:
395
.

8

Thibeaux
 
R
,
Genthon
 
P
,
Govan
 
R
, et al.  
Rainfall-driven resuspension of pathogenic Leptospira in a leptospirosis hotspot
.
Sci Total Environ
 
2024
;
911
:
168700
.

9

Tellman
 
B
,
Sullivan
 
JA
,
Kuhn
 
C
, et al.  
Satellite imaging reveals increased proportion of population exposed to floods
.
Nature
 
2021
;
596
:
80
6
.

10

Trenberth
 
KE
,
Dai
 
A
,
Rasmussen
 
RM
,
Parsons
 
DB
.
The changing character of precipitation
.
Bull Am Meteorol Soc
 
2003
;
84
:
1205
18
.

11

Essack
 
SY
.
Environment: the neglected component of the One Health triad
.
Lancet Planet Health
 
2018
;
2
:
e238
9
.

12

Page
 
MJ
,
McKenzie
 
JE
,
Bossuyt
 
PM
, et al.  
The PRISMA 2020 statement: an updated guideline for reporting systematic reviews
.
BMJ
 
2021
;
372
:
n71
.

13

National Institute for Health and Care Research
. PROSPERO: International prospective register of systematic reviews. Available at: https://www.crd.york.ac.uk/PROSPERO/. Accessed 1 November 2024.

14

Munn
 
Z
,
Moola
 
S
,
Lisy
 
K
,
Riitano
 
D
,
Tufanaru
 
C
. Chapter 5: Systematic reviews of prevalence and incidence. In:
Aromataris
 
E
,
Munn
 
Z
, eds.
JBI Reviewer's manual
:
JBI
,
2017
:
177
217
.

15

Munn
 
Z
,
Moola
 
S
,
Lisy
 
K
,
Riitano
 
D
,
Tufanaru
 
C
. Chapter 7: Systematic reviews of etiology and risk. In:
Aromataris
 
E
,
Munn
 
Z
, eds.
JBI Reviewer's Manual
:
JBI
,
2017
:
219
69
.

16

R Core Team
.
R: a language and environment for statistical computing
.
Vienna, Austria
:
R Foundation for Statistical Computing
,
2023
.

17

Viechtbauer
 
W
. Calculate effect sizes and outcome measures. Available at: https://wviechtb.github.io/metafor/reference/escalc.html. Accessed 1 December 2024.

18

Dettori
 
JR
,
Norvell
 
DC
,
Chapman
 
JR
.
Fixed-effect vs random-effects models for meta-analysis: 3 points to consider
.
Global Spine J
 
2022
;
12
:
1624
6
.

19

Munn
 
Z
,
Moola
 
S
,
Lisy
 
K
,
Riitano
 
D
,
Tufanaru
 
C
.
Methodological guidance for systematic reviews of observational epidemiological studies reporting prevalence and cumulative incidence data
.
Int J Evid Based Healthc
 
2015
;
13
:
147
53
.

20

Goh
 
SH
,
Khor
 
KH
,
Ismail
 
R
, et al.  
Detection and distribution of anti-leptospiral antibody among dogs and their handlers
.
Trop Biomed
 
2020
;
37
:
1074
82
.

21

Goh
 
SH
,
Ismail
 
R
,
Lau
 
SF
, et al.  
Risk factors and prediction of leptospiral seropositivity among dogs and dog handlers in Malaysia
.
Int J Environ Res Public Health
 
2019
;
16
:
1499
.

22

Bokhout
 
BA
,
Peterse
 
DJ
,
Koger
 
PL
,
Terpstra
 
WJ
.
The occurrence of hardjo-positive dairy cows in the Northern Netherlands: a prospective serological survey [in Dutch]
.
Tijdschr Diergeneeskd
 
1989
;
114
:
123
30
.

23

Maronpot
 
RR
,
Barsoum
 
IS
.
Leptospiral microscopic agglutinating antibodies in sera of man and domestic animals in Egypt
.
Am J Trop Med Hyg
 
1972
;
21
:
467
72
.

24

Nelson
 
KE
,
Ager
 
EA
,
Galton
 
MM
,
Gillespie
 
RWH
,
Sulzer
 
CR
.
An outbreak of leptospirosis in Washington state
.
Am J Epidemiol
 
1973
;
98
:
336
47
.

25

Tsai
 
CC
,
Raulston
 
GL
,
Fresh
 
JW
.
A team approach to a disease survey on an aboriginal island (Orchid Island, Taiwan). II. Leptospirosis in man and animals on Lan-Yu
.
Chin J Microbiol
 
1973
:
173
7
.

26

Limpias
 
E
,
Marcus
 
SJ
.
Serological survey of leptospirosis in Santa Cruz, Bolivia [in Spanish]
.
Bol Oficina Sanit Panam
 
1973
.

27

Ratnam
 
S
,
Sundararaj
 
T
,
Subramanian
 
S
.
Serological evidence of leptospirosis in a human population following an outbreak of the disease in cattle
.
Trans R Soc Trop Med Hyg
 
1983
;
77
:
94
8
.

