Abstract

A robust variational approach is used to investigate the sensitivity of the rotation–vibration spectrum of phosphine (PH3) to a possible cosmological variation of the proton-to-electron mass ratio, μ. Whilst the majority of computed sensitivity coefficients, T, involving the low-lying vibrational states acquire the expected values of T ≈ −1 and T ≈ −1/2 for rotational and ro-vibrational transitions, respectively, anomalous sensitivities are uncovered for the A1 − A2 splittings in the ν24, ν13 and |$2\nu _4^{\ell =0}/2\nu _4^{\ell =2}$| manifolds of PH3. A pronounced Coriolis interaction between these states in conjunction with accidentally degenerate A1 and A2 energy levels produces a series of enhanced sensitivity coefficients. Phosphine is expected to occur in a number of different astrophysical environments and has potential for investigating a drifting constant. Furthermore, the displayed behaviour hints at a wider trend in molecules of |$\boldsymbol {C}_{3\mathrm{v}}\mathrm{(M)}$| symmetry, thus demonstrating that the splittings induced by higher-order ro-vibrational interactions are well suited for probing μ in other symmetric top molecules in space, since these low-frequency transitions can be straightforwardly detected by radio telescopes.

1 INTRODUCTION

Recently, the J = 2 − 1 rotational transition of phosphine (PH3) was detected in the carbon star envelope IRC +10216 (Agúndez et al. 2014), thus confirming the presence of PH3 in the outflows of evolved stars but more significantly outside of the Solar system. The appearance of PH3 has been predicted in numerous other astrophysical environments (see the discussion by Sousa-Silva et al. 2015 and references therein), and because of prominent ‘irregularities’ displayed by its rotation–vibration spectrum, it is a promising system for investigating the cosmological variability of the proton-to-electron mass ratio, μ = mp/me. Observing PH3 outside of our Galaxy is no easy feat; however, nearby Galactic molecular clouds offer a means to constrain μ through the so-called chameleon scenario (Brax et al. 2004; Khoury & Weltman 2004) as evidenced by studies of ammonia (Levshakov et al. 2010b,a) and methanol (Daprà et al. 2017).

At present, the most robust constraint on a temporal variation of μ was determined from methanol absorption spectra observed in the lensing galaxy PKS1830−211 (Kanekar et al. 2015). The three measured transitions possessed sensitivity coefficients, T, ranging from −7.4 to −1.0 and resulted in a constraint of |$\dot{\mu }/\mu < 2\times 10^{-17}\,$|yr−1 assuming a linear rate of change. This translates to no change in μ over the past ≈7.5 billion years and is in agreement with the best laboratory constraint to date, which measured optical transitions in 171Yb+ ions to derive |$\dot{\mu }/\mu = (0.2\pm 1.1)\times 10^{-16}\,$|yr−1 (Godun et al. 2014) again assuming a linear rate of change. Whilst the use of methanol has led to several astronomical constraints (Jansen et al. 2011; Levshakov, Kozlov & Reimers 2011; Bagdonaite et al. 2013a,b; Thompson 2013; Kanekar et al. 2015), it is worthwhile identifying other molecular absorbers with notable sensitivities to expand the search for a drifting μ.

Due to the small difference between its rotational constants B and C, and also because of the strong x − y Coriolis interaction between the coinciding ν24, ν13 and |$2\nu _4^{\ell =0}/2\nu _4^{\ell =2}$| states (see Fig. 1), phosphine is a potential candidate system for probing μ. Notably, the spectrum of PH3, and presumably other molecules of |$\boldsymbol {C}_{3\mathrm{v}}\mathrm{(M)}$| symmetry, is special due to the anomalous behaviour of the A1 − A2 splittings (Ulenikov et al. 2002). A large number of spectroscopic studies of PH3 have been reported in the literature (see Müller 2013 and references therein) and highly accurate data is available for the majority of its states. Furthermore, a robust theoretical description of this molecule, which we utilize for this work, has been developed over the years (Yurchenko et al. 200320052006; Ovsyannikov et al. 2008a,b; Sousa-Silva, Yurchenko & Tennyson 2013; Sousa-Silva et al. 20142015; Sousa-Silva, Tennyson & Yurchenko 2016), culminating in the construction of a comprehensive rotation–vibration line list applicable for elevated temperatures (Sousa-Silva et al. 2015).

The lowest vibrational energy levels of PH3.
Figure 1.

The lowest vibrational energy levels of PH3.

Model radiative transfer calculations of phosphine excitation in the envelope of IRC +10216 (Cernicharo et al. 1999; Agúndez et al. 2014) highlighted the importance of infrared pumping from the ground to the first excited vibrational states, helping explain the presence of strong emission bands in the observed spectra. We therefore find it useful to investigate the sensitivity of the ground, fundamental and low-lying combination and overtone vibrational states of PH3 (see Fig. 1) to a possible space–time variation of μ using a robust variational approach. The paper is structured as follows: in Section 2, we describe the variational approach used to compute sensitivity coefficients. The results for the phosphine molecule are presented and discussed in Section 3. Concluding remarks are given in Section 4.

2 VARIATIONAL APPROACH

The sensitivity coefficient Tu, l between an upper and lower state with energy Eu and El, respectively, is defined as
(1)
and can be related to the induced frequency shift of a transition, or energy difference Eu − El between two states, through the expression
(2)
where Δν = νobs − ν0 is the change in the frequency, and Δμ = μobs − μ0 is the change in μ, both with respect to their present-day values ν0 and μ0. By assuming all baryonic matter can be treated equally (Dent 2007), μ is proportional to the molecular mass. One can then perform a series of calculations with suitably scaled values for the masses of the P and H atoms and extract numerical values for the derivatives dE/dμ using central finite differences.

Sensitivity coefficients for PH3 have been computed with the same variational approach as was previously employed for ammonia (Owens et al. 2015a, 2016) and the hydronium cation (Owens et al. 2015b). Calculations were carried out with the nuclear motion program trove (Yurchenko, Thiel & Jensen 2007; Yachmenev & Yurchenko 2015; Yurchenko, Yachmenev & Ovsyannikov 2017) and utilized the potential energy surface (PES), dipole moment surface (DMS) and computational set-up of Sousa-Silva et al. (2015), which have all undergone rigorous testing and are known to be reliable. We refer the reader to Sousa-Silva et al. (2015) for further details of the nuclear motion computations. All sensitivity coefficients, equation (1), have been determined with calculated frequencies, Eu − El, as oppose to experimental values when available. This was done for consistency and to verify the trend in sensitivities displayed by PH3, which we will discuss further in Section 3.

3 RESULTS AND DISCUSSION

In general, as shown in Table 1, Figs 2 and 3, the majority of the calculated sensitivity coefficients for the low-lying vibrational states acquire the expected values of T ≈ −1 and T ≈ −1/2 for rotational and ro-vibrational transitions, respectively. Notably, this is the case for the J = 2 − 1 and J = 1 − 0 rotational transitions observed in the carbon star envelope IRC +10216 (Agúndez et al. 20082014). For a small fraction of the probed transitions, the sensitivities deviate from the usual values. Accidental coincidences between ro-vibrational states can cause the magnitude of these ‘irregularities’ to strongly increase with vibrational excitation, as illustrated in Fig. 4.

