ABSTRACT

For the first time, the argon abundance relative to hydrogen abundance (Ar/H) in the narrow line region of a sample of Seyfert 2 nuclei has been derived. In view of this, optical narrow emission line intensities of a sample of 64 local Seyfert 2 nuclei (z < 0.25) taken from Sloan Digital Sky Survey DR7 and measured by the MPA/JHU group were considered. We adopted the Te-method for AGNs, which is based on direct determination of the electron temperature, together with a grid of photoionization model results, built with the cloudy code, to obtain a method for the derivation of the Ar/H abundance. We find that for a metallicity range of |$\rm 0.2 \: \lesssim \: (\mathit{ Z}/{\rm Z_{\odot }}) \: \lesssim \: 2.0$|⁠, Seyfert 2 nuclei present Ar/H abundance ranging from ∼0.1 to ∼3 times the argon solar value, adopting |$\rm log(O/H)_{\odot }=-3.31$| and |$\rm log(Ar/H)_{\odot }=-5.60$|⁠. These range of values correspond to |$\rm 8.0 \: \lesssim \: (12+log(O/H) \: \lesssim \: 9.0$| and |$\rm 5.4 \: \lesssim \: (12+log(Ar/H) \: \lesssim \: 6.9$|⁠, respectively. The range of Ar/H and Ar/O abundance values obtained from our sample are in consonance with estimations from extrapolations of the radial abundance gradients to the central parts of the disc for four spiral galaxies. We combined our abundance results with estimates obtained from a sample of H ii galaxies, which were taken from the literature, and found that the Ar/O abundance ratio decreases slightly as the O/H abundance increases.

1 INTRODUCTION

Active galactic nuclei (AGNs) present strong metal emission lines in their optical spectra, which when combined with hydrogen recombination lines, make it possible to estimate the abundance of heavy elements and the metallicity in the gas phase of these objects. AGNs play an essential role in chemical abundance studies of nearby objects and of the early stages of galaxy formation due to the aforementioned feature and to their high luminosity.

Among the heavy elements, oxygen presents strong emission lines (i.e. [O ii]λ3726, λ3729; [O iii]λ5007) emitted by its most abundant ions (⁠|$\rm O^{+}$|⁠, |$\rm O^{2+}$|⁠) in the optical spectrum of gaseous nebulae (H ii regions, Planetary Nebulae) and AGNs (e.g. Koski 1978; van Zee et al. 1998; Kennicutt, Bresolin & Garnett 2003; Maciel, Quireza & Costa 2007; Dopita et al. 2015; Flury & Moran 2020; Dors et al. 2020a). Therefore, the total metallicity (Z) of the gas phase from emission lines emitter objects is commonly traced by the oxygen abundance relative to hydrogen (O/H, e.g. McGaugh 1991; Yates, Kauffmann & Guo 2012; Kewley, Nicholls & Sutherland 2019). Other elements such as the noble gases (e.g. Ne, Ar) present emission lines in the optical spectrum emitted by only few of their ions (e.g. |$\rm Ne^{2+}, Ar^{2+}$|⁠), which make it necessary to apply ionization correction factors (ICFs) proposed by Peimbert & Costero (1969) (see Stasińska 2002; Dors et al. 2013, 2016; Delgado-Inglada, Morisset & Stasińska 2014) in order to account for the unobserved ions in the estimation of the total abundance. The use of ICFs can introduce uncertainties in order of 20 per cent (e.g. Henry, Kwitter & Howard 1996; Alexander & Balick 1997; Croxall et al. 2016) in the resulting total abundance (for a detailed discussion on ICF uncertainties see Delgado-Inglada et al. 2014). Despite this drawback, noble gases can be used to derive the metallicity with some advantages over oxygen, as they are also useful elements for determining constraints in stellar nucleosynthesis studies. Noble gas atoms cannot combine in molecules formation and they can not be trapped in dust grains due to their quantum configuration, unlike the oxygen that is depleted on to dust in order of 0.1 dex (e.g. Izotov et al. 2006; Pilyugin, Thuan & Vílchez 2007).

The Te-method, which is based on direct estimation of the electron temperature, is widely used in the literature as the most reliable approach for determining the chemical abundance of heavy metals in gaseous nebulae (for a review see Peimbert, Peimbert & Delgado-Inglada 2017; Pérez-Montero 2017). The Te-method has been bolstered by the consonance between O/H abundance estimates in H ii regions in the solar vicinity and those obtained from observations of the weak interstellar O iλ1356 line towards stars (see Pilyugin 2003 and references therein). Moreover, in the Milky Way and in nearby galaxies, good agreement between O/H abundance estimates in H ii regions and in B-type stars has recently been derived (e.g. Toribio San Cipriano et al. 2017). In this regard, abundance determinations of heavy metals (O, N, S, Ar, etc.) based on the Te-method have been carried out in thousands of star-forming regions (SFs; i.e. H ii regions, H ii galaxies) at the local universe and for certain objects at high redshifts over decades (see Dors et al. 2020a and reference therein).

Unfortunately, the situation is opposite for AGNs, where, except from oxygen, the majority of the abundances for other elements are not available in the literature. In fact, the most complete metal abundance determinations based on Te-method was carried out by Osterbrock & Miller (1975) for Cygnus A (z = 0.05607), who derived the O, N, Ne, S, and Fe abundances in relation to hydrogen. After this pioneering work some few studies have applied the Te-method to abundance estimations in AGNs, however, in most cases, only oxygen abundance determinations have been derived (e.g. Alloin et al. 1992; Izotov & Thuan 2008; Revalski et al. 2018a,b, 2021; Dors et al. 2015, 2020a,b). Recently, Flury & Moran (2020), adopting a methodology based on a reverse engineering of the Te-method, derived the first (N/O)-(O/H) relation for AGNs. Although studies relied on photoionization models have been applied to derive metal abundance in AGNs (e.g. Stasińska 1984; Ferland & Osterbrock 1986; Storchi-Bergmann et al. 1998; Groves, Heckman & Kauffmann 2006; Feltre, Charlot & Gutkin 2016; Castro et al. 2017; Pérez-Montero et al. 2019; Thomas et al. 2019; Carvalho et al. 2020; Dors et al. 2021; Pérez-Díaz et al. 2021), most of them have produced only estimations for O/H or metallicity. Since the electron temperatures throughout the emission nebula are computed by thermal balancing (see the seminal paper by Williams 1967), the abundances of the most important elements are used as input parameters in photoionization models. All the lines, even if not observed, contribute to the gas cooling rate. In most of the papers which describe the results obtained by using photoionization models, the element relative abundances to H, which were not found to be particularly different from the solar ones, are unfortunately not published in the literature.

The use of photoionization model to derive abundance of different elements other than the oxygen (e.g. N, S, Ar) is (relatively) difficult, hence, it is necessary to find a solution for the electron temperature (or for O/H, the main cooler element) and for the ionization degree of the gas. Afterwards, the lines of the element under study must be adjusted in order to obtain its abundance (see for instance, Pérez-Montero & Díaz 2007; Pérez-Montero et al. 2010; Congiu et al. 2017; Contini 2017; Dors et al. 2017, 2021; Polles et al. 2019). This procedure can produce a degeneracy among nebular parameters, resulting in somewhat uncertain elemental abundances (Morisset et al. 2016; Morisset 2018). In this sense, the use of the Te-method produces more exact elemental abundance values in comparison with those estimated through photoionization models.

In particular, the argon abundance determination in AGNs is very important in the study of galaxy evolution and stellar nucleosynthesis, since the stellar production and later ejection of this element to the Interstellar Medium (ISM) in the high metallicity regime can be accessed. The stellar nucleosynthesis theory predicts a primary origin for oxygen and argon (also for sulphur and neon) which are predominantly produced on relatively short time-scales by core-collapse supernovae (SNe; massive stars) explosions (e.g. Woosley & Weaver 1995). Thus, assuming a universal initial mass function (IMF),1 there is expectation for a relatively constant value of the Ar/O abundance ratio with the O/H (or metallicity) variation, as derived by several authors in chemical abundance studies of SFs (e.g. Thuan, Izotov & Lipovetsky 1995; Izotov & Thuan 1999; van Zee & Haynes 2006; van Zee & Haynes 2006; Guseva et al. 2011). However, some authors have found different behaviour of Ar/O with O/H. For example, Izotov et al. (2006), who used a large sample of star-forming galaxies whose observational data were taken from SDSS-DR3 (Abazajian et al. 2005), found that Ar/O abundance ratio decreases by 0.15 dex with the increase of O/H for the range |$\rm 7.1 \: \lesssim \: 12+\log (O/H) \: \lesssim \: 8.5$| (see also Pérez-Montero et al. 2007). On the other hand, recent results from the CHAOS project (Berg et al. 2015) derived by Berg et al. (2020), who applied the Te-method to 190 individual H ii regions located in nearby galaxies, found Ar/O about constant and similar to the solar value for the range |$\rm 8.3 \: \lesssim \: 12+\log (O/H) \: \lesssim \: 9.0$|⁠, and a high decrease of this abundance ratio for the very low abundance regime. Finally, Kennicutt et al. (2003) hinted that the Ar/O abundance decreases at high metallicity (⁠|$\rm 8.5 \: \lesssim \: 12+\log (O/H) \: \lesssim \: 8.7$|⁠) in the M 101 spiral galaxy.

For the very high metallicity regime (⁠|$\rm 12 +\log (O/H) \: \gtrsim \: 8.8$|⁠), the behaviour of Ar/O with O/H is poorly known as well as its abundance in AGNs. Recently, Dors et al. (2020a) adapted the Te-method to chemical abundance studies of AGNs, which made it possible to obtain direct O/H estimates up to the very high metallicity regime, i.e. |$\rm 12+log(O/H)\approx 9.3$|⁠, an abundance value which is about 0.3 dex higher than the maximum value obtained for SFs (Pilyugin et al. 2007; Berg et al. 2020). Therefore, abundance studies in AGNs through the Te-method allow for the calculations of reliable Ar/H abundances in this class of object and further investigating the Ar/O-O/H relation at very high metallicity regime, which is inaccessible in SF abundance studies.

In this context, we used the Te-method and developed a new methodology based on photoionization model to calculate the abundance of the argon relative to hydrogen in the narrow-line regions (NLRs) of Seyfert 2 galaxies, whose data were taken from the SDSS-DR7 (York et al. 2000). The present study is organized as follows. In Section 2, the observational data and the methodology used to estimate the oxygen and argon abundances are presented. The results and the discussion are presented in Section 3. Finally, the conclusion of the outcome is given in Section 4.

2 METHODOLOGY

To determine the total abundance of the argon and oxygen in relation to hydrogen abundance (Ar/H, O/H), first, we consider optical emission-line intensities of AGNs type Seyfert 2 from Sloan Digital Sky Survey Data Release 7 (SDSS-DR7; York et al. 2000). These observational data were used to calculate the Ar/H and O/H abundances using the Te-method. We used photoionization models, built with the cloudy code (Ferland et al. 2017), in order to obtain an ICF for the |$\rm Ar^{2+}$| and an estimation of the temperature for the gas region occupied by this ion. In what follows, a description of the observational data and the methodology adopted to obtain the abundances is presented.

2.1 Observational data

We used optical (3000 < λ(Å) < 7200) reddening-corrected emission-line intensities of a sample of Seyfert 2 nuclei obtained from the SDSS-DR7 (York et al. 2000) data made available by MPA/JHU group.2 The sample consists of 463 Seyfert 2 nuclei with redshift |$z \: \lesssim \: 0.4$| and stellar masses of the hosting galaxies in the range of |$9.4 \: \lesssim \: \log (M/{\rm M_\odot }) \: \lesssim \: 11.6$| selected by Dors et al. (2020b). From this sample, we considered a sub-sample containing only objects which have the [O ii]λ3726+3729, [O iii]λ4363, [O iii]λ5007, H α, [S ii]λ6716, [S ii]λ6731, and [Ar iii]λ7135 emission lines measured with an error lower than 50  per cent. This criterion reduced the sample to 64 objects out of the 463 selected by Dors et al. (2020b), with redshif in the range of |$0.04 \: \lesssim \: z \: \lesssim \: 0.25$| and range of the stellar masses of the hosting galaxies |$9.9 \: \lesssim \: \log (M/{\rm M_\odot }) \: \lesssim \: 11.2$|⁠.