28

Prokopcaková
 
G
,
Pospisil
 
R
.
Results of serological surveys for leptospirosis in animals and people in the environs of 2 water reservoirs in eastern Slovakia [in Russian]
.
Zh Mikrobiol Epidemiol Immunobiol
 
1984
;
4
:
56
8
.

29

Gelosa
 
L
,
Manera
 
A
.
Diagnostic research on leptospirosis in the Milanese territory [in Italian]
.
Boll Ist Sieroter Milan
 
1984
;
63
:
254
61
.

30

Sebek
 
Z
,
Bashiribod
 
H
,
Chaffari
 
M
,
Sepasi
 
F
,
Sixl
 
W
.
The occurrence of leptospirosis in Iran
.
J Hyg Epidemiol Microbiol Immunol
 
1987
;
31
:
498
503
.

31

Heisey
 
GB
,
Nimmanitya
 
S
,
Karnchanachetanee
 
C
, et al.  
Epidemiologie and characterization of leptospirosis at an urban and provincial site in Thailand
.
Southeast Asian J Trop Med Public Health
 
1988
;
19
:
317
22
.

32

Everard
 
COR
,
Cawich
 
F
,
Gamble
 
PG
,
Everard
 
JD
.
Prevalence of leptospirosis in Belize
.
Trans R Soc Trop Med Hyg
 
1988
;
82
:
495
9
.

33

Sebek
 
Z
,
Sixl
 
W
,
Valova
 
M
,
Schafer
 
R
.
Leptospirosis in man, in wild and in domestic animals at waste disposal sites in Cairo
.
Geogr Med Suppl
 
2024
;
3
:
1989
.

34

Sebek
 
Z
,
Miorini
 
I
,
Brosch
 
R
, et al.  
A survey of leptospirological studies carried out on the Cape Verde Islands
.
Geogr Med Suppl
 
1989
;
5
:
153
60
.

35

Venkataraman
 
KS
,
Nedunchelliyan
 
S
.
Epidemiology of an outbreak of leptospirosis in man and dog
.
Comp Immunol Microbiol Infect Dis
 
1992
;
15
:
243
7
.

36

Prokopcáková
 
H
,
Peterková
 
J
,
Pet’ko
 
B
,
Stanko
 
M
,
Cisláková
 
L
,
Palinský
 
M
.
Occurrence of Leptospira serovars in old foci of leptospirosis [in Slovak]
.
Epidemiol Mikrobiol Imunol
 
1994
;
43
:
87
9
.

37

Machang’u
 
R
,
Mgode
 
G
,
Mpanduji
 
D
.
Leptospirosis in animals and humans in selected areas of Tanzania
.
Belgian J Zool
 
1997
;
127
:
97
104
.

38

Campagnolo
 
ER
,
Warwick
 
MC
,
Marx
 
HL
, et al.  
Analysis of the 1998 outbreak of leptospirosis in Missouri in humans exposed to infected swine
.
J Am Vet Med Assoc
 
2000
;
216
:
676
82
.

39

Ochoa
 
JE
,
Sánchez
 
A
,
Ruiz
 
I
.
Epidemiology of leptospirosis in a livestock production area of the Andes [in Spanish]
.
Rev Panam Salud Publica
 
2000
;
7
:
325
31
.

40

Vanasco
 
NB
,
Sequeira
 
G
,
Dalla Fontana
 
ML
,
Fusco
 
S
,
Sequeira
 
MD
,
Enría
 
D
.
Report on a leptospirosis outbreak in the city of Santa Fe, Argentina, March–April 1998 [in Spanish]
.
Rev Panam Salud Publica
 
2000
;
7
:
35
40
.

41

Ralaiarijaona
 
RL
,
Bellenger
 
E
,
Chanteau
 
S
,
Roger
 
F
,
Pérolat
 
P
,
Rasolofo Razanamparany
 
V
.
Detection of leptospirosis reservoirs in Madagascar using the polymerase chain reaction technique [in French]
.
Arch Inst Pasteur Madagascar
 
2001
;
67
:
34
6
.

42

León
 
G
,
Uribe
 
A
,
Santacruz
 
M
,
Yepes
 
E
.
Leptospirosis: the waters from the swine farm as vehicles of Leptospira, at the central coffee growers area of Colombia
.
Arch Med Veterinaria
 
2002
;
34
:
79
87
.

43

Natarajaseenivasan
 
K
,
Boopalan
 
M
,
Selvanayaki
 
K
,
Raja
 
S
,
Ratnam
 
S
.
Leptospirosis among rice mill workers of Salem, South India
.
Jpn J Infect Dis
 
2002
;
55
:
170
3
.

44

Ramakrishnan
 
R
,
Patel
 
MS
,
Gupte
 
MD
,
Manickam
 
P
,
Venkataraghavan
 
S
.
An institutional outbreak of leptospirosis in Chennai, South India
.
J Commun Dis
 
2003
;
35
:
1
8
.

45

Cerri
 
D
,
Ebani
 
VV
,
Fratini
 
F
,
Pinzauti
 
P
,
Andreani
 
E
.
Epidemiology of leptospirosis: observations on serological data obtained by a “diagnostic laboratory for leptospirosis” from 1995 to 2001
.
New Microbiol
 
2003
;
26
:
383
9
.