Sensitivity coefficients T for pure rotational transitions in the ground, ν2, and ν4 vibrational states of PH3. Here, n is a running number which counts the number of transitions.
Figure 2.

Sensitivity coefficients T for pure rotational transitions in the ground, ν2, and ν4 vibrational states of PH3. Here, n is a running number which counts the number of transitions.

Sensitivity coefficients T for ro-vibrational transitions from the ground to the lowest vibrational states of PH3. Here, n is a running number which counts the number of transitions.
Figure 3.

Sensitivity coefficients T for ro-vibrational transitions from the ground to the lowest vibrational states of PH3. Here, n is a running number which counts the number of transitions.

The wavenumbers ν (in cm−1) and sensitivity coefficients T of the ν4 ← ν2 ro-vibrational transitions of PH3. Here, n is a running number which counts the number of transitions.
Figure 4.

The wavenumbers ν (in cm−1) and sensitivity coefficients T of the ν4 ← ν2 ro-vibrational transitions of PH3. Here, n is a running number which counts the number of transitions.

Table 1.

Calculated frequency νcalc (in MHz), frequency difference Δc − e (in MHz) compared to experimental value from Belov et al. (1981), Einstein A coefficient (in s−1) and sensitivity coefficient T for vibrational ground-state transitions of PH3.

Γ΄J΄K΄ΓJKνcalcΔc − eAT
Allowed
A210A100266  947.22.70.253E-04−0.99
E21E11533  819.44.20.182E-03−0.99
A120A210533  795.50.90.242E-03−1.00
E32E22800  586.86.90.486E-03−1.00
E31E21800  490.83.70.778E-03−0.99
A230A120800  463.87.70.875E-03−0.99
A143A2331067  210.23.90.940E-03−0.99
A243A1331067  210.23.90.940E-03−0.99
E42E321067  006.36.00.161E-02−0.99
E41E311066  886.49.50.201E-02−1.00
A140A2301066  844.48.50.215E-02−1.00
Forbidden
E61E6247  409.218.00.780E-12−0.87
E71E7247  199.320.70.140E-11−0.95
E81E8246  962.523.40.232E-11−0.96
E91E9246  695.724.20.362E-11−1.08
E101E10246  404.927.10.540E-11−0.85
E111E11246  090.131.60.775E-11−0.85
E121E12245  748.333.50.108E-10−0.86
E131E13245  382.634.70.146E-10−0.83
E141E14244  995.837.20.193E-10−0.96
E151E15244  591.142.20.251E-10−0.92
A230A133143  750.548.90.152E-11−0.98
A140A243143  384.753.70.636E-11−1.01
A250A153142  923.153.10.169E-10−1.01
A160A263142  377.458.40.361E-10−0.96
A270A173141  744.965.80.674E-10−0.96
A180A283141  022.471.90.115E-09−0.96
A290A193140  209.976.80.182E-09−0.96
A1100A2103139  307.681.00.275E-09−0.97
A2110A1113138  318.290.20.398E-09−0.95
A1120A2123137  230.095.30.557E-09−0.93
A2130A1133136  045.8104.40.756E-09−0.90
A1140A2143134  750.7109.30.100E-08−0.93
E62E65333  977.8137.80.903E-10−0.99
E72E75332  493.8148.90.225E-09−0.97
E82E85330  815.0163.30.452E-09−0.97
E92E95328  941.3176.90.801E-09−0.96
E102E105326  884.7194.40.130E-08−0.98
E112E115324  645.2209.30.199E-08−0.95
E122E125322  237.9228.90.290E-08−0.95
E132E135319  665.7247.90.406E-08−0.96
E142E145316  940.6268.70.552E-08−0.93
E152E155314  068.6288.10.731E-08−0.92
A173A276429  296.8188.40.249E-09−0.99
A273A176429  284.8189.20.249E-09−1.00
A183A286427  132.3205.70.613E-09−0.98
A283A186427  105.3207.20.613E-09−0.98
A193A296424  728.0227.10.122E-08−0.98
A293A196424  671.0227.00.122E-08−0.98
A1103A2106422  092.8249.80.213E-08−0.96
A2103A1106421  984.9247.20.213E-08−0.96
A1113A2116419  238.8271.70.343E-08−0.96
A2113A1116419  052.9269.80.343E-08−0.96
A1123A2126416  186.9297.60.519E-08−0.95
A2123A1126415  878.1294.80.518E-08−0.94
A1133A2136412  949.1320.20.748E-08−0.94
A2133A1136412  457.5316.60.747E-08−0.95
A1143A2146409  558.5350.20.104E-07−0.94
A2143A1146408  797.0341.30.104E-07−0.94
A1153A2156406  029.9377.30.140E-07−0.93
A2153A1156404  893.7366.70.139E-07−0.92
Γ΄J΄K΄ΓJKνcalcΔc − eAT
Allowed
A210A100266  947.22.70.253E-04−0.99
E21E11533  819.44.20.182E-03−0.99
A120A210533  795.50.90.242E-03−1.00
E32E22800  586.86.90.486E-03−1.00
E31E21800  490.83.70.778E-03−0.99
A230A120800  463.87.70.875E-03−0.99
A143A2331067  210.23.90.940E-03−0.99
A243A1331067  210.23.90.940E-03−0.99
E42E321067  006.36.00.161E-02−0.99
E41E311066  886.49.50.201E-02−1.00
A140A2301066  844.48.50.215E-02−1.00
Forbidden
E61E6247  409.218.00.780E-12−0.87
E71E7247  199.320.70.140E-11−0.95
E81E8246  962.523.40.232E-11−0.96
E91E9246  695.724.20.362E-11−1.08
E101E10246  404.927.10.540E-11−0.85
E111E11246  090.131.60.775E-11−0.85
E121E12245  748.333.50.108E-10−0.86
E131E13245  382.634.70.146E-10−0.83
E141E14244  995.837.20.193E-10−0.96
E151E15244  591.142.20.251E-10−0.92
A230A133143  750.548.90.152E-11−0.98
A140A243143  384.753.70.636E-11−1.01
A250A153142  923.153.10.169E-10−1.01
A160A263142  377.458.40.361E-10−0.96
A270A173141  744.965.80.674E-10−0.96
A180A283141  022.471.90.115E-09−0.96
A290A193140  209.976.80.182E-09−0.96
A1100A2103139  307.681.00.275E-09−0.97
A2110A1113138  318.290.20.398E-09−0.95
A1120A2123137  230.095.30.557E-09−0.93
A2130A1133136  045.8104.40.756E-09−0.90
A1140A2143134  750.7109.30.100E-08−0.93
E62E65333  977.8137.80.903E-10−0.99
E72E75332  493.8148.90.225E-09−0.97
E82E85330  815.0163.30.452E-09−0.97
E92E95328  941.3176.90.801E-09−0.96
E102E105326  884.7194.40.130E-08−0.98
E112E115324  645.2209.30.199E-08−0.95
E122E125322  237.9228.90.290E-08−0.95
E132E135319  665.7247.90.406E-08−0.96
E142E145316  940.6268.70.552E-08−0.93
E152E155314  068.6288.10.731E-08−0.92
A173A276429  296.8188.40.249E-09−0.99
A273A176429  284.8189.20.249E-09−1.00
A183A286427  132.3205.70.613E-09−0.98
A283A186427  105.3207.20.613E-09−0.98
A193A296424  728.0227.10.122E-08−0.98
A293A196424  671.0227.00.122E-08−0.98
A1103A2106422  092.8249.80.213E-08−0.96
A2103A1106421  984.9247.20.213E-08−0.96
A1113A2116419  238.8271.70.343E-08−0.96
A2113A1116419  052.9269.80.343E-08−0.96
A1123A2126416  186.9297.60.519E-08−0.95
A2123A1126415  878.1294.80.518E-08−0.94
A1133A2136412  949.1320.20.748E-08−0.94
A2133A1136412  457.5316.60.747E-08−0.95
A1143A2146409  558.5350.20.104E-07−0.94
A2143A1146408  797.0341.30.104E-07−0.94
A1153A2156406  029.9377.30.140E-07−0.93
A2153A1156404  893.7366.70.139E-07−0.92
Table 1.