In Fig. 1, a standard Baldwin, Phillips & Terlevich diagram (Baldwin, Phillips & Terlevich 1981) log([O iii]λ5007/H β) versus log([N ii]λ6584/H α), the observational line ratio intensities for the 64 objects are represented by red points. Also in this figure, the theoretical classification criterion (represented by the black line) proposed by Kewley et al. (2001), which depict that objects with
(1)
are classified as AGNs, otherwise, as SFs, is shown. It can be seen that the sample cover a large range of ionization degree and metallicity hence a wide range of [O iii]/H β and [N ii]/H α are observed (e.g. Groves et al. 2006; Feltre et al. 2016; Carvalho et al. 2020).
Diagnostic diagram log([O iii]λ5007/H β) versus log([N ii]λ6584/H α). Red points represent our sample of Seyfert 2 nuclei (see Section 2.1) whose observational emission-line ratios were taken from the SDSS-DR7 (York et al. 2000) and measured by the MPA/JHU group. The solid black line represents the AGN/star-forming region separation line proposed by Kewley et al. (2001) and given by the equation (1).
Figure 1.

Diagnostic diagram log([O iii]λ5007/H β) versus log([N ii]λ6584/H α). Red points represent our sample of Seyfert 2 nuclei (see Section 2.1) whose observational emission-line ratios were taken from the SDSS-DR7 (York et al. 2000) and measured by the MPA/JHU group. The solid black line represents the AGN/star-forming region separation line proposed by Kewley et al. (2001) and given by the equation (1).

The electron density (Ne) of each one of the 64 Seyfert 2 nuclei was calculated from the |$[\rm{ S}\, {\small {II}}]\lambda 6716/\lambda 6731$| line ratio, assuming an electron temperature of 10 000 K, and using the pyneb routine (Luridiana, Morisset & Shaw 2015). In Fig. 2, a histogram with the Ne distribution of our sample is shown. It can be seen that the Ne values for our sample (the maximum value is about 3000 cm−3) are lower than the critical density (i.e. |$10^{4-8} \rm \: cm^{-3}$|⁠, see Vaona, Trocar & Hammer 2012) of the emission lines involved in this study therefore effects of collisional de-excitation are negligible in our abundance estimates. In Dors et al. (2020b), a complete description of the selection criteria adopted to obtain the sample as well as a discussion about aperture effects on the abundance determination is presented. Moreover, effects of electron density variation along the AGN radius, X-Ray dominated regions, shock and electron temperature fluctuations in abundance determinations have been discussed by Dors et al. (2020a, 2021) and these are not repeated here.

Histogram showing the distribution of electron density values from our sample of 64 objects (see Section 2.1) calculated with PyNeb routine (Luridiana et al. 2015) and considering an electron temperature of 104 K. The y-axis represents the number of object with a given range of electron density value.
Figure 2.

Histogram showing the distribution of electron density values from our sample of 64 objects (see Section 2.1) calculated with PyNeb routine (Luridiana et al. 2015) and considering an electron temperature of 104 K. The y-axis represents the number of object with a given range of electron density value.

2.2 Te-method

It was possible to estimate the Ar/H and O/H abundances through the Te-method for the sample of 64 objects. In view of the Te-method, we followed a similar methodology proposed by Pérez-Montero (2017) and Dors et al. (2020a).

2.2.1 Oxygen abundance

First, for each object, we calculated the temperature of the high ionization gas zone (t3) and the electron density (Ne) based on the dependence of these nebular parameters on the [O iii](λ4949+λ5007)/λ4363 and [S ii]λ6716/λ6731 line ratios, respectively. We used the function getcrosstemden from the pyneb code (Luridiana et al. 2015), where the value of each parameter was obtained by interacting over the two sensitive line ratios above. The errors in Ne and t3 were calculated adding a Monte Carlo random-Gauss values to the sample with the function addmontecarloobs in the pyneb code. The symbol t3 represents the electron temperature in units of 104 K. The mean value derived for t3 from our sample is ∼1.5 and the uncertainty is ∼0.3. For the electron density, we found a mean value of |$470 \: \rm cm^{-3}$| and an uncertainty of |$\sim 250 \: \rm cm^{-3}$|⁠.

Since it is not possible to estimate the temperature for the low ionization gas zone (t2) due to the absence of the auroral [N ii]λ5755 and [O ii]λ7319, λ7330 line intensities, the following theoretical relation (equation 2) between t2 and t3, derived by Dors et al. (2020a) for chemical abundance studies of AGNs and obtained by using a photoionzation model grid built with the cloudy code (Ferland et al. 2013) by Carvalho et al. (2020), was adopted:
(2)
where |$\rm a=0.17$|⁠, |$\rm b=-1.07$|⁠, |$\rm c=2.07$|⁠, and |$\rm d=-0.33$|⁠, while t2 and t3 are in units of 104 K. In Riffel et al. (2021), this theoretical t2t3 relation was compared with direct electron temperature estimations, calculated through observational auroral emission lines for a sample of AGNs, and a good agreement was found between them. However, these authors indicated that some cautions must be taken into account in the use of equation (2) for AGNs with strong outflowing gas.
To calculate the ionic abundances of O2 + and O+ relative to H+ the expressions provided by Pérez-Montero (2017):
(3)
and
(4)
respectively, where ne is the electron density Ne in units of 104 cm−3, were used. The uncertainty of t3 was considered in the determination of t2. Thus, in the derivation of |$\rm O^{2+}/H^{+}$| ionic abundance the uncertainties of the [O iii]/H β line ratio and of t3 were taken into account. The same procedure was considered for the derivation of |$\rm O^{+}/H^{+}$|⁠, where the ne and t2 uncertainties were also taken into account.
Finally, the total abundance of the oxygen is approximated by
(5)
It is not possible to derive ICF(O), for instance through the expressions proposed by Torres-Peimbert & Peimbert (1977) and Izotov et al. (2006), due to the absence of the He iiλ4686 emission line in our observational data. Therefore, we assumed ICF(O) = 1.20, an average value obtained by Flury & Moran (2020) and Dors et al. (2020a). Oxygen ICF values translates into an abundance correction for AGNs of ∼0.1 dex, which is in agreement with the uncertainty derived in H ii regions via Te-method estimates (e.g. Kennicutt et al. 2003; Hägele et al. 2008; Berg et al. 2020).

2.2.2 Argon abundance

Generally, to estimate the temperature of the electrons excitating the |$\rm Ar^{2+}$|⁠, the approach proposed by Garnett (1992) which is based on photoionization model results is assumed in chemical abundance studies of SFs (e.g. Kennicutt et al. 2003; Hägele et al. 2008). A similar electron temperature is assumed for the gas regions where the |$\rm Ar^{2+}$| and |$\rm S^{2+}$| ions are located, i.e.
(6)
The |$T_{\rm e}(\rm{ S}\, \small {II})$| can be calculated directly from [S iii](λ9069+λ9532)/λ6312 or through the following theoretical relation proposed by Garnett (1992), i.e.
(7)
when [S iii](λ9069+λ9532)/λ6312 line ratio can not be measured. In equation (7), |$T_{\rm e}(\rm{ O}\, \small {III})= t_{3} \: \times \:10^{4}\:\rm K$|⁠.

However, Dors et al. (2020a) showed that, in general, AGNs present a distinct electron temperature structure than H ii regions (see also Armah et al. 2021; Dors et al. 2021; Riffel et al. 2021). Thus, it is worthwhile to ascertain the validity of equations (6) and (7) for AGNs. In view of this, we used the results from the photoionization model grid by Carvalho et al. (2020) and considered predictions for |$T_{\rm e}(\rm{ A}\, {\small {III}})$| and |$T_{\rm e}(\rm{ S}\,\small {III})$|⁠. This grid of photoionization models considered a wide range of AGN nebular parameters whose optical predicted emission lines reproduce those of a large sample of Seyfert 2 nuclei (for a detailed description of these models see Carvalho et al. 2020). The temperature values predicted by the photoionization models and considered here correspond to the mean temperature for |$\rm Ar^{2+}$| and |$\rm S^{2+}$| over the nebular AGN radius times the electron density. In Fig. 3, bottom panel, the photoionization model predictions for |$T_{\rm e}(\rm{ S}\, \small {III})$| versus |$T_{\rm e}(\rm{ Ar}\, \small {III})$| (in units of 104 K) and the approach given by equation (6) are shown. It can be seen that, in contrast to H ii regions, |$T_{\rm e}(\rm{ A}\, \small {III})$| is generally higher than |$T_{\rm e}(\rm{ S}\, \small {III})$|⁠, indicating that equation (6) is not valid for AGN abundance studies. The same can be seen in Fig. 3, top panel, where the AGN model predictions show a large deviation from the temperature relation given by equation (7).

Temperature values for the $\rm S^{2+}$, $\rm Ar^{2+}$, and $\rm O^{2+}$ predicted by the photoionization models built by Carvalho et al. (2020) by using the cloudy code (Ferland et al. 2013). The values correspond to the model predicted mean temperature (in units of 104 K) for each ion over the nebular AGN radius times the electron density. Bottom panel: temperature values for the $\rm S^{2+}$ versus those for $\rm A^{2+}$. The black line corresponds to equality between the temperatures (equation 6) proposed by Garnett (1992) for H ii regions. Red points represent photoionization model results. Top panel: same as the bottom panel but for $\rm S^{2+}$ versus t3, where t3 represents the temperature for $\rm O^{2+}$. Black line represents equation (7) proposed by Garnett (1992).
Figure 3.

Temperature values for the |$\rm S^{2+}$|⁠, |$\rm Ar^{2+}$|⁠, and |$\rm O^{2+}$| predicted by the photoionization models built by Carvalho et al. (2020) by using the cloudy code (Ferland et al. 2013). The values correspond to the model predicted mean temperature (in units of 104 K) for each ion over the nebular AGN radius times the electron density. Bottom panel: temperature values for the |$\rm S^{2+}$| versus those for |$\rm A^{2+}$|⁠. The black line corresponds to equality between the temperatures (equation 6) proposed by Garnett (1992) for H ii regions. Red points represent photoionization model results. Top panel: same as the bottom panel but for |$\rm S^{2+}$| versus t3, where t3 represents the temperature for |$\rm O^{2+}$|⁠. Black line represents equation (7) proposed by Garnett (1992).

In order to estimate a more precise temperature to derive the |$\rm Ar^{2+}/H^+$| ionic abundance, the photoionization models by Carvalho et al. (2020) were used to obtain a relation between |$T_{\rm e}(\rm{ Ar}\, \small {III})$| and t3 as shown in Fig. 4 because t3 can be derived directly from [O iii](λ4959 + λ5007)/λ4363 observational line ratio of our sample. In Fig. 4, |$t_{\rm e}(\rm{ Ar}\, \small {III})$| corresponds to the value of |$T_{\rm e}(\rm{ Ar}\, \small {III})$| in units of 104 K. It can be seen from Fig. 4 that there is a good correlation between the temperatures and a fit to the points results in
(8)
Same as Fig. 3 but for $T_{\rm e}(\rm{ Ar}\, \small {III})$ versus t3. Black curve represents a fit to the points represented by equation (8).
Figure 4.

Same as Fig. 3 but for |$T_{\rm e}(\rm{ Ar}\, \small {III})$| versus t3. Black curve represents a fit to the points represented by equation (8).