46

Ren
 
J
,
Gu
 
LL
,
Liu
 
H
, et al.  
Study on a monitoring program regarding leptospirosis in some fore-and-after flood-affected along large rivers in Anhui province [in Chinese]
.
Zhonghua Liu Xing Bing Xue Za Zhi
 
2005
;
26
:
690
3
.

47

Kuriakose
 
M
,
Paul
 
R
,
Joseph
 
M
,
Sugathan
 
S
,
Sudha
 
TN
.
Leptospirosis in a midland rural area of Kerala State
.
Indian J Med Res
 
2008
;
128
:
307
12
.

48

Langoni
 
H
,
de SOUZA
 
LC
,
Silva
 
AVD
,
Cunha
 
ELP
.
Epidemiological aspects in leptospirosis. Research of anti-Leptospira spp antibodies, isolation and biomolecular research in bovines, rodents and workers in rural properties from Botucatu, SP, Brazil
.
São Paulo
 
2008
;
45
:
190
9
.

49

Habuš
 
J
,
Cvetnić
 
Ž
,
Milas
 
Z
, et al.  
Seroepidemiological and seroepizootiological investigation of leptospirosis in Croatia in 2007
.
Infektoloski Glasnik
 
2008
;
28
:
183
8
.

50

Zhou
 
J
,
Huang
 
X
,
He
 
H
, et al.  
Epidemiological study on leptospirosa infection of host animals and healthy population in flood areas
.
Zhong Nan Da Xue Xue Bao Yi Xue Ban
 
2009
;
34
:
99
103
.

51

Aviat
 
F
,
Blanchard
 
B
,
Michel
 
V
, et al.  
Leptospira exposure in the human environment in France: a survey in feral rodents and in fresh water
.
Comp Immunol Microbiol Infect Dis
 
2009
;
32
:
463
76
.

52

Silva
 
CD
,
Gírio
 
RJ
,
Guerra Neto
 
G
, et al.  
Anti-Leptospira spp. antibodies in wild animals from Ribeirão Preto city zoo in São Paulo State, Brazil
.
Braz J Vet Res Anim Sci
 
2010
;
47
:
237
42
.

53

Zakeri
 
S
,
Khorami
 
N
,
Ganji
 
ZF
, et al.  
Leptospira wolffii, a potential new pathogenic Leptospira species detected in human, sheep and dog
.
Infect Genet Evol
 
2010
;
10
:
273
7
.

54

Romero
 
MH
,
Astudillo Hernandez
 
M
,
Sanchez
 
JA
,
González
 
LM
,
Varela
 
N
.
Leptospiral antibodies in a Colombian zoo's neotropical primates and workers
.
Rev Salud Púb (Bogotá, Colombia)
 
2011
;
13
:
814
23
.

55

Bermúdez
 
S
,
Pulido
 
M
,
Andrade
 
R
.
Seroprevalence of in canines and humans Leptospira spp in three neighborhoods of Tunja, Colombia
.
Rev MVZ Córdoba
 
2010
;
15
:
2185
93
.

56

Cárdenas-Marrufo
 
MF
,
Vado-Solís
 
I
,
Pérez-Osorio
 
CE
,
Correa
 
JCS
.
Seropositivity to leptospirosis in domestic reservoirs and detection of Leptospira spp. from water sources, in farms of Yucatan, Mexico
.
Trop Subtrop Agroecosystems
 
2011
;
14
:
185
9
.

57

de Castro
 
JR
,
Salaberry
 
SRS
,
de Souza
 
MA
,
Lima-Ribeiro
 
AMC
.
Predominant Leptospira spp. serovars in serological diagnosis of canines and humans in the City of Uberlândia, State of Minas Gerais, Brazil [in Portuguese]
.
Rev Soc Bras Med Trop
 
2011
;
44
:
217
22
.

58

Fonzar
 
UJV
,
Langoni
 
H
.
Geographic analysis on the occurrence of human and canine leptospirosis in the City of Maringá, State of Paraná, Brazil
.
Rev Soc Bras Med Trop
 
2012
;
45
:
100
5
.

59

Romero-Vivas
 
CME
,
Cuello-Pérez
 
M
,
Agudelo-Flórez
 
P
,
Thiry
 
D
,
Levett
 
PN
,
Falconar
 
AKI
.
Cross-sectional study of Leptospira seroprevalence in humans, rats, mice, and dogs in a main tropical sea-port city
.
Am J Trop Med Hyg
 
2013
;
88
:
178
83
.

60

Calderón
 
A
,
Rodríguez
 
V
,
Máttar
 
S
,
Arrieta
 
G
.
Leptospirosis in pigs, dogs, rodents, humans, and water in an area of the Colombian tropics
.
Trop Anim Health Prod
 
2014
;
46
:
427
32
.

61

Soman
 
M
,
Jayaprakasan
 
V
,
Mini
 
M
.
Epidemiological study on human and canine leptospirosis in Central and North Kerala
.
Vet World
 
2014
;
7
:
759
64
.

