Abstract

Background

Meningiomas are the most common primary intracranial neoplasms, with highly variable patient outcomes. While most meningiomas are benign, a significant subset recurs postoperatively, presenting substantial treatment challenges. BAP1 gene inactivation has been suggested as a marker for aggressive meningiomas, although its precise molecular and clinical roles remain poorly understood.

Methods

To comprehensively investigate BAP1-altered meningiomas, we used six meningiomas with known BAP1 alterations as a discovery set. Genome-wide DNA methylation profiling of these samples, along 11,151 reference meningiomas, identified a distinct molecular cluster (n = 42) using unsupervised visualization approaches. These tumors were further characterized by DNA/RNA sequencing, histopathological examination, and a retrospective review of clinical data, compared to reference meningioma cohorts, providing a thorough characterization of this rare tumor subtype.

Results

Our integrative analysis revealed BAP1-altered meningiomas as a distinct CNS tumor subtype, characterized by recurrent loss of chromosome 3p21 and driven by various BAP1-inactivating alterations. Although rhabdoid morphology is present in some cases, it is not exclusive and should not be used as a grading criterion. Progression-free survival analysis showed a median of 21 months (95% CI: 12-NA), with a 2-year overall survival rate of 79% (95% CI: 60%-100%), highlighting the aggressive nature of these tumors. Gene expression profiling revealed upregulation of PRC target genes, dysregulated Polycomb signaling, and elevated expression in several cellular and growth factor pathways.

Conclusions

BAP1-altered meningiomas represent a distinct and aggressive CNS tumor subtype associated with PRC dysregulation and recurrent 3p chromosome loss. These findings support the designation "meningioma, BAP1-altered."

Information Accepted manuscripts
Accepted manuscripts are PDF versions of the author’s final manuscript, as accepted for publication by the journal but prior to copyediting or typesetting. They can be cited using the author(s), article title, journal title, year of online publication, and DOI. They will be replaced by the final typeset articles, which may therefore contain changes. The DOI will remain the same throughout.
This content is only available as a PDF.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://dbpia.nl.go.kr/pages/standard-publication-reuse-rights)
You do not currently have access to this article.