The |$\rm Ar^{2+}/H^{+}$| ionic abundance is calculated by the expression also provided by Pérez-Montero (2017)
(9)
To calculate the total argon abundance in relation to the hydrogen (Ar/H) using only the |$\rm Ar^{2+}/H^{+}$| abundance it is necessary to consider an ICF in order to take into account the presence of ions with other ionization levels. In fact, ions such as |$\rm Ar^{3+}$| and |$\rm Ar^{4+}$| have emission lines (e.g. [Ar iv]λ4740, [Ar v]λ7006) present in optical AGN spectra (e.g. Koski 1978; Alloin et al. 1992). Hitherto, no ICF for the argon abundance determinations in AGNs has been proposed in the literature and, in principle, due to distinct ionization structure of AGNs, theoretical ICFs proposed by H ii regions (e.g. Mathis 1985; Izotov et al. 2006; Pérez-Montero et al. 2007; Berg et al. 2020; Amayo, Delgado-Inglada & Stasińska 2021) can not be applied to this class of objects. In this sense, we used the Carvalho et al. (2020) photoionization models to derive an argon ICF, defined by
(10)
and in terms of the function |$\rm x=[O^{2+}/(O^{+}+O^{2+})]$| ionic abundance ratio. In Fig. 5 the results for ICF(⁠|$\rm Ar^{2+}$|⁠) versus x are shown. A fit to the points produces the relation
(11)
where |$\rm a=20.88\pm 3.80$|⁠, |$\rm b=-9.74\pm 3.64$|⁠, and |$\rm c=2.68\pm 0.69$|⁠. A large scattering of the points can be seen in Fig. 5. We investigated the source of this scattering to ascertain whether it is due to variation in the nebular parameters Ne, αox (slope of the spectral energy distribution, SED)3 and ionization parameter U (not shown). We did not find any dependence of these parameters with the ICF(⁠|$\rm Ar^{2+}$|⁠)–x relation. However, a clear dependence between ICF(⁠|$\rm Ar^{2+}$|⁠) and x on the gas metallicity is noted in Fig. 5, in the sense that for a fixed x value, we derive a higher ICF value with the decrease of the metallicity. A dependence between the metallicity and ICF–x relations for distinct elements was also derived by Izotov et al. (2006) for SFs.
ICF for $\rm Ar^{2+}$ (as defined in equation 10) as a function of the $\rm x=[O^{2+}/(O^{+}+O^{2+})]$ abundance ratio. Points represent results from photoionization models built by Carvalho et al. (2020). Model results assuming different metallicities (in relation to the solar value) are represented by different colours, as indicated. The curve represents a fit to all the points given by the equation (11).
Figure 5.

ICF for |$\rm Ar^{2+}$| (as defined in equation 10) as a function of the |$\rm x=[O^{2+}/(O^{+}+O^{2+})]$| abundance ratio. Points represent results from photoionization models built by Carvalho et al. (2020). Model results assuming different metallicities (in relation to the solar value) are represented by different colours, as indicated. The curve represents a fit to all the points given by the equation (11).

Thus, in order to obtain a more exact ICF derivation, we produce a bi-parametric function, i.e. |$\rm ICF(Ar^{2+})=\mathit{ f}[12+\log (O/H), \mathit{ x}]$|⁠. We converted the metallicity (Z) assumed in the photoionization models built by Carvalho et al. (2020) in oxygen abundance through the expression
(12)
where |$\log (\rm O/H)_{\odot }=-3.31$| (Allende Prieto, Lambert & Asplund 2001). In Fig. 6, the bi-parametric calibration is shown where the points represent the photoionization model results. We fit two functions, one for |$\rm \mathit{ x} \: \lt \: 0.6$| represented by a blue surface in Fig. 6 and given by
(13)
where |$\rm \mathit{ y} = 12+\log (\rm{O/H})$| and |$\rm \mathit{ x}=[O^{2+}/(O^{+}+O^{2+})]$| and another one for |$\rm \mathit{ x} \: \gt \: 0.6$| represented by the green surface and given by
(14)
Bi-parametric calibration among the $\rm ICF(Ar^{2+})$, $\rm 12+\log (O/H)$, and $\rm x=[O^{2+}/(O^{+}+O^{2+})]$. Points represent the photoionization model results built by Carvalho et al. (2020) while the surfaces represent the best fit to the points. The blue surface is given by equation (13) and valid it is for $\rm \mathit{ x} \: \lt \: 0.6$ while the green surface, given by equation (14), is valid for $\rm \mathit{ x} \: \gt \: 0.6$.
Figure 6.

Bi-parametric calibration among the |$\rm ICF(Ar^{2+})$|⁠, |$\rm 12+\log (O/H)$|⁠, and |$\rm x=[O^{2+}/(O^{+}+O^{2+})]$|⁠. Points represent the photoionization model results built by Carvalho et al. (2020) while the surfaces represent the best fit to the points. The blue surface is given by equation (13) and valid it is for |$\rm \mathit{ x} \: \lt \: 0.6$| while the green surface, given by equation (14), is valid for |$\rm \mathit{ x} \: \gt \: 0.6$|⁠.

The expressions above were applied to derive the total abundance of the argon in relation to the hydrogen (Ar/H).

The mean errors for the 12+log(Ar/H) and 12+log(O/H) abundances derived for the objects of our sample are ∼0.25 and ∼0.13 dex, respectively. These errors are in order of those derived for O/H abundance determinations in nearby AGNs by Revalski et al. (2018a,b, 2021), who also applied the Te-method. However, they are somewhat (∼0.1 dex) higher than those derived for disc H ii regions located in nearby galaxies (e.g. Berg et al. 2020), because the [O iii]λ4363 auroral line is weaker in AGNs than in H ii regions, resulting in a higher uncertainty in its flux, which in turn implies a larger uncertainty in the AGN abundance values.

In Table 1, the SDSS identification of the objects of the sample, electron temperature and electron density values, argon ICF values, ionic and total abundances, redshift, and stellar mass of the hosting galaxies are listed.

Table 1.

Results obtained from our sample of objects. Columns: (1) SDSS name, (2) Te(O iiii) (in K), (3) Te(A iiii) (in K), (4) electron density (in units of |$\rm cm^{-3}$|⁠), (5) ICF(⁠|$\rm Ar^{2+}$|⁠), (6) |$\rm 12+\log (O^{+}/H^{+})$|⁠, (7) |$\rm 12+\log (O^{2+}/H^{+})$|⁠, (8) |$\rm 12+\log (A^{2+}/H^{+})$|⁠, (9) 12+log(O/H), (10) 12+log(Ar/H), (11) redshift and (12) Mass (in units of |$10^{7} \: \rm M_{\odot }$|⁠).

(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)
J101754.72−002811.914510114812982.798.037.875.988.346.430.181711.13
J101536.21+005459.318252119941842.148.397.785.608.565.930.120210.71
J104426.16+001707.3887283432922.408.308.416.318.746.690.150210.71
J105408.69−000111.016992119712272.398.427.335.368.535.740.108110.21
J111652.97+010615.516865119522592.848.057.495.548.236.000.130910.70
J114017.31−001543.313459106775052.468.177.996.098.476.480.124510.62
J113049.84+005346.719873118276002.358.377.495.628.505.990.104310.70
J113326.76+001443.914509113864972.618.167.545.628.336.030.114310.48
J115616.76−002221.015385117247812.168.317.966.408.556.740.109210.74
J122012.58−010531.5112771003914432.188.398.436.248.796.580.118310.55
J123441.93−010034.714568115183812.528.157.755.558.375.950.080110.25
J124116.14+004423.014438115376592.248.268.025.908.546.260.090010.74
J130433.90+000402.916195118961582.568.197.535.928.356.330.246311.23
J132625.73−002148.617204119882732.898.107.255.538.245.990.189310.78
J134005.97−010646.420688116811892.358.487.295.438.595.810.129510.77
J133821.79+002329.212623107972332.608.178.256.148.596.550.129210.87
J140301.05+005343.514002113291553.037.947.655.518.205.990.166410.61
J145956.36−002821.512503106822022.578.138.016.148.456.550.109610.84
J130354.71−030631.811344100737571.848.538.406.288.856.550.077810.65
J171544.02+600835.417771120008192.148.387.795.598.565.920.156910.98
J172028.98+584749.614587114944942.928.037.425.298.215.750.126910.84
J172352.43+582318.517778119979392.918.077.315.208.225.660.079910.24
J153035.77+001517.711505101652072.288.247.935.878.506.230.072110.53
J002312.34+003956.319764118694472.068.547.735.678.685.980.072710.16
J012937.25−003838.614176114011412.578.167.605.518.345.920.179411.06
J012720.32+010214.6983890664982.278.418.556.368.876.720.174511.09
J013957.81−004504.211872103814412.748.118.186.408.526.830.161610.83
J014153.97+010505.419553118665812.238.407.625.338.555.680.101310.95
J011016.00+150515.912920108905342.288.278.196.108.616.460.059710.19
J013555.82+143529.612902108832672.528.147.865.688.406.080.071910.83
J074213.71+391705.31045195092012.408.228.196.198.596.570.07049.94
J082017.99+465125.312773108231302.138.467.705.648.615.970.052410.35
J082910.18+504005.711671102202052.008.447.925.918.646.210.07399.99
J085223.96+531550.617610119955242.528.277.405.548.415.940.128010.78
J095123.44+581621.218905119521402.458.486.965.128.585.510.148610.91
J033923.14−054841.512841108563312.548.168.135.868.526.270.084810.26
J091605.16+002030.312682107914821.838.538.145.778.766.030.143410.97
J093509.12+002557.415921118335512.708.117.525.248.295.680.151210.78
J100013.84+624703.41099698684882.558.158.095.968.506.370.114510.33
J102039.81+642435.815695117791722.298.257.865.478.475.830.122310.74
J095759.45+022810.512988109053252.358.238.116.128.556.490.119410.56
J100921.26+013334.513197110297352.208.328.276.048.686.390.143710.72
J112748.89+020302.616053118454512.258.307.765.538.495.880.126710.80
J114304.62+013946.21085898101972.038.388.045.948.626.250.092810.84
J114029.55+022744.620626116803752.488.287.445.238.425.620.123010.63
J115854.96+033254.915449117413732.278.367.635.418.515.770.084110.51
J125503.63+012233.713282110267312.098.378.255.948.696.260.164210.93
J125209.68+021558.015928118152002.538.287.385.268.415.660.206410.95
J130220.35+024048.813312110457102.338.237.855.988.466.350.176610.93
J134959.37+030058.014538115453462.258.267.976.178.526.520.109710.35
J140231.58+021546.31110999342632.038.448.426.078.816.380.179711.06
J143214.54+023228.515605117874392.318.267.775.588.465.950.112310.91
J074257.23+333217.914084113333662.778.057.665.538.275.970.147410.71
J090246.69+520932.813797112542902.348.228.025.708.516.070.137510.95
J141530.97+035916.616651119284632.418.407.315.568.525.950.080510.49
J141351.75+042208.916889119572932.478.237.575.418.405.800.144910.60
J144925.29+044157.2946788101261.918.468.156.148.716.420.082410.04
J151244.15+042848.314481114395752.378.237.735.668.436.040.079610.34
J155404.39+545708.212320106091472.488.208.206.008.586.390.04579.91
J164938.71+420658.414941116243452.348.307.635.618.465.980.150310.58
J165944.29+392846.116801119472852.328.327.625.788.486.150.081810.09
J100602.50+071131.8146491153515881.878.647.955.768.806.040.120511.19
J163344.99+372335.120228117357712.508.217.575.548.385.940.174810.80
J125558.75+291459.411324100553662.008.448.366.218.786.510.06819.91
(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)
J101754.72−002811.914510114812982.798.037.875.988.346.430.181711.13
J101536.21+005459.318252119941842.148.397.785.608.565.930.120210.71
J104426.16+001707.3887283432922.408.308.416.318.746.690.150210.71
J105408.69−000111.016992119712272.398.427.335.368.535.740.108110.21
J111652.97+010615.516865119522592.848.057.495.548.236.000.130910.70
J114017.31−001543.313459106775052.468.177.996.098.476.480.124510.62
J113049.84+005346.719873118276002.358.377.495.628.505.990.104310.70
J113326.76+001443.914509113864972.618.167.545.628.336.030.114310.48
J115616.76−002221.015385117247812.168.317.966.408.556.740.109210.74
J122012.58−010531.5112771003914432.188.398.436.248.796.580.118310.55
J123441.93−010034.714568115183812.528.157.755.558.375.950.080110.25
J124116.14+004423.014438115376592.248.268.025.908.546.260.090010.74
J130433.90+000402.916195118961582.568.197.535.928.356.330.246311.23
J132625.73−002148.617204119882732.898.107.255.538.245.990.189310.78
J134005.97−010646.420688116811892.358.487.295.438.595.810.129510.77
J133821.79+002329.212623107972332.608.178.256.148.596.550.129210.87
J140301.05+005343.514002113291553.037.947.655.518.205.990.166410.61
J145956.36−002821.512503106822022.578.138.016.148.456.550.109610.84
J130354.71−030631.811344100737571.848.538.406.288.856.550.077810.65
J171544.02+600835.417771120008192.148.387.795.598.565.920.156910.98
J172028.98+584749.614587114944942.928.037.425.298.215.750.126910.84
J172352.43+582318.517778119979392.918.077.315.208.225.660.079910.24
J153035.77+001517.711505101652072.288.247.935.878.506.230.072110.53
J002312.34+003956.319764118694472.068.547.735.678.685.980.072710.16
J012937.25−003838.614176114011412.578.167.605.518.345.920.179411.06
J012720.32+010214.6983890664982.278.418.556.368.876.720.174511.09
J013957.81−004504.211872103814412.748.118.186.408.526.830.161610.83
J014153.97+010505.419553118665812.238.407.625.338.555.680.101310.95
J011016.00+150515.912920108905342.288.278.196.108.616.460.059710.19
J013555.82+143529.612902108832672.528.147.865.688.406.080.071910.83
J074213.71+391705.31045195092012.408.228.196.198.596.570.07049.94
J082017.99+465125.312773108231302.138.467.705.648.615.970.052410.35
J082910.18+504005.711671102202052.008.447.925.918.646.210.07399.99
J085223.96+531550.617610119955242.528.277.405.548.415.940.128010.78
J095123.44+581621.218905119521402.458.486.965.128.585.510.148610.91
J033923.14−054841.512841108563312.548.168.135.868.526.270.084810.26
J091605.16+002030.312682107914821.838.538.145.778.766.030.143410.97
J093509.12+002557.415921118335512.708.117.525.248.295.680.151210.78
J100013.84+624703.41099698684882.558.158.095.968.506.370.114510.33
J102039.81+642435.815695117791722.298.257.865.478.475.830.122310.74
J095759.45+022810.512988109053252.358.238.116.128.556.490.119410.56
J100921.26+013334.513197110297352.208.328.276.048.686.390.143710.72
J112748.89+020302.616053118454512.258.307.765.538.495.880.126710.80
J114304.62+013946.21085898101972.038.388.045.948.626.250.092810.84
J114029.55+022744.620626116803752.488.287.445.238.425.620.123010.63
J115854.96+033254.915449117413732.278.367.635.418.515.770.084110.51
J125503.63+012233.713282110267312.098.378.255.948.696.260.164210.93
J125209.68+021558.015928118152002.538.287.385.268.415.660.206410.95
J130220.35+024048.813312110457102.338.237.855.988.466.350.176610.93
J134959.37+030058.014538115453462.258.267.976.178.526.520.109710.35
J140231.58+021546.31110999342632.038.448.426.078.816.380.179711.06
J143214.54+023228.515605117874392.318.267.775.588.465.950.112310.91
J074257.23+333217.914084113333662.778.057.665.538.275.970.147410.71
J090246.69+520932.813797112542902.348.228.025.708.516.070.137510.95
J141530.97+035916.616651119284632.418.407.315.568.525.950.080510.49
J141351.75+042208.916889119572932.478.237.575.418.405.800.144910.60
J144925.29+044157.2946788101261.918.468.156.148.716.420.082410.04
J151244.15+042848.314481114395752.378.237.735.668.436.040.079610.34
J155404.39+545708.212320106091472.488.208.206.008.586.390.04579.91
J164938.71+420658.414941116243452.348.307.635.618.465.980.150310.58
J165944.29+392846.116801119472852.328.327.625.788.486.150.081810.09
J100602.50+071131.8146491153515881.878.647.955.768.806.040.120511.19
J163344.99+372335.120228117357712.508.217.575.548.385.940.174810.80
J125558.75+291459.411324100553662.008.448.366.218.786.510.06819.91
Table 1.