Calculated frequency νcalc (in MHz), frequency difference Δc − e (in MHz) compared to experimental value from Belov et al. (1981), Einstein A coefficient (in s−1) and sensitivity coefficient T for vibrational ground-state transitions of PH3.

Γ΄J΄K΄ΓJKνcalcΔc − eAT
Allowed
A210A100266  947.22.70.253E-04−0.99
E21E11533  819.44.20.182E-03−0.99
A120A210533  795.50.90.242E-03−1.00
E32E22800  586.86.90.486E-03−1.00
E31E21800  490.83.70.778E-03−0.99
A230A120800  463.87.70.875E-03−0.99
A143A2331067  210.23.90.940E-03−0.99
A243A1331067  210.23.90.940E-03−0.99
E42E321067  006.36.00.161E-02−0.99
E41E311066  886.49.50.201E-02−1.00
A140A2301066  844.48.50.215E-02−1.00
Forbidden
E61E6247  409.218.00.780E-12−0.87
E71E7247  199.320.70.140E-11−0.95
E81E8246  962.523.40.232E-11−0.96
E91E9246  695.724.20.362E-11−1.08
E101E10246  404.927.10.540E-11−0.85
E111E11246  090.131.60.775E-11−0.85
E121E12245  748.333.50.108E-10−0.86
E131E13245  382.634.70.146E-10−0.83
E141E14244  995.837.20.193E-10−0.96
E151E15244  591.142.20.251E-10−0.92
A230A133143  750.548.90.152E-11−0.98
A140A243143  384.753.70.636E-11−1.01
A250A153142  923.153.10.169E-10−1.01
A160A263142  377.458.40.361E-10−0.96
A270A173141  744.965.80.674E-10−0.96
A180A283141  022.471.90.115E-09−0.96
A290A193140  209.976.80.182E-09−0.96
A1100A2103139  307.681.00.275E-09−0.97
A2110A1113138  318.290.20.398E-09−0.95
A1120A2123137  230.095.30.557E-09−0.93
A2130A1133136  045.8104.40.756E-09−0.90
A1140A2143134  750.7109.30.100E-08−0.93
E62E65333  977.8137.80.903E-10−0.99
E72E75332  493.8148.90.225E-09−0.97
E82E85330  815.0163.30.452E-09−0.97
E92E95328  941.3176.90.801E-09−0.96
E102E105326  884.7194.40.130E-08−0.98
E112E115324  645.2209.30.199E-08−0.95
E122E125322  237.9228.90.290E-08−0.95
E132E135319  665.7247.90.406E-08−0.96
E142E145316  940.6268.70.552E-08−0.93
E152E155314  068.6288.10.731E-08−0.92
A173A276429  296.8188.40.249E-09−0.99
A273A176429  284.8189.20.249E-09−1.00
A183A286427  132.3205.70.613E-09−0.98
A283A186427  105.3207.20.613E-09−0.98
A193A296424  728.0227.10.122E-08−0.98
A293A196424  671.0227.00.122E-08−0.98
A1103A2106422  092.8249.80.213E-08−0.96
A2103A1106421  984.9247.20.213E-08−0.96
A1113A2116419  238.8271.70.343E-08−0.96
A2113A1116419  052.9269.80.343E-08−0.96
A1123A2126416  186.9297.60.519E-08−0.95
A2123A1126415  878.1294.80.518E-08−0.94
A1133A2136412  949.1320.20.748E-08−0.94
A2133A1136412  457.5316.60.747E-08−0.95
A1143A2146409  558.5350.20.104E-07−0.94
A2143A1146408  797.0341.30.104E-07−0.94
A1153A2156406  029.9377.30.140E-07−0.93
A2153A1156404  893.7366.70.139E-07−0.92
Γ΄J΄K΄ΓJKνcalcΔc − eAT
Allowed
A210A100266  947.22.70.253E-04−0.99
E21E11533  819.44.20.182E-03−0.99
A120A210533  795.50.90.242E-03−1.00
E32E22800  586.86.90.486E-03−1.00
E31E21800  490.83.70.778E-03−0.99
A230A120800  463.87.70.875E-03−0.99
A143A2331067  210.23.90.940E-03−0.99
A243A1331067  210.23.90.940E-03−0.99
E42E321067  006.36.00.161E-02−0.99
E41E311066  886.49.50.201E-02−1.00
A140A2301066  844.48.50.215E-02−1.00
Forbidden
E61E6247  409.218.00.780E-12−0.87
E71E7247  199.320.70.140E-11−0.95
E81E8246  962.523.40.232E-11−0.96
E91E9246  695.724.20.362E-11−1.08
E101E10246  404.927.10.540E-11−0.85
E111E11246  090.131.60.775E-11−0.85
E121E12245  748.333.50.108E-10−0.86
E131E13245  382.634.70.146E-10−0.83
E141E14244  995.837.20.193E-10−0.96
E151E15244  591.142.20.251E-10−0.92
A230A133143  750.548.90.152E-11−0.98
A140A243143  384.753.70.636E-11−1.01
A250A153142  923.153.10.169E-10−1.01
A160A263142  377.458.40.361E-10−0.96
A270A173141  744.965.80.674E-10−0.96
A180A283141  022.471.90.115E-09−0.96
A290A193140  209.976.80.182E-09−0.96
A1100A2103139  307.681.00.275E-09−0.97
A2110A1113138  318.290.20.398E-09−0.95
A1120A2123137  230.095.30.557E-09−0.93
A2130A1133136  045.8104.40.756E-09−0.90
A1140A2143134  750.7109.30.100E-08−0.93
E62E65333  977.8137.80.903E-10−0.99
E72E75332  493.8148.90.225E-09−0.97
E82E85330  815.0163.30.452E-09−0.97
E92E95328  941.3176.90.801E-09−0.96
E102E105326  884.7194.40.130E-08−0.98
E112E115324  645.2209.30.199E-08−0.95
E122E125322  237.9228.90.290E-08−0.95
E132E135319  665.7247.90.406E-08−0.96
E142E145316  940.6268.70.552E-08−0.93
E152E155314  068.6288.10.731E-08−0.92
A173A276429  296.8188.40.249E-09−0.99
A273A176429  284.8189.20.249E-09−1.00
A183A286427  132.3205.70.613E-09−0.98
A283A186427  105.3207.20.613E-09−0.98
A193A296424  728.0227.10.122E-08−0.98
A293A196424  671.0227.00.122E-08−0.98
A1103A2106422  092.8249.80.213E-08−0.96
A2103A1106421  984.9247.20.213E-08−0.96
A1113A2116419  238.8271.70.343E-08−0.96
A2113A1116419  052.9269.80.343E-08−0.96
A1123A2126416  186.9297.60.519E-08−0.95
A2123A1126415  878.1294.80.518E-08−0.94
A1133A2136412  949.1320.20.748E-08−0.94
A2133A1136412  457.5316.60.747E-08−0.95
A1143A2146409  558.5350.20.104E-07−0.94
A2143A1146408  797.0341.30.104E-07−0.94
A1153A2156406  029.9377.30.140E-07−0.93
A2153A1156404  893.7366.70.139E-07−0.92