62

Vimala
 
G
,
Rani
 
AMJ
,
Gopal
 
VR
.
Leptospirosis in Vellore: a clinical and serological study
.
Int J Microbiol
 
2014
;
2014
:
643940
.

63

Silva
 
FJ
,
Santos
 
CE
,
Silva
 
GC
,
Santos
 
RF
,
Curci
 
V
,
Mathias
 
LA
.
The importance of Leptospira interrogans serovars Icterohaemorrhagiae and Canicola in coastal zone and in southern fields of Rio Grande do Sul, Brazil
.
Pesquisa Vet Brasileira
 
2014
;
34
:
34
8
.

64

Assenga
 
JA
,
Matemba
 
LE
,
Muller
 
SK
,
Mhamphi
 
GG
,
Kazwala
 
RR
.
Predominant leptospiral serogroups circulating among humans, livestock and wildlife in Katavi-Rukwa ecosystem, Tanzania
.
PLoS Negl Trop Dis
 
2015
;
9
:
e0003607
.

65

Samir
 
A
,
Soliman
 
R
,
El-Hariri
 
M
,
Abdel-Moein
 
K
,
Hatem
 
ME
.
Leptospirosis in animals and human contacts in Egypt: broad range surveillance
.
Rev Soc Bras Med Trop
 
2015
;
48
:
272
7
.

66

da Silva
 
FJ
,
Dos Santos
 
CE
,
Silva
 
TR
, et al.  
Pesquisa de leptospiras e de anticorpos contra leptospiras em animais e humanos de propriedades rurais nos biomas brasileiros Pantanal e Caatinga
.
Braz J Vet Res Anim Sci
 
2015
;
52
:
234
.

67

Lugo-Chávez
 
BL
,
del Carmen Velasco-Rodríguez
 
L
,
Canales-Velásquez
 
G
,
Velázquez-Hernández
 
JF
,
Herrera-Huerta
 
EV
.
Detection of antileptospira antibodies in a vulnerable population of Ixhuatlancillo, Veracruz [in Spanish]
.
Rev Méd Inst Mex Seguro Soc
 
2015
;
53
:
158
63
.

68

Barragan
 
V
,
Chiriboga
 
J
,
Miller
 
E
, et al.  
High Leptospira diversity in animals and humans complicates the search for common reservoirs of human disease in rural Ecuador
.
PLoS Negl Trop Dis
 
2016
;
10
:
e0004990
.

69

Cibulski
 
S
,
Wollanke
 
B
.
Testing wild small mammals and water samples for pathogen leptosires using real-time PCR
.
Pferdeheilkunde Equine Med
 
2016
;
32
:
634
40
.

70

Parveen
 
SM
,
Suganyaa
 
B
,
Sathya
 
MS
, et al.  
Leptospirosis seroprevalence among blue metal mine workers of Tamil Nadu, India
.
Am J Trop Med Hyg
 
2016
;
95
:
38
42
.

71

Habus
 
J
,
Persic
 
Z
,
Spicic
 
S
, et al.  
New trends in human and animal leptospirosis in Croatia, 2009–2014
.
Acta Trop
 
2017
;
168
:
1
8
.

72

Chadsuthi
 
S
,
Bicout
 
DJ
,
Wiratsudakul
 
A
, et al.  
Investigation on predominant Leptospira serovars and its distribution in humans and livestock in Thailand, 2010–2015
.
PLoS Negl Trop Dis
 
2017
;
11
:
e0005228
.

73

Pui
 
CF
,
Bilung
 
LM
,
Apun
 
K
,
Su’ut
 
L
.
Diversity of Leptospira spp. in rats and environment from urban areas of Sarawak, Malaysia
.
J Trop Med
 
2017
;
2017
:
3760674
.

74

Kurilung
 
A
,
Chanchaithong
 
P
,
Lugsomya
 
K
,
Niyomtham
 
W
,
Wuthiekanun
 
V
,
Prapasarakul
 
N
.
Molecular detection and isolation of pathogenic Leptospira from asymptomatic humans, domestic animals and water sources in Nan province, a rural area of Thailand
.
Res Vet Sci
 
2017
;
115
:
146
54
.

75

Ensuncho-Hoyos
 
C
,
Rodríguez-Rodríguez
 
V
,
Pérez-Doria
 
A
,
Vergara
 
O
,
Calderón-Rangel
 
A
.
Epidemiology behavior of leptospirosis in Ciénaga de Oro, Córdoba (Colombia)
.
Trop Anim Health Prod
 
2017
;
49
:
1345
51
.

76

Jorge
 
S
,
Schuch
 
RA
,
de Oliveira
 
NR
, et al.  
Human and animal leptospirosis in Southern Brazil: a five-year retrospective study
.
Travel Med Infect Dis
 
2017
;
18
:
46
52
.

77

Meny
 
P
,
Menéndez
 
C
,
Quintero
 
J
, et al.  
Characterization of Leptospira isolates from humans and the environment in Uruguay
.
Rev Inst Med Trop Sao Paulo
 
2017
;
59
:
e79
.