Results obtained from our sample of objects. Columns: (1) SDSS name, (2) Te(O iiii) (in K), (3) Te(A iiii) (in K), (4) electron density (in units of |$\rm cm^{-3}$|⁠), (5) ICF(⁠|$\rm Ar^{2+}$|⁠), (6) |$\rm 12+\log (O^{+}/H^{+})$|⁠, (7) |$\rm 12+\log (O^{2+}/H^{+})$|⁠, (8) |$\rm 12+\log (A^{2+}/H^{+})$|⁠, (9) 12+log(O/H), (10) 12+log(Ar/H), (11) redshift and (12) Mass (in units of |$10^{7} \: \rm M_{\odot }$|⁠).

(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)
J101754.72−002811.914510114812982.798.037.875.988.346.430.181711.13
J101536.21+005459.318252119941842.148.397.785.608.565.930.120210.71
J104426.16+001707.3887283432922.408.308.416.318.746.690.150210.71
J105408.69−000111.016992119712272.398.427.335.368.535.740.108110.21
J111652.97+010615.516865119522592.848.057.495.548.236.000.130910.70
J114017.31−001543.313459106775052.468.177.996.098.476.480.124510.62
J113049.84+005346.719873118276002.358.377.495.628.505.990.104310.70
J113326.76+001443.914509113864972.618.167.545.628.336.030.114310.48
J115616.76−002221.015385117247812.168.317.966.408.556.740.109210.74
J122012.58−010531.5112771003914432.188.398.436.248.796.580.118310.55
J123441.93−010034.714568115183812.528.157.755.558.375.950.080110.25
J124116.14+004423.014438115376592.248.268.025.908.546.260.090010.74
J130433.90+000402.916195118961582.568.197.535.928.356.330.246311.23
J132625.73−002148.617204119882732.898.107.255.538.245.990.189310.78
J134005.97−010646.420688116811892.358.487.295.438.595.810.129510.77
J133821.79+002329.212623107972332.608.178.256.148.596.550.129210.87
J140301.05+005343.514002113291553.037.947.655.518.205.990.166410.61
J145956.36−002821.512503106822022.578.138.016.148.456.550.109610.84
J130354.71−030631.811344100737571.848.538.406.288.856.550.077810.65
J171544.02+600835.417771120008192.148.387.795.598.565.920.156910.98
J172028.98+584749.614587114944942.928.037.425.298.215.750.126910.84
J172352.43+582318.517778119979392.918.077.315.208.225.660.079910.24
J153035.77+001517.711505101652072.288.247.935.878.506.230.072110.53
J002312.34+003956.319764118694472.068.547.735.678.685.980.072710.16
J012937.25−003838.614176114011412.578.167.605.518.345.920.179411.06
J012720.32+010214.6983890664982.278.418.556.368.876.720.174511.09
J013957.81−004504.211872103814412.748.118.186.408.526.830.161610.83
J014153.97+010505.419553118665812.238.407.625.338.555.680.101310.95
J011016.00+150515.912920108905342.288.278.196.108.616.460.059710.19
J013555.82+143529.612902108832672.528.147.865.688.406.080.071910.83
J074213.71+391705.31045195092012.408.228.196.198.596.570.07049.94
J082017.99+465125.312773108231302.138.467.705.648.615.970.052410.35
J082910.18+504005.711671102202052.008.447.925.918.646.210.07399.99
J085223.96+531550.617610119955242.528.277.405.548.415.940.128010.78
J095123.44+581621.218905119521402.458.486.965.128.585.510.148610.91
J033923.14−054841.512841108563312.548.168.135.868.526.270.084810.26
J091605.16+002030.312682107914821.838.538.145.778.766.030.143410.97
J093509.12+002557.415921118335512.708.117.525.248.295.680.151210.78
J100013.84+624703.41099698684882.558.158.095.968.506.370.114510.33
J102039.81+642435.815695117791722.298.257.865.478.475.830.122310.74
J095759.45+022810.512988109053252.358.238.116.128.556.490.119410.56
J100921.26+013334.513197110297352.208.328.276.048.686.390.143710.72
J112748.89+020302.616053118454512.258.307.765.538.495.880.126710.80
J114304.62+013946.21085898101972.038.388.045.948.626.250.092810.84
J114029.55+022744.620626116803752.488.287.445.238.425.620.123010.63
J115854.96+033254.915449117413732.278.367.635.418.515.770.084110.51
J125503.63+012233.713282110267312.098.378.255.948.696.260.164210.93
J125209.68+021558.015928118152002.538.287.385.268.415.660.206410.95
J130220.35+024048.813312110457102.338.237.855.988.466.350.176610.93
J134959.37+030058.014538115453462.258.267.976.178.526.520.109710.35
J140231.58+021546.31110999342632.038.448.426.078.816.380.179711.06
J143214.54+023228.515605117874392.318.267.775.588.465.950.112310.91
J074257.23+333217.914084113333662.778.057.665.538.275.970.147410.71
J090246.69+520932.813797112542902.348.228.025.708.516.070.137510.95
J141530.97+035916.616651119284632.418.407.315.568.525.950.080510.49
J141351.75+042208.916889119572932.478.237.575.418.405.800.144910.60
J144925.29+044157.2946788101261.918.468.156.148.716.420.082410.04
J151244.15+042848.314481114395752.378.237.735.668.436.040.079610.34
J155404.39+545708.212320106091472.488.208.206.008.586.390.04579.91
J164938.71+420658.414941116243452.348.307.635.618.465.980.150310.58
J165944.29+392846.116801119472852.328.327.625.788.486.150.081810.09
J100602.50+071131.8146491153515881.878.647.955.768.806.040.120511.19
J163344.99+372335.120228117357712.508.217.575.548.385.940.174810.80
J125558.75+291459.411324100553662.008.448.366.218.786.510.06819.91
(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)
J101754.72−002811.914510114812982.798.037.875.988.346.430.181711.13
J101536.21+005459.318252119941842.148.397.785.608.565.930.120210.71
J104426.16+001707.3887283432922.408.308.416.318.746.690.150210.71
J105408.69−000111.016992119712272.398.427.335.368.535.740.108110.21
J111652.97+010615.516865119522592.848.057.495.548.236.000.130910.70
J114017.31−001543.313459106775052.468.177.996.098.476.480.124510.62
J113049.84+005346.719873118276002.358.377.495.628.505.990.104310.70
J113326.76+001443.914509113864972.618.167.545.628.336.030.114310.48
J115616.76−002221.015385117247812.168.317.966.408.556.740.109210.74
J122012.58−010531.5112771003914432.188.398.436.248.796.580.118310.55
J123441.93−010034.714568115183812.528.157.755.558.375.950.080110.25
J124116.14+004423.014438115376592.248.268.025.908.546.260.090010.74
J130433.90+000402.916195118961582.568.197.535.928.356.330.246311.23
J132625.73−002148.617204119882732.898.107.255.538.245.990.189310.78
J134005.97−010646.420688116811892.358.487.295.438.595.810.129510.77
J133821.79+002329.212623107972332.608.178.256.148.596.550.129210.87
J140301.05+005343.514002113291553.037.947.655.518.205.990.166410.61
J145956.36−002821.512503106822022.578.138.016.148.456.550.109610.84
J130354.71−030631.811344100737571.848.538.406.288.856.550.077810.65
J171544.02+600835.417771120008192.148.387.795.598.565.920.156910.98
J172028.98+584749.614587114944942.928.037.425.298.215.750.126910.84
J172352.43+582318.517778119979392.918.077.315.208.225.660.079910.24
J153035.77+001517.711505101652072.288.247.935.878.506.230.072110.53
J002312.34+003956.319764118694472.068.547.735.678.685.980.072710.16
J012937.25−003838.614176114011412.578.167.605.518.345.920.179411.06
J012720.32+010214.6983890664982.278.418.556.368.876.720.174511.09
J013957.81−004504.211872103814412.748.118.186.408.526.830.161610.83
J014153.97+010505.419553118665812.238.407.625.338.555.680.101310.95
J011016.00+150515.912920108905342.288.278.196.108.616.460.059710.19
J013555.82+143529.612902108832672.528.147.865.688.406.080.071910.83
J074213.71+391705.31045195092012.408.228.196.198.596.570.07049.94
J082017.99+465125.312773108231302.138.467.705.648.615.970.052410.35
J082910.18+504005.711671102202052.008.447.925.918.646.210.07399.99
J085223.96+531550.617610119955242.528.277.405.548.415.940.128010.78
J095123.44+581621.218905119521402.458.486.965.128.585.510.148610.91
J033923.14−054841.512841108563312.548.168.135.868.526.270.084810.26
J091605.16+002030.312682107914821.838.538.145.778.766.030.143410.97
J093509.12+002557.415921118335512.708.117.525.248.295.680.151210.78
J100013.84+624703.41099698684882.558.158.095.968.506.370.114510.33
J102039.81+642435.815695117791722.298.257.865.478.475.830.122310.74
J095759.45+022810.512988109053252.358.238.116.128.556.490.119410.56
J100921.26+013334.513197110297352.208.328.276.048.686.390.143710.72
J112748.89+020302.616053118454512.258.307.765.538.495.880.126710.80
J114304.62+013946.21085898101972.038.388.045.948.626.250.092810.84
J114029.55+022744.620626116803752.488.287.445.238.425.620.123010.63
J115854.96+033254.915449117413732.278.367.635.418.515.770.084110.51
J125503.63+012233.713282110267312.098.378.255.948.696.260.164210.93
J125209.68+021558.015928118152002.538.287.385.268.415.660.206410.95
J130220.35+024048.813312110457102.338.237.855.988.466.350.176610.93
J134959.37+030058.014538115453462.258.267.976.178.526.520.109710.35
J140231.58+021546.31110999342632.038.448.426.078.816.380.179711.06
J143214.54+023228.515605117874392.318.267.775.588.465.950.112310.91
J074257.23+333217.914084113333662.778.057.665.538.275.970.147410.71
J090246.69+520932.813797112542902.348.228.025.708.516.070.137510.95
J141530.97+035916.616651119284632.418.407.315.568.525.950.080510.49
J141351.75+042208.916889119572932.478.237.575.418.405.800.144910.60
J144925.29+044157.2946788101261.918.468.156.148.716.420.082410.04
J151244.15+042848.314481114395752.378.237.735.668.436.040.079610.34
J155404.39+545708.212320106091472.488.208.206.008.586.390.04579.91
J164938.71+420658.414941116243452.348.307.635.618.465.980.150310.58
J165944.29+392846.116801119472852.328.327.625.788.486.150.081810.09
J100602.50+071131.8146491153515881.878.647.955.768.806.040.120511.19
J163344.99+372335.120228117357712.508.217.575.548.385.940.174810.80
J125558.75+291459.411324100553662.008.448.366.218.786.510.06819.91