The most striking sensitivities are displayed by the A1 − A2 doublets of PH3. As is well known for a molecule with |$\boldsymbol {C}_{3\mathrm{v}}\mathrm{(M)}$| symmetry, all rotation–vibration energy levels corresponding to the same K ≡ |k| ≠ 0 rotational quantum number and having overall A1, A2 symmetry are split into doublets due to different ro-vibrational interactions (see, for example, Chen & Oka 1989). For the non-degenerate vibrational states, the A1 − A2 splittings occur for rotational levels with K = 3n (n = 1, 2, …). For the doubly degenerate fundamental vibrational states characterized by the vibrational angular momentum quantum number ℓ ≠ 0, the splittings occur for the K = 1, 2, 4, 5, 7, 8… levels.

In Tables 29, we have computed sensitivity coefficients for a large number of the A1 − A2 doublets for low-lying vibrational states. The results suggest that sensitivities of the A1 − A2 splittings for non-coinciding ro-vibrational states possess values dependent on the rotational quantum number J. For example, T ≈ −1.5, −2, −3 for k = 1, 2, 3, respectively (see Tables 25). It would be interesting to see if this trend is present in other molecules of |$\boldsymbol {C}_{3\mathrm{v}}\mathrm{(M)}$| symmetry. For the sensitivities corresponding to coinciding states, there is a strong and irregular dependence on the x − y Coriolis interaction that can produce values at least one order of magnitude larger than the respective Coriolis-free predictions. This behaviour is similar to that of NH3 (Špirko 2014; Owens et al. 2015a, 2016) and H3O+ (Owens et al. 2015b) .

Table 2.

Calculated and experimental k = 3, A1 − A2 splittings (in MHz) and their sensitivities in the ground (gs) and ν2 vibrational states of PH3.

JνexpνcalcTνexpνcalcT
gs|${\boldsymbol{\nu _2}}$|
40.43409a0.4503.60b3.568
51.73413a1.76913.096b13.371
65.19570a5.24636.627b37.384
712.9690a13.10178c86.640−3.6
828.4825a28.780−2.9174c176.19−3.6
956.8550a57.440−2.7318c325.12−3.5
10106.46−2.90531c557.13−3.4
11185.90−3.00872c900.40−3.3
12309.03−3.021412c1388.2−3.3
13493.04−3.042009c2059.6−3.3
14759.76−3.032896c2959.6−3.17
151136.1−3.024686c4139.8−3.13
161654.8−3.035660.3−3.10
172355.8−3.037588.6−3.07
183285.9−3.0310002−3.06
JνexpνcalcTνexpνcalcT
gs|${\boldsymbol{\nu _2}}$|
40.43409a0.4503.60b3.568
51.73413a1.76913.096b13.371
65.19570a5.24636.627b37.384
712.9690a13.10178c86.640−3.6
828.4825a28.780−2.9174c176.19−3.6
956.8550a57.440−2.7318c325.12−3.5
10106.46−2.90531c557.13−3.4
11185.90−3.00872c900.40−3.3
12309.03−3.021412c1388.2−3.3
13493.04−3.042009c2059.6−3.3
14759.76−3.032896c2959.6−3.17
151136.1−3.024686c4139.8−3.13
161654.8−3.035660.3−3.10
172355.8−3.037588.6−3.07
183285.9−3.0310002−3.06

aDavies et al. (1971), bChen & Oka (1989), cPapoušek et al. (1989).

Table 2.

Calculated and experimental k = 3, A1 − A2 splittings (in MHz) and their sensitivities in the ground (gs) and ν2 vibrational states of PH3.

JνexpνcalcTνexpνcalcT
gs|${\boldsymbol{\nu _2}}$|
40.43409a0.4503.60b3.568
51.73413a1.76913.096b13.371
65.19570a5.24636.627b37.384
712.9690a13.10178c86.640−3.6
828.4825a28.780−2.9174c176.19−3.6
956.8550a57.440−2.7318c325.12−3.5
10106.46−2.90531c557.13−3.4
11185.90−3.00872c900.40−3.3
12309.03−3.021412c1388.2−3.3
13493.04−3.042009c2059.6−3.3
14759.76−3.032896c2959.6−3.17
151136.1−3.024686c4139.8−3.13
161654.8−3.035660.3−3.10
172355.8−3.037588.6−3.07
183285.9−3.0310002−3.06
JνexpνcalcTνexpνcalcT
gs|${\boldsymbol{\nu _2}}$|
40.43409a0.4503.60b3.568
51.73413a1.76913.096b13.371
65.19570a5.24636.627b37.384
712.9690a13.10178c86.640−3.6
828.4825a28.780−2.9174c176.19−3.6
956.8550a57.440−2.7318c325.12−3.5
10106.46−2.90531c557.13−3.4
11185.90−3.00872c900.40−3.3
12309.03−3.021412c1388.2−3.3
13493.04−3.042009c2059.6−3.3
14759.76−3.032896c2959.6−3.17
151136.1−3.024686c4139.8−3.13
161654.8−3.035660.3−3.10
172355.8−3.037588.6−3.07
183285.9−3.0310002−3.06

aDavies et al. (1971), bChen & Oka (1989), cPapoušek et al. (1989).

Table 3.

Calculated and experimental (Ulenikov et al. 2002) k = 3, A1 − A2 splittings (in MHz) and their sensitivities in the ν1 and |$2\nu _4^{\ell =2}$| vibrational states of PH3.

JνexpνcalcTνexpνcalcT
|${\boldsymbol{\nu _1}}$||${\boldsymbol{2\nu _{4}^{\ell =2}}}$|
42.10573503.6−2.6
57.8818111561−2.6
621.6239063337−2.5
747.37−567635792−2.33
84587.18−3.897198885−2.25
9114140.0−3.8414  42912  504−2.15
10201.9−2.9717  64915  241−1.54
11195261.9−2.0519  46017  519−3.17
12342480.0−3.3829  53926  118−2.15
13255810.2−3.6532  465−2.03
146706959.221.338  781−1.98
1566653.8345  247−1.89
161756−14.1751  606−1.86
173405−5.3957  544−1.76
185880−10.6152  1870.15
JνexpνcalcTνexpνcalcT
|${\boldsymbol{\nu _1}}$||${\boldsymbol{2\nu _{4}^{\ell =2}}}$|
42.10573503.6−2.6
57.8818111561−2.6
621.6239063337−2.5
747.37−567635792−2.33
84587.18−3.897198885−2.25
9114140.0−3.8414  42912  504−2.15
10201.9−2.9717  64915  241−1.54
11195261.9−2.0519  46017  519−3.17
12342480.0−3.3829  53926  118−2.15
13255810.2−3.6532  465−2.03
146706959.221.338  781−1.98
1566653.8345  247−1.89
161756−14.1751  606−1.86
173405−5.3957  544−1.76
185880−10.6152  1870.15
Table 3.