78

Pui
 
CF
,
Bilung
 
LM
,
Su'ut
 
L
,
Chong
 
YL
,
Apun
 
K
.
Detection of Leptospira spp. in selected national service training centres and paddy fields of Sarawak, Malaysia using polymerase chain reaction technique
.
Pertanika J Trop Agric Sci
 
2017
;
40
:
99
110
.

79

Sanhueza
 
JM
,
Heuer
 
C
,
Wilson
 
PR
,
Benschop
 
J
,
Collins-Emerson
 
JM
.
Seroprevalence and risk factors for Leptospira seropositivity in beef cattle, sheep and deer farmers in New Zealand
.
Zoonoses Public Health
 
2017
;
64
:
370
80
.

80

Grevemeyer
 
B
,
Vandenplas
 
M
,
Beigel
 
B
,
Cho
 
E
,
Willingham
 
AL
,
Verma
 
A
.
Detection of leptospiral DNA in the urine of donkeys on the Caribbean Island of Saint Kitts
.
Vet Sci
 
2017
;
4
:
2
.

81

Biscornet
 
L
,
Dellagi
 
K
,
Pagès
 
F
, et al.  
Human leptospirosis in Seychelles: a prospective study confirms the heavy burden of the disease but suggests that rats are not the main reservoir
.
PLoS Negl Trop Dis
 
2017
;
11
:
e0005831
.

82

Chávez
 
Á
,
Somarriba
 
BF
,
Soto
 
A
, et al.  
Detection of leptospire spp. in animals and in environmental samples from peridomestic areas in Nicaragua [Detecção de Leptospira spp. em animais e em amostras ambientais de áreas peridomiciliares na Nicarágua]
.
Rev Panam Salud Publica
 
2018
;
42
:
e26
.

83

Shrestha
 
R
,
McKenzie
 
JS
,
Gautam
 
M
, et al.  
Determinants of clinical leptospirosis in Nepal
.
Zoonoses Public Health
 
2018
;
65
:
972
83
.

84

Zala
 
D
,
Khan
 
V
,
Sanghai
 
AA
,
Dalai
 
SK
,
Das
 
VK
.
Leptospira in the different ecological niches of the tribal union territory of India
.
J Infect Dev Ctries
 
2018
;
12
:
849
54
.

85

Cortez
 
V
,
Canal
 
E
,
Dupont-Turkowsky
 
JC
, et al.  
Identification of Leptospira and Bartonella among rodents collected across a habitat disturbance gradient along the Inter-Oceanic Highway in the southern Amazon Basin of Peru
.
PLoS One
 
2018
;
13
:
e0205068
.

86

Tabo
 
NA
,
Villanueva
 
SY
,
Gloriani
 
NG
.
Prevalence of Leptospira-agglutinating antibodies in abattoir workers and slaughtered animals in selected slaughterhouses in Cavite, Philippines
.
Philippine J Sci
 
2018
;
147
:
27
35
.

87

Ukhovskyi
 
VV
,
Vydayko
 
NB
,
Aliekseieva
 
GB
,
Bezymennyi
 
MV
,
Polupan
 
IM
,
Kolesnikova
 
IP
.
Comparative analysis of incidence of leptospirosis among farm animals and humans in Ukraine
.
Regul Mech Biosyst
 
2018
;
9
:
409
16
.

88

Markovych
 
O
,
Tymchyk
 
V
,
Kolesnikova
 
I
.
Leptospirosis in Zakarpattia Oblast (2005–2015)
.
Vector Borne Zoonotic Dis
 
2019
;
19
:
333
40
.

89

Takhampunya
 
R
,
Korkusol
 
A
,
Pongpichit
 
C
, et al.  
Metagenomic approach to characterizing disease epidemiology in a disease-endemic environment in Northern Thailand
.
Front Microbiol
 
2019
;
10
:
319
.

90

Salmon-Mulanovich
 
G
,
Simons
 
MP
,
Flores-Mendoza
 
C
, et al.  
Seroprevalence and risk factors for Rickettsia and Leptospira infection in four ecologically distinct regions of Peru
.
Am J Trop Med Hyg
 
2019
;
100
:
1391
400
.

91

Jittimanee
 
J
,
Wongbutdee
 
J
.
Prevention and control of leptospirosis in people and surveillance of the pathogenic Leptospira in rats and in surface water found at villages
.
J Infect Public Health
 
2019
;
12
:
705
11
.

92

Marinova-Petkova
 
A
,
Guendel
 
I
,
Strysko
 
JP
, et al.  
First reported human cases of leptospirosis in the United States Virgin Islands in the aftermath of Hurricanes Irma and Maria, September–November 2017
.
Open Forum Infect Dis
 
2019
;
6
:
ofz261
.

93

Bakoss
 
P
,
Hudecova
 
H
,
Jarekova
 
J
,
Perzelova
 
J
.
Human Hardjo leptospirosis detected in the Slovak Republic by using serum antibody absorption test
.
Bratisl Lek Listy
 
2019
;
120
:
171
6
.

94

Meny
 
P
,
Menéndez
 
C
,
Ashfield
 
N
, et al.  
Seroprevalence of leptospirosis in human groups at risk due to environmental, labor or social conditions
.
Rev Argent Microbiol
 
2019
;
51
:
324
33
.