3 RESULTS AND DISCUSSION

The total argon abundance relative to hydrogen (Ar/H) in gaseous nebulae has been derived mainly through measurements of the [Ar iii]λ7135/H β and the assumptions considered to convert this line ratio into the |$\rm Ar^{2+}/H^{+}$| ionic abundance as well as by using an expression for the ICF(⁠|$\rm Ar^{2+}$|⁠) (e.g. Kennicutt et al. 2003). In some few cases, it has been also possible to measure the [Ar iv]λ4740 and [Ar v]λ7006 emission lines and deriving the |$\rm Ar^{3+}/H^{+}$| and |$\rm Ar^{4+}/H^{+}$| ionic abundances, respectively (e.g. Koski 1978; French 1981; Pagomenos, Bernard-Salas & Pottasch 2018), producing a more exact Ar/H determination, i.e.
(15)
(e.g. Wesson, Liu & Barlow 2005). However, the [Ar iv]λ4740 and [Ar v]λ7006 emission lines are weak in most part of low ionization objects therefore it is most convenient to use only the strong [Ar iii]λ7135 (e.g. Kennicutt et al. 2003; Zurita & Bresolin 2012). In our case, the emission line measurements made available by the MPA/JHU group only allowed us to derive |$\rm Ar^{2+}/H^{+}$| ionic abundance and then apply the ICF (equation 13) to obtain the total argon abundance (Ar/H). The application of the Te-method to AGNs was recently proposed by Dors et al. (2020a) and the ICF for the argon, proposed in this study, hitherto, is the first one for this class of objects. Thus, it is worthwhile to analyse the derived ICF values for our sample as well as to compare it with other proposed derivations for gaseous nebulae. In Fig. 7, bottom panel, the distribution of the argon ICF values derived from our sample through equation (13) is shown. We derived ICF values ranging from ∼1.8 to ∼3, with an averaged value of 2.38 ± 0.27. Also in Fig. 7, top panel, the argon ICF distribution for 53 SFs (49 disc H ii regions and 4 H ii galaxies) compiled from the literature is shown. We notice that majority of SFs present lower ICFs in comparison with those derived from our sample of Seyfert 2 nuclei, implying that |$\sim 90{{\ \rm per\ cent}}$| of the SFs have |$\rm ICF(Ar^{2+})\: \lesssim \: 2$| and an average value of about 1.5. These results point to the known fact that the gas phase in Seyfert 2 has a higher excitation degree than SFs.
Bottom panel: distribution of the ICF values for the argon from our sample of Seyfert 2 (see Section 2.1) derived by using equations (13) and (14). The averaged value is indicated. Top panel: Same as the bottom panel but for ICFs of SFs (H ii regions and H ii galaxies) derived by Berg et al. (2020, 2015), Croxall et al. (2015, 2016), Bresolin et al. (2009), Hägele et al. (2008), and Lee & Skillman (2004).
Figure 7.

Bottom panel: distribution of the ICF values for the argon from our sample of Seyfert 2 (see Section 2.1) derived by using equations (13) and (14). The averaged value is indicated. Top panel: Same as the bottom panel but for ICFs of SFs (H ii regions and H ii galaxies) derived by Berg et al. (2020, 2015), Croxall et al. (2015, 2016), Bresolin et al. (2009), Hägele et al. (2008), and Lee & Skillman (2004).

Regarding abundance estimates, our results for Seyfert 2 nuclei can be used to verify a possible secondary stellar production of the argon at the very high metallicity regime |$\rm [12+log(O/H) \: \gtrsim \: 8.8]$|⁠, because the maximum value derived in most part of SFs through the Te-method is in the order of 12+log(O/H)∼8.7 (e.g. Kennicutt et al. 2003; Berg et al. 2020; Yates et al. 2020). In Fig. 8, the total argon abundance [in units of 12+log(Ar/H)] versus the oxygen abundance [in units of 12+log(O/H)] from our sample of Seyfert 2 nuclei is shown. Also in this figure, abundance results based on Te-method for galaxy nuclei with star formation derived by Izotov et al. (2006) (whose observational data were also taken from SDSS; Abazajian et al. 2005) as well as results for H ii galaxies obtained by Hägele et al. (2008) are shown. In this case, we chose to compare our results only with those from star-forming galaxies (excluding disc H ii regions) because SFs are subject to similar physical processes like those in AGNs. The following are few examples which underscore such similarities.

  • SFs and AGNs can present gas outflows (e.g. Hopkins et al. 2012; Hirschmann et al. 2013; Riffel, Storchi-Bergmann & Riffel 2014; Chisholm et al. 2017; Riffel et al. 2021; Riffel 2021; Couto et al. 2021).

  • In the case of spiral galaxies the presence of bars might produce a falling of gas into the central regions in both objects (e.g. Athanassoula 1992).

Total argon abundance [in units of 12+log(Ar/H)] versus the oxygen abundance [in units of 12+log(O/H)]. Red points represent abundance results from our sample of Seyfert 2. Black points represent abundance results from H ii galaxies obtained through Te-method by Izotov et al. (2006) and Hägele et al. (2008). The solid line represents a fit to the points (equation 16) while the dashed lines represent the uncertainty of ±0.1 dex in H ii region abundance estimations (e.g. Kennicutt et al. 2003).
Figure 8.

Total argon abundance [in units of 12+log(Ar/H)] versus the oxygen abundance [in units of 12+log(O/H)]. Red points represent abundance results from our sample of Seyfert 2. Black points represent abundance results from H ii galaxies obtained through Te-method by Izotov et al. (2006) and Hägele et al. (2008). The solid line represents a fit to the points (equation 16) while the dashed lines represent the uncertainty of ±0.1 dex in H ii region abundance estimations (e.g. Kennicutt et al. 2003).

These processes can regulate the star formation as well as modify the gas enrichment (e.g. Oppenheimer et al. 2010; Krumholz, Kruijssen & Crocker 2017; Su et al. 2017; James et al. 2020) and could not be present in isolated H ii regions. From Fig. 8, we observe a clear linear relation between Ar/H and O/H indicating a primary production of the argon in a wide metallicity regime. A fit to the points (considering Seyfert 2 and SFs) produces the expression
(16)
represented in Fig. 8 by a solid blue line. The dashed lines in this figure represent the uncertainty of ±0.1 dex in abundance estimations (e.g. Kennicutt et al. 2003). It is noteworthy to point out from Fig. 8 that, for very high O/H values, a slight deviation of the points representing AGNs results from equation (16). This can be an indication of a secondary argon production at very high metallicity regime. In view of this, we tested several polynomial fittings considering different limits for oxygen abundance looking for a transition from primary to secondary Ar production, but no satisfactory solution was obtained. Therefore, we emphasize that our results obtained from AGNs, when combined with those from star-forming galaxies, indicate that the argon has a primary stellar production in a wide metallicity range.

The heavy elements in AGNs are mainly produced by stellar evolution in the ISM located at few kpc away from the nuclei (e.g. Boer & Schulz 1993; Elmegreen et al. 2002; Díaz et al. 2007; Böker et al. 2008; Dors et al. 2008; Riffel et al. 2009; Hägele et al. 2013; Álvarez-Álvarez et al. 2015; Riffel et al. 2016; Pilyugin et al. 2020; Ma et al. 2021) and then transported to the supermassive black hole. Additional metal enrichment by stars can also be obtained by two ways:

  • |$in\, situ$| star formation embedded in the thin AGN accretion disc (e.g. Collin & Zahn 1999; Goodman & Tan 2004; Collin & Zahn 2008; Wang et al. 2011; Mapelli et al. 2012; Davies & Lin 2020; Cantiello, Jermyn & Lin 2021) and by

  • capture of stars orbiting the central regions of galaxies (e.g. Syer, Clarke & Rees 1991; Artymowicz, Lin & Wampler 1993).

Both processes can produce different chemical evolution of AGNs in comparison with that of SFs. For instance, the maximum oxygen abundance in the centres of most luminous star-forming galaxies has been found to be 12+log(O/H)∼8.9 (e.g. Pilyugin et al. 2007) while Seyfert 2 nuclei can reach up to ∼9.2 dex (e.g. Dors et al. 2020a; Dors 2021), i.e. there is an additional enrichment in Seyferts in comparison with metal-rich H ii regions. Moreover, recently, Armah et al. (2021) found that Ne/H abundance in a small sample of Seyfert 2s is nearly 2 times higher than those in SFs. Thus, determining metal abundance in AGNs, in this case argon abundance, can produce constraints in studies on star nucleosynthesis in the very high metallicity regime and in different boundary conditions than those in SFs.

As a result, it is important to verify the range of Ar/H abundance in AGNs, since these objects present, in general, higher metallicity (or O/H abundance) than star-forming regions (e.g. Groves et al. 2006; Dors et al. 2020a). In Fig. 9, the distributions of argon abundance [in units of 12+log(Ar/H)] and log(Ar/O) for our sample and the solar value for these abundances are shown. In Table 2, the minimum, maximum, and the mean abundance values, taken from Fig. 9, as well as the oxygen abundance values (not shown in Fig. 9) are listed. We also listed in Table 2 the minimum, maximum, and mean abundance values (Wv) in relation to the corresponding solar value, defined by
(17)
where X is a given abundance ratio. The solar argon and oxygen abundances are those derived by Grevesse & Sauval (1998) and Allende Prieto et al. (2001), respectively. It can be inferred from Table 2 that the maximum Ar/H and Ar/O abundance ratios in our sample of AGNs are higher than the solar values, i.e. ∼2.7 and ∼4.0 times the solar values, respectively. However, the |$W_{\rm max.}^{\rm Ar/H}$| and |$W_{\rm max.}^{\rm Ar/O}$| can even be higher than the ones found in this work due to the sample considered. Actually, the |$W_{\rm max.}^{\rm O/H}$| derived for our sample is about 1.5 times the solar value. Dors et al. (2020a) found |$W_{\rm max.}^{\rm O/H}\sim 3.2$| after considering a larger sample of SDSS Seyfert 2 nuclei without adopting the [Ar iii] emission line presence as a selection criterion. Thus, this disparity indicates the probable existence of oversolar Ar/H and Ar/O values higher than those listed in Table 2.
Left-hand panel: distribution of argon abundance [in units of 12+log(Ar/H)] for our sample of Seyfert 2 nuclei. The red line represents the solar argon abundance [$\rm 12+log(Ar/H)_{\odot }=6.40$] derived by Grevesse & Sauval (1998). Right panel: same as the left-hand panel but for log(Ar/O). The red line represent the solar argon abundance [$\rm \log (Ar/O)_{\odot }=-2.29$] derived by Grevesse & Sauval (1998) and Allende Prieto et al. (2001).
Figure 9.