Calculated and experimental (Ulenikov et al. 2002) k = 3, A1 − A2 splittings (in MHz) and their sensitivities in the ν1 and |$2\nu _4^{\ell =2}$| vibrational states of PH3.

JνexpνcalcTνexpνcalcT
|${\boldsymbol{\nu _1}}$||${\boldsymbol{2\nu _{4}^{\ell =2}}}$|
42.10573503.6−2.6
57.8818111561−2.6
621.6239063337−2.5
747.37−567635792−2.33
84587.18−3.897198885−2.25
9114140.0−3.8414  42912  504−2.15
10201.9−2.9717  64915  241−1.54
11195261.9−2.0519  46017  519−3.17
12342480.0−3.3829  53926  118−2.15
13255810.2−3.6532  465−2.03
146706959.221.338  781−1.98
1566653.8345  247−1.89
161756−14.1751  606−1.86
173405−5.3957  544−1.76
185880−10.6152  1870.15
JνexpνcalcTνexpνcalcT
|${\boldsymbol{\nu _1}}$||${\boldsymbol{2\nu _{4}^{\ell =2}}}$|
42.10573503.6−2.6
57.8818111561−2.6
621.6239063337−2.5
747.37−567635792−2.33
84587.18−3.897198885−2.25
9114140.0−3.8414  42912  504−2.15
10201.9−2.9717  64915  241−1.54
11195261.9−2.0519  46017  519−3.17
12342480.0−3.3829  53926  118−2.15
13255810.2−3.6532  465−2.03
146706959.221.338  781−1.98
1566653.8345  247−1.89
161756−14.1751  606−1.86
173405−5.3957  544−1.76
185880−10.6152  1870.15
Table 4.

Calculated and experimental k = 1 and k = 2, A1 − A2 splittings (in MHz) and their sensitivities in the ν4 vibrational state of PH3.

JνexpνcalcTνexpνcalcT
k = 1k = 2
110  498.9a10  429.5−1.51
231  269.7a31  058.4−1.5030b30.16
361  876.0c61  444.7−1.49150b149.12−2.51
4101  889.7d101  152−1.48438b436.62−2.37
5150  200e149  480−1.47986b975.97−2.35
6207  700e205  747−1.451850b1827.4−2.37
7271  300e269  219−1.443034b3004.9−2.32
8342  600e339  148−1.434521b4471.7−2.22
9419  000e414  689−1.406175b6156.9−2.17
10502  300e497  112−1.387989b7980.1−2.11
11588  700e581  763−1.379875b9868.3−2.03
12679  300e671  136−1.3511  700e11  762−1.97
13772  300e764  108−1.3412  600e13  613−1.93
14869  600e860  215−1.3217  900e15  378−1.88
15967  700e959  068−1.3119  600e16  754−1.68
161060  200−1.3012  454−4.48
171162  100−1.2718  172−1.81
181273  400−1.2719  568−1.67
JνexpνcalcTνexpνcalcT
k = 1k = 2
110  498.9a10  429.5−1.51
231  269.7a31  058.4−1.5030b30.16
361  876.0c61  444.7−1.49150b149.12−2.51
4101  889.7d101  152−1.48438b436.62−2.37
5150  200e149  480−1.47986b975.97−2.35
6207  700e205  747−1.451850b1827.4−2.37
7271  300e269  219−1.443034b3004.9−2.32
8342  600e339  148−1.434521b4471.7−2.22
9419  000e414  689−1.406175b6156.9−2.17
10502  300e497  112−1.387989b7980.1−2.11
11588  700e581  763−1.379875b9868.3−2.03
12679  300e671  136−1.3511  700e11  762−1.97
13772  300e764  108−1.3412  600e13  613−1.93
14869  600e860  215−1.3217  900e15  378−1.88
15967  700e959  068−1.3119  600e16  754−1.68
161060  200−1.3012  454−4.48
171162  100−1.2718  172−1.81
181273  400−1.2719  568−1.67

aScappini & Schwarz (1981), bPapoušek et al. (1989), cGuarnieri, Scappini & Di Lonardo (1981), dBelov et al. (1983), eTarrago, Dang-Nhu & Goldman (1981).

Table 4.

Calculated and experimental k = 1 and k = 2, A1 − A2 splittings (in MHz) and their sensitivities in the ν4 vibrational state of PH3.

JνexpνcalcTνexpνcalcT
k = 1k = 2
110  498.9a10  429.5−1.51
231  269.7a31  058.4−1.5030b30.16
361  876.0c61  444.7−1.49150b149.12−2.51
4101  889.7d101  152−1.48438b436.62−2.37
5150  200e149  480−1.47986b975.97−2.35
6207  700e205  747−1.451850b1827.4−2.37
7271  300e269  219−1.443034b3004.9−2.32
8342  600e339  148−1.434521b4471.7−2.22
9419  000e414  689−1.406175b6156.9−2.17
10502  300e497  112−1.387989b7980.1−2.11
11588  700e581  763−1.379875b9868.3−2.03
12679  300e671  136−1.3511  700e11  762−1.97
13772  300e764  108−1.3412  600e13  613−1.93
14869  600e860  215−1.3217  900e15  378−1.88
15967  700e959  068−1.3119  600e16  754−1.68
161060  200−1.3012  454−4.48
171162  100−1.2718  172−1.81
181273  400−1.2719  568−1.67
JνexpνcalcTνexpνcalcT
k = 1k = 2
110  498.9a10  429.5−1.51
231  269.7a31  058.4−1.5030b30.16
361  876.0c61  444.7−1.49150b149.12−2.51
4101  889.7d101  152−1.48438b436.62−2.37
5150  200e149  480−1.47986b975.97−2.35
6207  700e205  747−1.451850b1827.4−2.37
7271  300e269  219−1.443034b3004.9−2.32
8342  600e339  148−1.434521b4471.7−2.22
9419  000e414  689−1.406175b6156.9−2.17
10502  300e497  112−1.387989b7980.1−2.11
11588  700e581  763−1.379875b9868.3−2.03
12679  300e671  136−1.3511  700e11  762−1.97
13772  300e764  108−1.3412  600e13  613−1.93
14869  600e860  215−1.3217  900e15  378−1.88
15967  700e959  068−1.3119  600e16  754−1.68
161060  200−1.3012  454−4.48
171162  100−1.2718  172−1.81
181273  400−1.2719  568−1.67

aScappini & Schwarz (1981), bPapoušek et al. (1989), cGuarnieri, Scappini & Di Lonardo (1981), dBelov et al. (1983), eTarrago, Dang-Nhu & Goldman (1981).