95

Neela
 
VK
,
Azhari
 
NN
,
Joseph
 
N
, et al.  
An outbreak of leptospirosis among reserve military recruits, Hulu Perdik, Malaysia
.
Eur J Clin Microbiol Infect Dis
 
2019
;
38
:
523
8
.

96

Nadia
 
AS
,
Md-Zain
 
BM
,
Dharmalingam
 
S
,
Fairuz
 
A
,
Hani-Kartini
 
A
.
Serological survey of leptospirosis in high-risk rangers and wild animals from ex-situ captive centers
.
Trop Biomed
 
2019
;
36
:
443
52
.

97

Roqueplo
 
C
,
Kodjo
 
A
,
Demoncheaux
 
JP
, et al.  
Leptospirosis, one neglected disease in rural Senegal
.
Vet Med Sci
 
2019
;
5
:
536
44
.

98

Verma
 
A
,
Beigel
 
B
,
Smola
 
CC
, et al.  
Evidence of leptospiral presence in the Cumberland Gap region
.
PLoS Negl Trop Dis
 
2019
;
13
:
e0007990
.

99

Calderón
 
JC
,
Astudillo
 
M
,
Romero
 
MH
.
Epidemiological characterization of Leptospira spp. infection in working horses and occupationally exposed population of six Colombian police units
.
Biomedica
 
2019
;
39
:
19
34
.

100

Mgode
 
GF
,
Japhary
 
MM
,
Mhamphi
 
GG
,
Kiwelu
 
I
,
Athaide
 
I
,
Machang’u
 
RS
.
Leptospirosis in sugarcane plantation and fishing communities in Kagera northwestern Tanzania
.
PLoS Negl Trop Dis
 
2019
;
13
:
e0007225
.

101

Rodriguez
 
A
,
Mendoza
 
X
,
Martínez
 
W
.
Presence of pathogenic Leptospira spp. in an urban slum of the Colombian Caribbean: a One Health approach
.
Rev Cubana Med Trop
 
2020
;
73
:
e523
.

102

Murcia
 
CA
,
Astudillo
 
M
,
Romero
 
MH
.
Prevalence of leptospirosis in vaccinated working dogs and humans with occupational risk
.
Biomedica
 
2020
;
40
:
62
75
.

103

Alashraf
 
AR
,
Siti Khairani-Bejo
 
SK-B
,
Khor
 
KH
, et al.  
Serological detection of anti-Leptospira antibodies among animal caretakers, dogs and cats housed in animal shelters in Peninsular Malaysia
.
Sains Malaysiana
 
2020
;
49
:
1121
8
.

104

Grimm
 
K
,
Rivera
 
NA
,
Fredebaugh-Siller
 
S
, et al.  
Evidence of Leptospira serovars in wildlife and leptospiral DNA in water sources in a natural area in East-Central Illinois, USA
.
J Wildl Dis
 
2020
;
56
:
316
27
.

105

Wójcik-Fatla
 
A
,
Sroka
 
J
,
Zając
 
V
, et al.  
Potential sources of infection with selected zoonotic agents in the veterinary work environment—pilot studies
.
Ann Agric Environ Med
 
2020
;
27
:
146
50
.

106

Dushyant
 
P
,
Wiqar
 
K
,
Sandeep
 
C
, et al.  
Study of Leptospira infection in buffaloes through molecular and bacteriological techniques
.
Ind J Anim Res
 
2020
;
4
:
1024
8

107

Van
 
CD
,
Doungchawee
 
G
,
Suttiprapa
 
S
,
Arimatsu
 
Y
,
Kaewkes
 
S
,
Sripa
 
B
.
Association between Opisthorchis viverrini and Leptospira spp. infection in endemic Northeast Thailand
.
Parasitol Int
 
2017
;
66
:
503
9
.

108

Ospina-Pinto
 
MC
,
Hernández-Rodríguez
 
P
.
Identification of Leptospira spp. in the animal-environment interface (swine-water) in pig production cycle
.
Trop Anim Health Prod
 
2021
;
53
:
155
.

109

Benitez
 
ADN
,
Monica
 
TC
,
Miura
 
AC
, et al.  
Spatial and simultaneous seroprevalence of anti-Leptospira antibodies in owners and their domiciled dogs in a major city of Southern Brazil
.
Front Vet Sci
 
2021
;
7
:
580400
.

110

Mgode
 
GF
,
Mhamphi
 
GG
,
Massawe
 
AW
,
Machang’u
 
RS
.
Leptospira seropositivity in humans, livestock and wild animals in a semi-arid area of Tanzania
.
Pathogens
 
2021
;
10
:
696
.

111

Machado
 
FP
,
Kmetiuk
 
LB
,
Pellizzaro
 
M
, et al.  
Leptospira spp. antibody in wild boars (Sus scrofa), hunting dogs (Canis lupus familiaris), and hunters of Brazil
.
J Wildl Dis
 
2021
;
57
:
184
8
.

112

Dreyfus
 
A
,
Ruf
 
MT
,
Mayer-Scholl
 
A
, et al.  
Exposure to Leptospira spp. and associated risk factors in the human, cattle and dog populations in Bhutan
.
Pathogens
 
2021
;
10
:
308
.