Left-hand panel: distribution of argon abundance [in units of 12+log(Ar/H)] for our sample of Seyfert 2 nuclei. The red line represents the solar argon abundance [|$\rm 12+log(Ar/H)_{\odot }=6.40$|] derived by Grevesse & Sauval (1998). Right panel: same as the left-hand panel but for log(Ar/O). The red line represent the solar argon abundance [|$\rm \log (Ar/O)_{\odot }=-2.29$|] derived by Grevesse & Sauval (1998) and Allende Prieto et al. (2001).

Table 2.

Minimum, maximum, and the mean abundance ratio values for our sample (see Section 2.1) derived through Te-method adapted for AGNs (see Section 2.2). The abundance values are obtained from the distributions presented in Fig. 9. The |$W_{\rm min.}^{\rm X}$|⁠, |$W_{\rm max.}^{\rm X}$|⁠, and |$W_{\rm mean}^{\rm X}$| are calculated from equation (17) and represent abundance values relative to the solar values. The solar argon and oxygen abundances considered were those derived by Grevesse & Sauval (1998) and Allende Prieto et al. (2001).

AbundanceMin.Max.Mean|$W_{\rm min.}^{\rm X}$||$W_{\rm max.}^{\rm X}$||$W_{\rm mean}^{\rm X}$|
ratio
12+log(Ar/H)5.516.846.14 ± 0.320.132.75|$0.54^{+0.60}_{-0.27}$|
log(Ar/O)−3.06−1.68−2.37 ± 0.280.163.98|$0.97^{+0.61}_{-0.53}$|
12+log(O/H)8.208.878.52 ± 0.160.301.51|$0.67^{+0.30}_{-0.20}$|
AbundanceMin.Max.Mean|$W_{\rm min.}^{\rm X}$||$W_{\rm max.}^{\rm X}$||$W_{\rm mean}^{\rm X}$|
ratio
12+log(Ar/H)5.516.846.14 ± 0.320.132.75|$0.54^{+0.60}_{-0.27}$|
log(Ar/O)−3.06−1.68−2.37 ± 0.280.163.98|$0.97^{+0.61}_{-0.53}$|
12+log(O/H)8.208.878.52 ± 0.160.301.51|$0.67^{+0.30}_{-0.20}$|
Table 2.

Minimum, maximum, and the mean abundance ratio values for our sample (see Section 2.1) derived through Te-method adapted for AGNs (see Section 2.2). The abundance values are obtained from the distributions presented in Fig. 9. The |$W_{\rm min.}^{\rm X}$|⁠, |$W_{\rm max.}^{\rm X}$|⁠, and |$W_{\rm mean}^{\rm X}$| are calculated from equation (17) and represent abundance values relative to the solar values. The solar argon and oxygen abundances considered were those derived by Grevesse & Sauval (1998) and Allende Prieto et al. (2001).

AbundanceMin.Max.Mean|$W_{\rm min.}^{\rm X}$||$W_{\rm max.}^{\rm X}$||$W_{\rm mean}^{\rm X}$|
ratio
12+log(Ar/H)5.516.846.14 ± 0.320.132.75|$0.54^{+0.60}_{-0.27}$|
log(Ar/O)−3.06−1.68−2.37 ± 0.280.163.98|$0.97^{+0.61}_{-0.53}$|
12+log(O/H)8.208.878.52 ± 0.160.301.51|$0.67^{+0.30}_{-0.20}$|
AbundanceMin.Max.Mean|$W_{\rm min.}^{\rm X}$||$W_{\rm max.}^{\rm X}$||$W_{\rm mean}^{\rm X}$|
ratio
12+log(Ar/H)5.516.846.14 ± 0.320.132.75|$0.54^{+0.60}_{-0.27}$|
log(Ar/O)−3.06−1.68−2.37 ± 0.280.163.98|$0.97^{+0.61}_{-0.53}$|
12+log(O/H)8.208.878.52 ± 0.160.301.51|$0.67^{+0.30}_{-0.20}$|
In order to compare the abundance range of Ar/H and Ar/O derived through the new methodology from the Te-method for AGNs with those obtained from other methods, we compiled from the literature Ar/H and Ar/O radial gradients derived in spiral galaxies and calculated by the standard Te-method. We extrapolated these radial gradients to the central part of the galaxies (i.e. galactocentric distance R = 0). This methodology makes it possible to infer indirect and independent values of abundances in the nuclei of spiral galaxies (e.g. Vila-Costas & Edmunds 1992; van Zee et al. 1998; Pilyugin, Vílchez & Contini 2004; Zinchenko et al. 2019). As usual, we assume that the Ar/H and Ar/O radial abundance gradients are represented by
(18)
where YX represents the value of the abundance ratio X [12+log(Ar/H) or log(Ar/O)], |$Y_{0}^{\rm X}$| is the extrapolated value of X to the galactic center, i.e. at radial distance R = 0, and |$\rm{ grad}\, Y^{\rm X}$| is the slope of the distribution expressed in units of |$\rm dex \: kpc^{-1}$|⁠. As pointed out by Pilyugin et al. (2004), the accuracy of radial abundance gradient determinations is defined not only by the large number of objects considered but also by the distribution of these objects along the galactic radius. Under this supposition, we take into consideration published data from the literature for X abundance values of H ii regions derived by using the Te-method and located at galactocentric distances in spiral galaxies within the range |$0.2 \: \: \lesssim \: (R/R_{25}) \: \lesssim \: 1$|⁠, where R is the galactocentric distance and R25 is the B-band isophote at a surface brightness of 25 mag arcsec−2. It was possible to obtain the Ar/H and Ar/O radial gradients in four spiral galaxies. In Table 3, the identification of each galaxy, the number (N) of H ii regions considered in deriving the radial gradients, the Y0X and |$\rm{ grad}\, Y^{\rm X}$| values as well as references to the original studies from which the data were obtained are listed. Also in Table 3, the |$Y_{0}^{\rm X}$| in relation to the solar value, defined by
(19)
is listed. In Fig. 10, the |$W_{0}^{\rm X}$| values for the four spiral galaxies, listed in Table 3, are represented by red points and compared with those for the range of values (hatched areas) derived for our sample and listed in Table 2. It can be seen that our range of abundance estimates are in consonance with the values obtained by independent abundance estimates from the radial gradients. Obviously, a more exact comparison would be obtained if both Ar/H and O/H abundances in the AGNs and the radial abundances of these elements in the host galaxies were determined, such as studies carried out for the oxygen by Storchi-Bergmann et al. (1998) and Dors et al. (2015).
Comparison between argon abundance in relation to the solar value for $W_{0}^{\rm Ar}=\rm (Ar)/(Ar)_{\odot }$ (bottom panel) and $W_{0}^{\rm Ar/O}=\rm (Ar/O)/(Ar/O)_{\odot }$ (top panel). Points represent estimates from radial abundance extrapolations to the central parts (galactocentric distance R = 0) from the four spiral galaxies listed in Table 3 and indicated in the x-axis. The hatched areas represent the range of abundance ratio values derived for our sample of Seyfert 2 listed in Table 2.
Figure 10.

Comparison between argon abundance in relation to the solar value for |$W_{0}^{\rm Ar}=\rm (Ar)/(Ar)_{\odot }$| (bottom panel) and |$W_{0}^{\rm Ar/O}=\rm (Ar/O)/(Ar/O)_{\odot }$| (top panel). Points represent estimates from radial abundance extrapolations to the central parts (galactocentric distance R = 0) from the four spiral galaxies listed in Table 3 and indicated in the x-axis. The hatched areas represent the range of abundance ratio values derived for our sample of Seyfert 2 listed in Table 2.

Table 3.

Parameters of the radial abundance gradients derived for the Ar/H and Ar/O abundance ratios in a sample of spiral galaxies. N represents the number of H ii regions considered in the estimations of the gradients. Y0, |$\rm{ grad}\, Y$| and W0 are defined in equations (18) and (19). In the last column, the original works from which the radial gradients were compiled are listed.

ObjectNY0Ar/H|$\rm{ grad}\, Y^{\rm Ar/H}$||$W_{0}^{\rm Ar}$|Y0Ar/O|$\rm{ grad}\, Y^{\rm Ar/O}$||$W_{0}^{\rm Ar/O}$|Reference
NGC 5194286.55 ± 0.12−0.015 ± 0.026|$1.41^{+0.45}_{-0.33}$|−2.22 ± 0.11+0.013 ± 0.023|$1.16^{+0.35}_{-0.24}$|Croxall et al. (2015)
NGC 628456.77 ± 0.55−0.070 ± 0.009|$2.34^{+5.97}_{-1.66}$|−1.92 ± 0.04−0.037 ± 0.006|$2.33^{+0.24}_{-0.19}$|Berg et al. (2015)
NGC 300286.32 ± 0.03−0.106 ± 0.011|$0.84^{+0.05}_{-0.03}$|−2.24 ± 0.03−0.028 ± 0.009|$1.12^{+0.12}_{-0.07}$|Bresolin et al. (2009)
NGC 5457166.40 ± 0.07−0.020 ± 0.003|$1.00^{+0.17}_{-0.14}$|−2.36 ± 0.01−0.008 ± 0.002|$0.84^{+0.03}_{-0.01}$|Kennicutt et al. (2003)
ObjectNY0Ar/H|$\rm{ grad}\, Y^{\rm Ar/H}$||$W_{0}^{\rm Ar}$|Y0Ar/O|$\rm{ grad}\, Y^{\rm Ar/O}$||$W_{0}^{\rm Ar/O}$|Reference
NGC 5194286.55 ± 0.12−0.015 ± 0.026|$1.41^{+0.45}_{-0.33}$|−2.22 ± 0.11+0.013 ± 0.023|$1.16^{+0.35}_{-0.24}$|Croxall et al. (2015)
NGC 628456.77 ± 0.55−0.070 ± 0.009|$2.34^{+5.97}_{-1.66}$|−1.92 ± 0.04−0.037 ± 0.006|$2.33^{+0.24}_{-0.19}$|Berg et al. (2015)
NGC 300286.32 ± 0.03−0.106 ± 0.011|$0.84^{+0.05}_{-0.03}$|−2.24 ± 0.03−0.028 ± 0.009|$1.12^{+0.12}_{-0.07}$|Bresolin et al. (2009)
NGC 5457166.40 ± 0.07−0.020 ± 0.003|$1.00^{+0.17}_{-0.14}$|−2.36 ± 0.01−0.008 ± 0.002|$0.84^{+0.03}_{-0.01}$|Kennicutt et al. (2003)
Table 3.

Parameters of the radial abundance gradients derived for the Ar/H and Ar/O abundance ratios in a sample of spiral galaxies. N represents the number of H ii regions considered in the estimations of the gradients. Y0, |$\rm{ grad}\, Y$| and W0 are defined in equations (18) and (19). In the last column, the original works from which the radial gradients were compiled are listed.