Table 5.

Calculated and experimental (Ulenikov et al. 2002) k = 1 and k = 2, A1 − A2 splittings (in MHz) and their sensitivities in the ν3 vibrational state of PH3.

JνexpνcalcTνexpνcalcT
k = 1k = 2
1333533−1.57
210041596−1.455459.48−3.7
320153177−1.46288293.89−3.4
433855256−1.45914864.93−3.22
550817788−1.4620781959.3−3.13
6706910  686−1.4439903747.7−3.08
7915613  763−1.3867996301.6−2.96
811  36816  604−1.2010  4609453.3−2.75
912  82518  371−0.7914  55812  583−2.36
1012  89437  630−0.7218  38634  468−1.61
1110  73641  212−0.8621  44142  221−1.95
1239  03345  466−0.8456  79652  692−2.17
1344  07849  330−0.6171  51866  005−2.41
1449  92451  0450.0883  884−2.99
1551  21448  0590.58224  1801.45
1634  359−32.873  345−7.15
17128  7203.8186  6815.34
18128  190−1.23110  930−3.44
JνexpνcalcTνexpνcalcT
k = 1k = 2
1333533−1.57
210041596−1.455459.48−3.7
320153177−1.46288293.89−3.4
433855256−1.45914864.93−3.22
550817788−1.4620781959.3−3.13
6706910  686−1.4439903747.7−3.08
7915613  763−1.3867996301.6−2.96
811  36816  604−1.2010  4609453.3−2.75
912  82518  371−0.7914  55812  583−2.36
1012  89437  630−0.7218  38634  468−1.61
1110  73641  212−0.8621  44142  221−1.95
1239  03345  466−0.8456  79652  692−2.17
1344  07849  330−0.6171  51866  005−2.41
1449  92451  0450.0883  884−2.99
1551  21448  0590.58224  1801.45
1634  359−32.873  345−7.15
17128  7203.8186  6815.34
18128  190−1.23110  930−3.44
Table 5.

Calculated and experimental (Ulenikov et al. 2002) k = 1 and k = 2, A1 − A2 splittings (in MHz) and their sensitivities in the ν3 vibrational state of PH3.

JνexpνcalcTνexpνcalcT
k = 1k = 2
1333533−1.57
210041596−1.455459.48−3.7
320153177−1.46288293.89−3.4
433855256−1.45914864.93−3.22
550817788−1.4620781959.3−3.13
6706910  686−1.4439903747.7−3.08
7915613  763−1.3867996301.6−2.96
811  36816  604−1.2010  4609453.3−2.75
912  82518  371−0.7914  55812  583−2.36
1012  89437  630−0.7218  38634  468−1.61
1110  73641  212−0.8621  44142  221−1.95
1239  03345  466−0.8456  79652  692−2.17
1344  07849  330−0.6171  51866  005−2.41
1449  92451  0450.0883  884−2.99
1551  21448  0590.58224  1801.45
1634  359−32.873  345−7.15
17128  7203.8186  6815.34
18128  190−1.23110  930−3.44
JνexpνcalcTνexpνcalcT
k = 1k = 2
1333533−1.57
210041596−1.455459.48−3.7
320153177−1.46288293.89−3.4
433855256−1.45914864.93−3.22
550817788−1.4620781959.3−3.13
6706910  686−1.4439903747.7−3.08
7915613  763−1.3867996301.6−2.96
811  36816  604−1.2010  4609453.3−2.75
912  82518  371−0.7914  55812  583−2.36
1012  89437  630−0.7218  38634  468−1.61
1110  73641  212−0.8621  44142  221−1.95
1239  03345  466−0.8456  79652  692−2.17
1344  07849  330−0.6171  51866  005−2.41
1449  92451  0450.0883  884−2.99
1551  21448  0590.58224  1801.45
1634  359−32.873  345−7.15
17128  7203.8186  6815.34
18128  190−1.23110  930−3.44
Table 6.

Calculated and experimental (Ulenikov et al. 2002) k = 4 and k = 5, A1 − A2 splittings (in MHz) and their sensitivities in the ν3 vibrational state of PH3.

JνexpνcalcTνexpνcalcT
k = 4k = 5
897.79−2.94
9295.8−2.70
10563889.3−2.81135.1−2.87
1122152988−2.36186267.1−2.81
12554635905−2.45216278.92.02
1334396242−2.9130616.1461
1436636172−5.86171−25.50
156098−5.41517518.1
JνexpνcalcTνexpνcalcT
k = 4k = 5
897.79−2.94
9295.8−2.70
10563889.3−2.81135.1−2.87
1122152988−2.36186267.1−2.81
12554635905−2.45216278.92.02
1334396242−2.9130616.1461
1436636172−5.86171−25.50
156098−5.41517518.1
Table 6.

Calculated and experimental (Ulenikov et al. 2002) k = 4 and k = 5, A1 − A2 splittings (in MHz) and their sensitivities in the ν3 vibrational state of PH3.

JνexpνcalcTνexpνcalcT
k = 4k = 5
897.79−2.94
9295.8−2.70
10563889.3−2.81135.1−2.87
1122152988−2.36186267.1−2.81
12554635905−2.45216278.92.02
1334396242−2.9130616.1461
1436636172−5.86171−25.50
156098−5.41517518.1
JνexpνcalcTνexpνcalcT
k = 4k = 5
897.79−2.94
9295.8−2.70
10563889.3−2.81135.1−2.87
1122152988−2.36186267.1−2.81
12554635905−2.45216278.92.02
1334396242−2.9130616.1461
1436636172−5.86171−25.50
156098−5.41517518.1
Table 7.

Calculated and experimental k = 4 and k = 7, A1 − A2 splittings (in MHz) and their sensitivities in the ν4 vibrational state of PH3.

JνexpνcalcTνexpνcalcT
k = 4k = 7
5582a582.08−2.08
61292a1310.2−2.18
72278a2418.6−2.13
83897a3916.4−2.15
95762a5788.4−2.11210b211.7−5.25
107971a8019.5−2.081190b1363.31.04
1110  530a10  610−2.07618b646.3−2.09
1213  730a13  580−2.06651b671.4−2.33
1316  793a16  966−2.06767b796.7−2.54
1420  686a20  821−2.08959b987.3−2.67
1523  800c25  211−2.091157b1246.5−2.71
1630  209−2.101589.1−2.84
1735  900−2.122038.3−2.87
1842  378−2.152625.3−2.94
JνexpνcalcTνexpνcalcT
k = 4k = 7
5582a582.08−2.08
61292a1310.2−2.18
72278a2418.6−2.13
83897a3916.4−2.15
95762a5788.4−2.11210b211.7−5.25
107971a8019.5−2.081190b1363.31.04
1110  530a10  610−2.07618b646.3−2.09
1213  730a13  580−2.06651b671.4−2.33
1316  793a16  966−2.06767b796.7−2.54
1420  686a20  821−2.08959b987.3−2.67
1523  800c25  211−2.091157b1246.5−2.71
1630  209−2.101589.1−2.84
1735  900−2.122038.3−2.87
1842  378−2.152625.3−2.94

aDavies et al. (1971), bPapoušek et al. (1989), cChen & Oka (1989).

Table 7.