113

Msemwa
 
B
,
Mirambo
 
MM
,
Silago
 
V
, et al.  
Existence of similar Leptospira serovars among dog keepers and their respective dogs in Mwanza, Tanzania, the need for a One Health approach to control measures
.
Pathogens
 
2021
;
10
:
609
.

114

Medkour
 
H
,
Amona
 
I
,
Akiana
 
J
, et al.  
Bacterial infections in humans and nonhuman primates from Africa: expanding the knowledge
.
Yale J Biol Med
 
2021
;
94
:
227
48
.

115

Shamsusah
 
NA
,
Zain
 
BMMD
,
Dharmalingam
 
S
,
Amran
 
F
,
Agustar
 
H-K
.
Detection and characterization of Leptospira spp. in wildlife and the environment at the ex situ conservation centre
.
Sains Malaysiana
 
2021
;
50
:
35
43
.

116

Aghamohammad
 
S
,
Anaraki
 
AH
,
Rahravani
 
M
, et al.  
Seroepidemiology of leptospirosis in livestock and workers of high-risk occupation in Kurdistan, Iran
.
Comp Immunol Microbiol Infect Dis
 
2022
;
82
:
101758
.

117

Setyaningsih
 
Y
,
Bahtiar
 
N
,
Kartini
 
A
,
Pradigdo
 
SF
,
Saraswati
 
LD
.
The presence of Leptospira sp. and leptospirosis risk factor analysis in Boyolali district
.
J Public Health Res
 
2022
;
11
:
jphr-2021
.

118

de Souza Rocha
 
K
,
da Rocha Albuquerque
 
M
,
da Silva Brito
 
J
, et al.  
Detection of Leptospira in a forest fragmentation area in eastern Amazon: a unique health approach
.
Comp Immunol Microbiol Infect Dis
 
2022
;
82
:
101757
.

119

Cunha
 
GRD
,
Pellizzaro
 
M
,
Martins
 
CM
, et al.  
Serological survey of anti-Leptospira spp. antibodies in individuals with animal hoarding disorder and their dogs in a major city of Southern Brazil
.
Vet Med Sci
 
2022
;
8
:
530
6
.

120

Richard
 
E
,
Geslin
 
J
,
Wurtzer
 
S
,
Moulin
 
L
.
Monitoring of Leptospira species diversity in freshwater bathing area and in rats in Paris, France
.
Sci Total Environ
 
2022
;
833
:
155121
.

121

do Couto
 
AC
,
Gravinatti
 
ML
,
Pellizzaro
 
M
, et al.  
One Health approach on serosurvey of anti-Leptospira spp. In homeless persons and their dogs in South Brazil
.
One Health
 
2022
;
15
:
100421
.

122

Meny
 
P
,
Iglesias
 
T
,
Menéndez
 
C
, et al.  
Seroprevalence of anti-Leptospira antibodies in equines and associated workers—isolation of Leptospira interrogans serogroup Canicola from equine urine
.
Zoonoses Public Health
 
2022
;
69
:
526
36
.

123

World Health Organization (WHO)
.
Human leptospirosis: guidance for diagnosis, surveillance and control
.
Rev Inst Med Trop Sao Paulo
 
2003
;
45
:
292
.

124

Picardeau
 
M
.
Diagnosis and epidemiology of leptospirosis
.
Med Mal Infect
 
2013
;
43
:
1
9
.

125

Khan
 
MS
,
Rothman-Ostrow
 
P
,
Spencer
 
J
, et al.  
The growth and strategic functioning of One Health networks: a systematic analysis
.
Lancet Planet Health
 
2018
;
2
:
e264
73
.

126

Escher
 
NA
,
Muhummed
 
AM
,
Hattendorf
 
J
,
Vonaesch
 
P
,
Zinsstag
 
J
.
Systematic review and meta-analysis of integrated studies on antimicrobial resistance genes in Africa—a One Health perspective
.
Trop Med Int Health
 
2021
;
26
:
1153
63
.

127

Alemayehu
 
T
,
Hailemariam
 
M
.
Prevalence of vancomycin-resistant Enterococcus in Africa in One Health approach: a systematic review and meta-analysis
.
Sci Rep
 
2020
;
10
:
20542
.

128

Ramatla
 
T
,
Tawana
 
M
,
Onyiche
 
TE
,
Lekota
 
KE
,
Thekisoe
 
O
.
Prevalence of antibiotic resistance in Salmonella serotypes concurrently isolated from the environment, animals, and humans in South Africa: a systematic review and meta-analysis
.
Antibiotics (Basel)
 
2021
;
10
:
1435
.

129

Ramatla
 
T
,
Tawana
 
M
,
Lekota
 
KE
,
Thekisoe
 
O
.
Antimicrobial resistance genes of Escherichia coli, a bacterium of “One Health” importance in South Africa: systematic review and meta-analysis
.
AIMS Microbiol
 
2023
;
9
:
75
89
.

130

Dikoumba
 
A-C
,
Onanga
 
R
,
Mangouka
 
LG
,
Boundenga
 
L
,
Ngoungou
 
EB
,
Godreuil
 
S
.
Molecular epidemiology of antimicrobial resistance in Central Africa: a systematic review
.
Access Microbiol
 
2023
;
5
:
acmi000556.v5
.