ObjectNY0Ar/H|$\rm{ grad}\, Y^{\rm Ar/H}$||$W_{0}^{\rm Ar}$|Y0Ar/O|$\rm{ grad}\, Y^{\rm Ar/O}$||$W_{0}^{\rm Ar/O}$|Reference
NGC 5194286.55 ± 0.12−0.015 ± 0.026|$1.41^{+0.45}_{-0.33}$|−2.22 ± 0.11+0.013 ± 0.023|$1.16^{+0.35}_{-0.24}$|Croxall et al. (2015)
NGC 628456.77 ± 0.55−0.070 ± 0.009|$2.34^{+5.97}_{-1.66}$|−1.92 ± 0.04−0.037 ± 0.006|$2.33^{+0.24}_{-0.19}$|Berg et al. (2015)
NGC 300286.32 ± 0.03−0.106 ± 0.011|$0.84^{+0.05}_{-0.03}$|−2.24 ± 0.03−0.028 ± 0.009|$1.12^{+0.12}_{-0.07}$|Bresolin et al. (2009)
NGC 5457166.40 ± 0.07−0.020 ± 0.003|$1.00^{+0.17}_{-0.14}$|−2.36 ± 0.01−0.008 ± 0.002|$0.84^{+0.03}_{-0.01}$|Kennicutt et al. (2003)
ObjectNY0Ar/H|$\rm{ grad}\, Y^{\rm Ar/H}$||$W_{0}^{\rm Ar}$|Y0Ar/O|$\rm{ grad}\, Y^{\rm Ar/O}$||$W_{0}^{\rm Ar/O}$|Reference
NGC 5194286.55 ± 0.12−0.015 ± 0.026|$1.41^{+0.45}_{-0.33}$|−2.22 ± 0.11+0.013 ± 0.023|$1.16^{+0.35}_{-0.24}$|Croxall et al. (2015)
NGC 628456.77 ± 0.55−0.070 ± 0.009|$2.34^{+5.97}_{-1.66}$|−1.92 ± 0.04−0.037 ± 0.006|$2.33^{+0.24}_{-0.19}$|Berg et al. (2015)
NGC 300286.32 ± 0.03−0.106 ± 0.011|$0.84^{+0.05}_{-0.03}$|−2.24 ± 0.03−0.028 ± 0.009|$1.12^{+0.12}_{-0.07}$|Bresolin et al. (2009)
NGC 5457166.40 ± 0.07−0.020 ± 0.003|$1.00^{+0.17}_{-0.14}$|−2.36 ± 0.01−0.008 ± 0.002|$0.84^{+0.03}_{-0.01}$|Kennicutt et al. (2003)
Finally, in Fig. 11, our Seyfert 2 estimates (red points) for (Ar/O) versus (O/H) abundances and those calculated through the Te-method for star-forming nuclei by Izotov et al. (2006) and H ii galaxies by Hägele et al. (2008) are shown. As for the neon and sulphur (see Dors et al. 2013, 2016 and references therein) several studies on (Ar/O) versus (O/H) have yielded conflicting results. For instance, Izotov et al. (2006), by correcting the depletion of oxygen on to dust grains (which is in order of |$\sim 0.1 \: \rm dex$|⁠) found a negative slope for Ar/O versus O/H for the range |$\rm 7.1 \: \lesssim \: [12+log(O/H)] \: \lesssim \: 8.6$|⁠, which correspond to the metallicity range |$\rm 0.03 \: \lesssim \: (Z/\rm Z_{\odot }) \: \lesssim 0.7$|⁠. This negative slope is strongly influenced by estimations in objects with very low metallicity |$\rm [\rm 12+\log (O/H)] \: \lesssim \: 7.5]$|⁠, in which oversolar Ar/O abundance values are derived. Although this result of a negative slope is in consonance with the one found by Pérez-Montero et al. (2007), who considered H ii galaxies and H ii regions estimates, these authors derived solar Ar/O abundance ratios for objects at low metallicity regime and subsolar values for the ones at high metallicity regime. Finally, Berg et al. (2020), who took into account the Te-method abundance estimates for 190 disc H ii regions, derived sub-solar Ar/O abundance ratio for some few H ii regions with low metallicity |$[\rm 12+\log (O/H) \: \lesssim \: 8.0$|]. In principle, a possible explanation for the discrepancies above is the use of different argon ICFs by the authors rather than the consideration of distinct samples. In any case, it can be seen from Fig. 11 that, a slight decrease of Ar/O with the increase of O/H, when our estimates are combined with those for H ii galaxies. It is worth to mention that, for |$[\rm 12+\log (O/H) \: \gtrsim \: 8.0$|] our Ar/O estimates are in consonance with those derived for H ii galaxies. A linear regression to the points produces
(20)
where x = log(O/H).
Relation between log(Ar/O) and 12+log(O/H). Red points represent estimations for our sample of Seyfert 2 while black points represent compiled estimations for H ii galaxies derived by Izotov et al. (2006) and Hägele et al. (2008). The blue solid line represents the linear regression to the points given by equation (20). The dashed green line represents the solar value, log(Ar/O)⊙ = −2.29, derived by Grevesse & Sauval (1998) and Allende Prieto et al. (2001).
Figure 11.

Relation between log(Ar/O) and 12+log(O/H). Red points represent estimations for our sample of Seyfert 2 while black points represent compiled estimations for H ii galaxies derived by Izotov et al. (2006) and Hägele et al. (2008). The blue solid line represents the linear regression to the points given by equation (20). The dashed green line represents the solar value, log(Ar/O) = −2.29, derived by Grevesse & Sauval (1998) and Allende Prieto et al. (2001).

4 CONCLUSIONS

For the fist time, quantitative argon abundances, based on Te-method adapted for AGNs, are derived for the narrow regions of Seyfert 2 nuclei. In view of this, we compiled from Sloan Digital Sky Survey Data Release 7 (SDSS-DR7) optical narrow emission line fluxes for 64 Seyfert 2 galaxies in the local universe (z < 0.25) and calculated the abundance of the argon and oxygen in relation to hydrogen (Ar/H, O/H). The total argon abundance relative to hydrogen (Ar/H) was derived for each object of the sample through the |$\rm Ar^{2+}/H^+$| ionic abundance and by using a theoretical expression for the Ionization Correction Factor (ICF) obtained from photoionization model results built with the cloudy code. These results from the models were also used to derive an appropriate temperature for the |$\rm Ar^{2+}$| [|$T_{\rm e}(\rm{ Ar}\, {\small {III}})$|] which can be derived by its dependence on the temperature for |$\rm O^{2+}$| [|$T_{\rm e}(\rm{ O}\, {\small {III}})$|] calculated by using the observational [O iii](λ4959+λ5007)/λ4363 line ratio. We obtained the following conclusions:

  • The equality between the temperatures |$T_{\rm e}(\rm{ S}\, \small {III})$|=|$T_{\rm e}(\rm{ Ar}\, {\small {III}})$|⁠, usually assumed in abundance studies of star-forming regions, is not valid for Seyfert 2 since the nebular gas region occupied by |$\rm Ar^{2+}$| tends to have a lower temperature than the nebular gas region occupied by |$\rm S^{2+}$|⁠.

  • A bi-parametric expression for the ICF(⁠|$\rm Ar^{2+}$|⁠) as function of the |$\rm x=[O^{2+}/(O^{+}+O^{2+})]$| abundance ratio and the oxygen abundance [in units of 12+log(O/H)] is proposed to derive the total argon abundance.

  • For the range of oxygen abundance |$\rm 8.0 \: \lesssim \: [12+\log (O/H)] \: \lesssim \: 9.0$| or metallicity |$0.20 \: \lesssim \: (Z/\rm \rm Z_{\odot }) \: \lesssim \:2.0$|⁠, we found that our sample of Seyfert 2 present A/H abundances ranging from ∼0.1 to ∼3 times the argon solar value, indicating that most of the objects (⁠|$\sim \!75{{\ \rm per\ cent}})$| have subsolar argon abundance.

  • The range of Ar/H and Ar/O abundance values obtained for our sample are in consonance with those estimated from extrapolations to the central parts of radial abundance gradients derived in the disc of four spiral galaxies.

  • We found a slight tendency of Ar/O abundance ratio decreases with O/H.

  • Finally, the Ar/O abundance values for our sample of Seyfert 2 are in consonance with estimations for H ii galaxies |$[\rm 12+\log (O/H) \: \gtrsim \: 8.0$|], indicating that there is not an over enrichment of argon in AGNs, at least for the metallicity range considered.

ACKNOWLEDGEMENTS

AFM gratefully acknowledges support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). OLD is grateful to Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

DATA AVAILABILITY

The data underlying this article will be shared on reasonable request with the corresponding author.

Footnotes

1

For a discussion on the universality of the IMF (see e.g. Bastian, Covey & Meyer 2010).

3

See Krabbe et al. 2021 for a detailed description of this SED.

REFERENCES

Abazajian
K.
et al. ,
2005
,
AJ
,
129
,
1755

Alexander
J.
,
Balick
B.
,
1997
,
AJ
,
114
,
713

Allende Prieto
C.
,
Lambert
D. L.
,
Asplund
M.
,
2001
,
ApJ
,
556
,
L63

Alloin
D.
,
Bica
E.
,
Bonatto
C.
,
Prugniel
P.
,
1992
,
A&A
,
266
,
117

Álvarez-Álvarez
M.
,
Díaz
A. I.
,
Terlevich
E.
,
Terlevich
R.
,
2015
,
MNRAS
,
451
,
3173

Amayo
A.
,
Delgado-Inglada
G.
,
Stasińska
G.
,
2021
,
MNRAS
,
505
,
2361

Armah
M.
et al. ,
2021
,
MNRAS
,
508
,
371

Artymowicz
P.
,
Lin
D. N. C.
,
Wampler
E. J.
,
1993
,
ApJ
,
409
,
592

Athanassoula
E.
,
1992
,
MNRAS
,
259
,
345

Baldwin
J. A.
,
Phillips
M. M.
,
Terlevich
R.
,
1981
,
PASP
,
93
,
5

Bastian
N.
,
Covey
K. R.
,
Meyer
M. R.
,
2010
,
ARA&A
,
48
,
339

Berg
D. A.
,
Skillman
E. D.
,
Croxall
K. V.
,
Pogge
R. W.
,
Moustakas
J.
,
Johnson-Groh
M.
,
2015
,
ApJ
,
806
,
16

Berg
D. A.
,
Pogge
R. W.
,
Skillman
E. D.
,
Croxall
K. V.
,
Moustakas
J.
,
Rogers
N. S. J.
,
Sun
J.
,
2020
,
ApJ
,
893
,
96

Boer
B.
,
Schulz
H.
,
1993
,
A&A
,
277
,
397

Böker
T.
,
Falcón-Barroso
J.
,
Schinnerer
E.
,
Knapen
J. H.
,
Ryder
S.
,
2008
,
AJ
,
135
,
479

Bresolin
F.
,
Gieren
W.
,
Kudritzki
R.-P.
,
Pietrzyński
G.
,
Urbaneja
M. A.
,
Carraro
G.
,
2009
,
ApJ
,
700
,
309

Cantiello
M.
,
Jermyn
A. S.
,
Lin
D. N. C.
,
2021
,
ApJ
,
910
,
94

Carvalho
S. P.
et al. ,
2020
,
MNRAS
,
492
,
5675

Castro
C. S.
,
Dors
O. L.
,
Cardaci
M. V.
,
Hägele
G. F.
,
2017
,
MNRAS
,
467
,
stx150

Chisholm
J.
,
Tremonti
C. A.
,
Leitherer
C.
,
Chen
Y.
,
2017
,
MNRAS
,
469
,
4831

Collin
S.
,
Zahn
J. P.
,
2008
,
A&A
,
477
,
419

Collin
S.
,
Zahn
J.-P.
,
1999
,
Ap&SS
,
265
,
501

Congiu
E.
et al. ,
2017
,
MNRAS
,
471
,
562

Contini
M.
,
2017
,
MNRAS
,
469
,
3125

Couto
G. S.
,
Hughes
T. M.
,
Boquien
M.
,
Ibar
E.
,
Viaene
S.
,
Leiton
R.
,
Xue
Y.
,
2021
,
preprint (arXiv:2108.02334)

Croxall
K. V.
,
Pogge
R. W.
,
Berg
D. A.
,
Skillman
E. D.
,
Moustakas
J.
,
2015
,
ApJ
,
808
,
42

Croxall
K. V.
,
Pogge
R. W.
,
Berg
D. A.
,
Skillman
E. D.
,
Moustakas
J.
,
2016
,
ApJ
,
830
,
4

Davies
M. B.
,
Lin
D. N. C.
,
2020
,
MNRAS
,
498
,
3452

Delgado-Inglada
G.
,
Morisset
C.
,
Stasińska
G.
,
2014
,
MNRAS
,
440
,
536

Díaz
Á. I.
,
Terlevich
E.
,
Castellanos
M.
,
Hägele
G. F.
,
2007
,
MNRAS
,
382
,
251

Dopita
M. A.
et al. ,
2015
,
ApJS
,
217
,
12

Dors
O. L.
,
2021
,
MNRAS
,
507
,
466

Dors
O. L. J.
,
Storchi-Bergmann
T.
,
Riffel
R. A.
,
Schimdt
A. A.
,
2008
,
A&A
,
482
,
59

Dors
O. L.
et al. ,
2013
,
MNRAS
,
432
,
2512

Dors
O. L.
,
Cardaci
M. V.
,
Hägele
G. F.
,
Rodrigues
I.
,
Grebel
E. K.
,
Pilyugin
L. S.
,
Freitas-Lemes
P.
,
Krabbe
A. C.
,
2015
,
MNRAS
,
453
,
4103

Dors
O. L.
,
Pérez-Montero
E.
,
Hägele
G. F.
,
Cardaci
M. V.
,
Krabbe
A. C.
,
2016
,
MNRAS
,
456
,
4407

Dors
O. L.
,
Arellano-Córdova
K. Z.
,
Cardaci
M. V.
,
Hägele
G. F.
,
2017
,
MNRAS
,
468
,
L113