Calculated and experimental k = 4 and k = 7, A1 − A2 splittings (in MHz) and their sensitivities in the ν4 vibrational state of PH3.

JνexpνcalcTνexpνcalcT
k = 4k = 7
5582a582.08−2.08
61292a1310.2−2.18
72278a2418.6−2.13
83897a3916.4−2.15
95762a5788.4−2.11210b211.7−5.25
107971a8019.5−2.081190b1363.31.04
1110  530a10  610−2.07618b646.3−2.09
1213  730a13  580−2.06651b671.4−2.33
1316  793a16  966−2.06767b796.7−2.54
1420  686a20  821−2.08959b987.3−2.67
1523  800c25  211−2.091157b1246.5−2.71
1630  209−2.101589.1−2.84
1735  900−2.122038.3−2.87
1842  378−2.152625.3−2.94
JνexpνcalcTνexpνcalcT
k = 4k = 7
5582a582.08−2.08
61292a1310.2−2.18
72278a2418.6−2.13
83897a3916.4−2.15
95762a5788.4−2.11210b211.7−5.25
107971a8019.5−2.081190b1363.31.04
1110  530a10  610−2.07618b646.3−2.09
1213  730a13  580−2.06651b671.4−2.33
1316  793a16  966−2.06767b796.7−2.54
1420  686a20  821−2.08959b987.3−2.67
1523  800c25  211−2.091157b1246.5−2.71
1630  209−2.101589.1−2.84
1735  900−2.122038.3−2.87
1842  378−2.152625.3−2.94

aDavies et al. (1971), bPapoušek et al. (1989), cChen & Oka (1989).

Table 8.

Calculated and experimental (Ulenikov et al. 2002) k = 7 and k = 8, A1 − A2 splittings (in MHz) and their sensitivities in the ν3 vibrational state of PH3.

JνexpνcalcTνexpνcalcT
k = 7k = 8
1230.55−641340743.7−91
1312601701.441821034
14181787660.21313610565−4.91
152585.527.61344.4−22.3
16807.4−1.111370.211.7
171485.1−22.95056.4−16.8
181315.0−41773.0−3.1
JνexpνcalcTνexpνcalcT
k = 7k = 8
1230.55−641340743.7−91
1312601701.441821034
14181787660.21313610565−4.91
152585.527.61344.4−22.3
16807.4−1.111370.211.7
171485.1−22.95056.4−16.8
181315.0−41773.0−3.1
Table 8.

Calculated and experimental (Ulenikov et al. 2002) k = 7 and k = 8, A1 − A2 splittings (in MHz) and their sensitivities in the ν3 vibrational state of PH3.

JνexpνcalcTνexpνcalcT
k = 7k = 8
1230.55−641340743.7−91
1312601701.441821034
14181787660.21313610565−4.91
152585.527.61344.4−22.3
16807.4−1.111370.211.7
171485.1−22.95056.4−16.8
181315.0−41773.0−3.1
JνexpνcalcTνexpνcalcT
k = 7k = 8
1230.55−641340743.7−91
1312601701.441821034
14181787660.21313610565−4.91
152585.527.61344.4−22.3
16807.4−1.111370.211.7
171485.1−22.95056.4−16.8
181315.0−41773.0−3.1
Table 9.

Calculated and experimental (Ulenikov et al. 2002) k = 1, A1 − A2 splittings (in MHz) and their sensitivities in the |$2\nu _4^{\ell =2}$| vibrational state of PH3. The splitting |$\nu =\Delta E_{A_1/A_2}=(E_{A_2}-E_{A_1}\cdot (-1)^J)$|⁠. The sensitivity Texp is obtained using the frequencies from Ulenikov et al. (2002) instead of the computed values.

JνcalcTcalcνexpTexp
1221.7055−2.5216.7499−2.6
2592.9445−2.3573.2032−2.4
3653.0709−1.8604.0818−1.9
4286.2628−0.6220.3475−0.7
548.86921.7−62.05701.4
631.0615−4.3−115.4201−1.2
7150.8825−3.8−23.3838−24.4
8370.1448−3.1160.3890−7.2
9656.5515−2.7413.1140−4.2
10964.8880−2.3757.2757−3.0
111240.5502−2.01072.9572−2.3
121432.5733−1.51087.6470−1.9
131495.6166−3.11141.3099−4.1
JνcalcTcalcνexpTexp
1221.7055−2.5216.7499−2.6
2592.9445−2.3573.2032−2.4
3653.0709−1.8604.0818−1.9
4286.2628−0.6220.3475−0.7
548.86921.7−62.05701.4
631.0615−4.3−115.4201−1.2
7150.8825−3.8−23.3838−24.4
8370.1448−3.1160.3890−7.2
9656.5515−2.7413.1140−4.2
10964.8880−2.3757.2757−3.0
111240.5502−2.01072.9572−2.3
121432.5733−1.51087.6470−1.9
131495.6166−3.11141.3099−4.1
Table 9.

Calculated and experimental (Ulenikov et al. 2002) k = 1, A1 − A2 splittings (in MHz) and their sensitivities in the |$2\nu _4^{\ell =2}$| vibrational state of PH3. The splitting |$\nu =\Delta E_{A_1/A_2}=(E_{A_2}-E_{A_1}\cdot (-1)^J)$|⁠. The sensitivity Texp is obtained using the frequencies from Ulenikov et al. (2002) instead of the computed values.

JνcalcTcalcνexpTexp
1221.7055−2.5216.7499−2.6
2592.9445−2.3573.2032−2.4
3653.0709−1.8604.0818−1.9
4286.2628−0.6220.3475−0.7
548.86921.7−62.05701.4
631.0615−4.3−115.4201−1.2
7150.8825−3.8−23.3838−24.4
8370.1448−3.1160.3890−7.2
9656.5515−2.7413.1140−4.2
10964.8880−2.3757.2757−3.0
111240.5502−2.01072.9572−2.3
121432.5733−1.51087.6470−1.9
131495.6166−3.11141.3099−4.1
JνcalcTcalcνexpTexp
1221.7055−2.5216.7499−2.6
2592.9445−2.3573.2032−2.4
3653.0709−1.8604.0818−1.9
4286.2628−0.6220.3475−0.7
548.86921.7−62.05701.4
631.0615−4.3−115.4201−1.2
7150.8825−3.8−23.3838−24.4
8370.1448−3.1160.3890−7.2
9656.5515−2.7413.1140−4.2
10964.8880−2.3757.2757−3.0
111240.5502−2.01072.9572−2.3
121432.5733−1.51087.6470−1.9
131495.6166−3.11141.3099−4.1

A detailed study of the A1 − A2 splittings in the |$2\nu _4^{\ell =2}$| state was presented by Ulenikov et al. (2002) where it was shown that the dependence of the splitting on J in the K = 1 rotational sub-levels was anomalous between J = 3–8. This anomaly is caused by an interaction with the closely lying |$2\nu _4^{\ell =0}$| state (K = 0). In Fig. 5 and Table 9, we show the A1 − A2 splittings in the |$2\nu _4^{\ell =2}$| state and corresponding sensitivity coefficients with respect to J. Aside from the J = 7 sensitivity coefficient, which greatly increases when using the experimental frequency value, there is good agreement with the work of Ulenikov et al. (2002) and the sensitivities are highly anomalous.