131

Ramatla
 
T
,
Tawana
 
M
,
Onyiche
 
TE
,
Lekota
 
KE
,
Thekisoe
 
O
.
One Health perspective of Salmonella serovars in South Africa using pooled prevalence: systematic review and meta-analysis
.
Int J Microbiol
 
2022
;
2022
:
8952669
.

132

Tawana
 
M
,
Onyiche
 
TE
,
Ramatla
 
T
,
Thekisoe
 
O
.
A “One Health” perspective of Africa-wide distribution and prevalence of Giardia species in humans, animals and waterbodies: a systematic review and meta-analysis
.
Parasitology
 
2023
;
150
:
769
80
.

133

Allan
 
KJ
,
Biggs
 
HM
,
Halliday
 
JEB
, et al.  
Epidemiology of leptospirosis in Africa: a systematic review of a neglected zoonosis and a paradigm for “One Health” in Africa
.
PLoS Negl Trop Dis
 
2015
;
9
:
e0003899
.

134

Asante
 
J
,
Noreddin
 
A
,
El Zowalaty
 
ME
.
Systematic review of important bacterial zoonoses in Africa in the last decade in light of the “One Health” concept
.
Pathogens
 
2019
;
8
:
50
.

135

Dhewantara
 
PW
,
Lau
 
CL
,
Allan
 
KJ
, et al.  
Spatial epidemiological approaches to inform leptospirosis surveillance and control: a systematic review and critical appraisal of methods
.
Zoonoses Public Health
 
2019
;
66
:
185
206
.

136

Cavalerie
 
L
,
Wardeh
 
M
,
Lebrasseur
 
O
, et al.  
One hundred years of zoonoses research in the horn of Africa: a scoping review
.
PLoS Negl Trop Dis
 
2021
;
15
:
e0009607
.

137

Evans
 
BR
,
Leighton
 
FA
.
A history of One Health
.
Rev Sci Tech
 
2014
;
33
:
413
20
.

138

Chakraborty
 
A
,
Miyahara
 
S
,
Villanueva
 
SYAM
,
Saito
 
M
,
Gloriani
 
NG
,
Yoshida
 
SI
.
A novel combination of selective agents for isolation of Leptospira species
.
Microbiol Immunol
 
2011
;
55
:
494
501
.

139

Barragan
 
V
,
Nieto
 
N
,
Keim
 
P
,
Pearson
 
T
.
Meta-analysis to estimate the load of Leptospira excreted in urine: beyond rats as important sources of transmission in low-income rural communities
.
BMC Res Notes
 
2017
;
10
:
71
.

140

Sykes
 
JE
,
Francey
 
T
,
Schuller
 
S
,
Stoddard
 
RA
,
Cowgill
 
LD
,
Moore
 
GE
.
Updated ACVIM consensus statement on leptospirosis in dogs
.
J Vet Intern Med
 
2023
;
37
:
1966
82
.

141

Owers Bonner
 
KA
,
Cruz
 
JS
,
Sacramento
 
GA
, et al.  
Effects of accounting for interval-censored antibody titer decay on seroincidence in a longitudinal cohort study of leptospirosis
.
Am J Epidemiol
 
2021
;
190
:
893
9
.

142

Cruz
 
JS
,
Nery
 
N
,
Sacramento
 
GA
, et al.  
Biannual and quarterly comparison analysis of agglutinating antibody kinetics on a subcohort of individuals exposed to Leptospira interrogans in Salvador, Brazil
.
Front Med (Lausanne)
 
2022
;
9
:
862378
.

143

Thornley
 
CN
,
Baker
 
MG
,
Weinstein
 
P
,
Maas
 
EW
.
Changing epidemiology of human leptospirosis in New Zealand
.
Epidemiol Infect
 
2002
;
128
:
29
36
.

144

Migliavaca
 
CB
,
Stein
 
C
,
Colpani
 
V
, et al.  
Meta-analysis of prevalence: I2 statistic and how to deal with heterogeneity
.
Res Synth Methods
 
2022
;
13
:
363
7
.

145

Von Hippel
 
PT
.
The heterogeneity statistic I2 can be biased in small meta-analyses
.
BMC Med Res Methodol
 
2015
;
15
:
35
.

146

Guernier
 
V
,
Lagadec
 
E
,
Cordonin
 
C
, et al.  
Human leptospirosis on Reunion Island, Indian ocean: are rodents the (only) ones to blame?
 
PLoS Negl Trop Dis
 
2016
;
10
:
e0004733
.

147

Casanovas-Massana
 
A
,
de Oliveira
 
D
,
Schneider
 
AG
, et al.  
Genetic evidence for a potential environmental pathway to spillover infection of rat-borne leptospirosis
.
J Infect Dis
 
2022
;
225
:
130
4
.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Supplementary data

Comments

0 Comments
Submit a comment
You have entered an invalid code
Thank you for submitting a comment on this article. Your comment will be reviewed and published at the journal's discretion. Please check for further notifications by email.