Dors
O. L.
,
Maiolino
R.
,
Cardaci
M. V.
,
Hägele
G. F.
,
Krabbe
A. C.
,
Pérez-Montero
E.
,
Armah
M.
,
2020a
,
MNRAS
,
14
,
1

Dors
O. L.
et al. ,
2020b
,
MNRAS
,
492
,
468

Dors
O. L.
,
Contini
M.
,
Riffel
R. A.
,
Pérez-Montero
E.
,
Krabbe
A. C.
,
Cardaci
M. V.
,
Hägele
G. F.
,
2021
,
MNRAS
,
501
,
1370

Elmegreen
D. M.
,
Chromey
F. R.
,
McGrath
E. J.
,
Ostenson
J. M.
,
2002
,
AJ
,
123
,
1381

Feltre
A.
,
Charlot
S.
,
Gutkin
J.
,
2016
,
MNRAS
,
456
,
3354

Ferland
G. J.
,
Osterbrock
D. E.
,
1986
,
ApJ
,
300
,
658

Ferland
G. J.
et al. ,
2013
,
RMxAA
,
49
,
137

Ferland
G. J.
et al. ,
2017
,
RMxAA
,
53
,
385

Flury
S. R.
,
Moran
E. C.
,
2020
,
MNRAS
,
496
,
2191

French
H. B.
,
1981
,
ApJ
,
246
,
434

Garnett
D. R.
,
1992
,
AJ
,
103
,
1330

Goodman
J.
,
Tan
J. C.
,
2004
,
ApJ
,
608
,
108

Grevesse
N.
,
Sauval
A. J.
,
1998
,
Space Sci. Rev.
,
85
,
161

Groves
B. A.
,
Heckman
T. M.
,
Kauffmann
G.
,
2006
,
MNRAS
,
371
,
1559

Guseva
N. G.
,
Izotov
Y. I.
,
Stasińska
G.
,
Fricke
K. J.
,
Henkel
C.
,
Papaderos
P.
,
2011
,
A&A
,
529
,
A149

Hägele
G. F.
,
Díaz
Á. I.
,
Terlevich
E.
,
Terlevich
R.
,
Pérez-Montero
E.
,
Cardaci
M. V.
,
2008
,
MNRAS
,
383
,
209

Hägele
G. F.
,
Díaz
Á. I.
,
Terlevich
R.
,
Terlevich
E.
,
Bosch
G. L.
,
Cardaci
M. V.
,
2013
,
MNRAS
,
432
,
810

Henry
R. B. C.
,
Kwitter
K. B.
,
Howard
J. W.
,
1996
,
ApJ
,
458
,
215

Hirschmann
M.
et al. ,
2013
,
MNRAS
,
436
,
2929

Hopkins
P. F.
,
Kereš
D.
,
Murray
N.
,
Quataert
E.
,
Hernquist
L.
,
2012
,
MNRAS
,
427
,
968

Izotov
Y. I.
,
Thuan
T. X.
,
1999
,
ApJ
,
511
,
639

Izotov
Y. I.
,
Thuan
T. X.
,
2008
,
ApJ
,
687
,
133

Izotov
Y. I.
,
Stasińska
G.
,
Meynet
G.
,
Guseva
N. G.
,
Thuan
T. X.
,
2006
,
A&A
,
448
,
955

James
B. L.
,
Kumari
N.
,
Emerick
A.
,
Koposov
S. E.
,
McQuinn
K. B. W.
,
Stark
D. P.
,
Belokurov
V.
,
Maiolino
R.
,
2020
,
MNRAS
,
495
,
2564

Kennicutt
R. C.
,
Bresolin
F.
,
Garnett
D. R.
,
2003
,
ApJ
,
591
,
801

Kewley
L. J.
,
Dopita
M. A.
,
Sutherland
R. S.
,
Heisler
C. A.
,
Trevena
J.
,
2001
,
ApJ
,
556
,
121

Kewley
L. J.
,
Nicholls
D. C.
,
Sutherland
R. S.
,
2019
,
ARA&A
,
57
,
511

Koski
A. T.
,
1978
,
ApJ
,
223
,
56

Krabbe
A. C.
,
Oliveira
C. B.
,
Zinchenko
I. A.
,
Hernández-Jiménez
J. A.
,
Dors
O. L.
,
Hägele
G. F.
,
Cardaci
M. V.
,
Telles
N. R.
,
2021
,
MNRAS
,
505
,
2087

Krumholz
M. R.
,
Kruijssen
J. M. D.
,
Crocker
R. M.
,
2017
,
MNRAS
,
466
,
1213

Lee
H.
,
Skillman
E. D.
,
2004
,
ApJ
,
614
,
698

Luridiana
V.
,
Morisset
C.
,
Shaw
R. A.
,
2015
,
A&A
,
573

Ma
J.
,
Maksym
W. P.
,
Fabbiano
G.
,
Elvis
M.
,
Storchi-Bergmann
T.
,
Karovska
M.
,
Wang
J.
,
Travascio
A.
,
2021
,
ApJ
,
908
,
155

Maciel
W. J.
,
Quireza
C.
,
Costa
R. D. D.
,
2007
,
A&A
,
463
,
L13

Mapelli
M.
,
Hayfield
T.
,
Mayer
L.
,
Wadsley
J.
,
2012
,
ApJ
,
749
,
168

Mathis
J. S.
,
1985
,
ApJ
,
291
,
247

McGaugh
S. S.
,
1991
,
ApJ
,
380
,
140

Morisset
C.
,
2018
, in
Hägele
G.
,
Cardaci
M.
,
Pérez-Montero
E.
, eds,
Chemical Abundances in Gaseous Nebulae
. p.
33

Morisset
C.
et al. ,
2016
,
A&A
,
594
,
A37

Oppenheimer
B. D.
,
Davé
R.
,
Kereš
D.
,
Fardal
M.
,
Katz
N.
,
Kollmeier
J. A.
,
Weinberg
D. H.
,
2010
,
MNRAS
,
406
,
2325

Osterbrock
D. E.
,
Miller
J. S.
,
1975
,
ApJ
,
197
,
535

Pagomenos
G. J. S.
,
Bernard-Salas
J.
,
Pottasch
S. R.
,
2018
,
A&A
,
615
,
A29

Peimbert
M.
,
Costero
R.
,
1969
,
Bol Obs. Tonantzintla Tacubaya
,
5
,
3

Peimbert
M.
,
Peimbert
A.
,
Delgado-Inglada
G.
,
2017
,
PASP
,
129
,
082001

Pérez-Díaz
B.
,
Masegosa
J.
,
Márquez
I.
,
Pérez-Montero
E.
,
2021
,
MNRAS
,
505
,
4289

Pérez-Montero
E.
,
2017
,
PASP
,
129
,
043001

Pérez-Montero
E.
,
Díaz
Á. I.
,
2007
,
MNRAS
,
377
,
1195

Pérez-Montero
E.
,
Hägele
G. F.
,
Contini
T.
,
Díaz
Á. I.
,
2007
,
MNRAS
,
381
,
125

Pérez-Montero
E.
,
García-Benito
R.
,
Hägele
G. F.
,
Díaz
Á. I.
,
2010
,
MNRAS
,
404
,
2037

Pérez-Montero
E.
,
Dors
O. L.
,
Vílchez
J. M.
,
García-Benito
R.
,
Cardaci
M. V.
,
Hägele
G. F.
,
2019
,
MNRAS
,
489
,
2652

Pilyugin
L. S.
,
2003
,
A&A
,
399
,
1003

Pilyugin
L. S.
,
Vílchez
J. M.
,
Contini
T.
,
2004
,
A&A
,
425
,
849

Pilyugin
L. S.
,
Thuan
T. X.
,
Vílchez
J. M.
,
2007
,
MNRAS
,
376
,
353

Pilyugin
L. S.
,
Grebel
E. K.
,
Zinchenko
I. A.
,
Lara-López
M. A.
,
Nefedyev
Y. A.
,
Shulga
V. M.
,
2020
,
A&A
,
639
,
A96

Polles
F. L.
et al. ,
2019
,
A&A
,
622
,
A119

Revalski
M.
,
Crenshaw
D. M.
,
Kraemer
S. B.
,
Fischer
T. C.
,
Schmitt
H. R.
,
Machuca
C.
,
2018a
,
ApJ
,
856
,
46

Revalski
M.
et al. ,
2018b
,
ApJ
,
867
,
88

Revalski
M.
et al. ,
2021
,
ApJ
,
910
,
139

Riffel
R. A.
,
2021
,
MNRAS
,
506
,
2950

Riffel
R. A.
,
Storchi-Bergmann
T.
,
Dors
O. L.
,
Winge
C.
,
2009
,
MNRAS
,
393
,
783

Riffel
R. A.
,
Storchi-Bergmann
T.
,
Riffel
R.
,
2014
,
ApJ
,
780
,
L24

Riffel
R. A.
et al. ,
2016
,
MNRAS
,
461
,
4192

Riffel
R. A.
et al. ,
2021
,
MNRAS
,
501
,
L54

Stasińska
G.
,
1984
,
A&A
,
135
,
341

Stasińska
G.
,
2002
,
preprint (astro-ph/0207500)

Storchi-Bergmann
T.
,
Schmitt
H. R.
,
Calzetti
D.
,
Kinney
A. L.
,
1998
,
AJ
,
115
,
909

Su
K.-Y.
,
Hopkins
P. F.
,
Hayward
C. C.
,
Faucher-Giguère
C.-A.
,
Kereš
D.
,
Ma
X.
,
Robles
V. H.
,
2017
,
MNRAS
,
471
,
144

Syer
D.
,
Clarke
C. J.
,
Rees
M. J.
,
1991
,
MNRAS
,
250
,
505

Thomas
A. D.
,
Kewley
L. J.
,
Dopita
M. A.
,
Groves
B. A.
,
Hopkins
A. M.
,
Sutherland
R. S.
,
2019
,
ApJ
,
874
,
100

Thuan
T. X.
,
Izotov
Y. I.
,
Lipovetsky
V. A.
,
1995
,
ApJ
,
445
,
108

Toribio San Cipriano
L.
,
Domínguez-Guzmán
G.
,
Esteban
C.
,
García-Rojas
J.
,
Mesa-Delgado
A.
,
Bresolin
F.
,
Rodríguez
M.
,
Simón-Díaz
S.
,
2017
,
MNRAS
,
467
,
3759

Torres-Peimbert
S.
,
Peimbert
M.
,
1977
,
RMxAA
,
2
,
181

van Zee
L.
,
Haynes
M. P.
,
2006
,
ApJ
,
636
,
214

van Zee
L.
,
Salzer
J. J.
,
Haynes
M. P.
,
O’Donoghue
A. A.
,
Balonek
T. J.
,
1998
,
AJ
,
116
,
2805

Vaona
Z. T.
,
Trocar
Y. C.
,
Hammer
F.
,
2012
,
MNRAS
,
427
,
1266

Vila-Costas
M. B.
,
Edmunds
M. G.
,
1992
,
MNRAS
,
259
,
121

Wang
J.-M.
et al. ,
2011
,
ApJ
,
739
,
3

Wesson
R.
,
Liu
X. W.
,
Barlow
M. J.
,
2005
,
MNRAS
,
362
,
424

Williams
R. E.
,
1967
,
ApJ
,
147
,
556

Woosley
S. E.
,
Weaver
T. A.
,
1995
,
ApJS
,
101
,
181

Yates
R. M.
,
Kauffmann
G.
,
Guo
Q.
,
2012
,
MNRAS
,
422
,
215

Yates
R. M.
,
Schady
P.
,
Chen
T. W.
,
Schweyer
T.
,
Wiseman
P.
,
2020
,
A&A
,
634
,
A107

York
D. G.
,
Adelman
J.
,
Anderson
J. E.
Jr
,
Anderson
S. F.
,
Annis
J.
, Bahcall,
2000
,
AJ
,
120
,
1579

Zinchenko
I. A.
,
Dors
O. L.
,
Hägele
G. F.
,
Cardaci
M. V.
,
Krabbe
A. C.
,
2019
,
MNRAS
,
483
,
1901

Zurita
A.
,
Bresolin
F.
,
2012
,
MNRAS
,
427
,
1463

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://dbpia.nl.go.kr/journals/pages/open_access/funder_policies/chorus/standard_publication_model)