The A1–A2 splittings in the $2\nu _4^{\ell =2}$ state of PH3 (lower panel) and the corresponding sensitivities T (upper panel). The experimentally determined energies by Ulenikov et al. (2002) were used in equation (1) to estimate the Texp values.
Figure 5.

The A1A2 splittings in the |$2\nu _4^{\ell =2}$| state of PH3 (lower panel) and the corresponding sensitivities T (upper panel). The experimentally determined energies by Ulenikov et al. (2002) were used in equation (1) to estimate the Texp values.

It should be stated that for very energetically close coinciding states, our variational approach may not be capable of a truly quantitative description. This is the reason why sensitivities have not been computed for certain extremely small A1 − A2 splittings. Also, where computed frequencies noticeably differ from the experimental values the resultant sensitivities should only be regarded as illustrative, for example, in Table 8. We have encountered this problem before (Owens et al. 2016) and whilst the underlying numerical derivatives are relatively stable, it is safer to regard the predicted sensitivity coefficients with caution. Despite this, a large number of the computed A1 − A2 splittings are in good agreement with experiment and, more importantly, reside in the radio frequency region.

4 CONCLUSION

The sensitivity of the rotation–vibration spectrum of PH3 to a possible variation of μ has been probed using an accurate variational approach. Calculations utilized the nuclear motion program trove in conjunction with an established empirically refined PES and ab initio DMS. The low-lying vibrational states were studied as they play an important role in phosphine excitation in the carbon star envelope IRC +10216. Whilst the majority of computed sensitivity coefficients assumed their expected values, anomalous sensitivities were displayed by the A1 − A2 splittings in the ν24, ν13 and |$2\nu _4^{\ell =0}/2\nu _4^{\ell =2}$| manifolds. This behaviour arises due to strong Coriolis interactions between states and may be present in other molecules with |$\boldsymbol {C}_{3\mathrm{v}}\mathrm{(M)}$| symmetry. The fact that molecules with highly sensitive transitions such as ammonia are already being used in advanced terrestrial experiments (Cheng et al. 2016) suggests that PH3 may not be a primary candidate for constraining μ in laboratory studies. Its merit as a probe for a drifting constant is more likely to be in cosmological settings as it is a relevant astrophysical molecule with a well-documented spectrum and a negligible hyperfine splitting (Müller 2013). However, it is hard to comment on the necessary conditions for its detection since its presence and formation are not well understood (see the discussion by Sousa-Silva et al. 2015 and references therein). Despite this, PH3 as a model system shows that the splittings caused by higher-order rotation–vibration interactions, which are essentially low-frequency transitions that can be measured using radio telescopes, have real potential for investigating a possible variation of μ.

ACKNOWLEDGEMENTS

AO acknowledges support from the Deutsche Forschungsgemeinschaft (DFG) through the excellence cluster ‘The Hamburg Center for Ultrafast Imaging - Structure, Dynamics and Control of Matter at the Atomic Scale’ (CUI, EXC1074). SY acknowledges support from the COST action MOLIM No. CM1405. VS acknowledges the research project RVO:61388963 (IOCB) and support from the Czech Science Foundation (grant P209/15-10267S).

REFERENCES

Agúndez
M.
,
Cernicharo
J.
,
Pardo
J. R.
,
Guélin
M.
,
Phillips
T. G.
,
2008
,
A&A
,
485
,
L33

Agúndez
M.
,
Cernicharo
J.
,
Decin
L.
,
Encrenaz
P.
,
Teyssier
D.
,
2014
,
ApJ
,
790
,
L27

Bagdonaite
J.
,
Daprà
M.
,
Jansen
P.
,
Bethlem
H. L.
,
Ubachs
W.
,
Muller
S.
,
Henkel
C.
,
Menten
K. M.
,
2013a
,
Phys. Rev. Lett.
,
111
,
231101

Bagdonaite
J.
,
Jansen
P.
,
Henkel
C.
,
Bethlem
H. L.
,
Menten
K. M.
,
Ubachs
W.
,
2013b
,
Science
,
339
,
46

Belov
S. P.
,
Burenin
A. V.
,
Polyansky
O. L.
,
Shapin
S. M.
,
1981
,
J. Mol. Spectrosc.
,
90
,
579

Belov
S. P.
,
Krupnov
A. F.
,
Papoušek
D.
,
Urban
v.
,
Cazzoli
G.
,
1983
,
J. Mol. Spectrosc.
,
98
,
265

Brax
P.
,
van de Bruck
C.
,
Davis
A.-C.
,
Khoury
J.
,
Weltman
A.
,
2004
,
Phys. Rev. D
,
70
,
123518

Cernicharo
J.
,
Yamamura
I.
,
González-Alfonso
E.
,
De Jong
T.
,
Heras
A.
,
Escribano
R.
,
Ortigoso
J.
,
1999
,
ApJ
,
526
,
L41

Cheng
C.
,
van der Poel
A. P. P.
,
Jansen
P.
,
Quintero-Pérez
M.
,
Wall
T. E.
,
Ubachs
W.
,
Bethlem
H. L.
,
2016
,
Phys. Rev. Lett.
,
117
,
253201

Chen
Y.-T.
,
Oka
T.
,
1989
,
J. Mol. Spectrosc.
,
133
,
148

Daprà
M.
et al. ,
2017
,
MNRAS
,
472
,
4434

Davies
P. B.
,
Neumann
R. M.
,
Wofsy
S. C.
,
Klemperer
W.
,
1971
,
J. Chem. Phys.
,
55
,
3564

Dent
T.
,
2007
,
J. Cosmol. Astropart. Phys.
,
0701
,
013

Godun
R. M.
et al. ,
2014
,
Phys. Rev. Lett.
,
113
,
210801

Guarnieri
A.
,
Scappini
F.
,
Di Lonardo
G.
,
1981
,
Chem. Phys. Lett.
,
82
,
321

Jansen
P.
,
Xu
L.-H.
,
Kleiner
I.
,
Ubachs
W.
,
Bethlem
H. L.
,
2011
,
Phys. Rev. Lett.
,
106
,
100801

Kanekar
N.
et al. ,
2015
,
MNRAS
,
448
,
L104

Khoury
J.
,
Weltman
A.
,
2004
,
Phys. Rev. Lett.
,
93
,
171104

Levshakov
S. A.
,
Molaro
P.
,
Lapinov
A. V.
,
Reimers
D.
,
Henkel
C.
,
Sakai
T.
,
2010a
,
A&A
,
512
,
A44

Levshakov
S. A.
,
Lapinov
A. V.
,
Henkel
C.
,
Molaro
P.
,
Reimers
D.
,
Kozlov
M. G.
,
Agafonova
I. I.
,
2010b
,
A&A
,
524
,
A32

Levshakov
S. A.
,
Kozlov
M. G.
,
Reimers
D.
,
2011
,
ApJ
,
738
,
26

Müller
H. S. P.
,
2013
,
J. Quant. Spectrosc. Radiat. Transf.
,
130
,
335

Ovsyannikov
R. I.
,
Thiel
W.
,
Yurchenko
S. N.
,
Carvajal
M.
,
Jensen
P.
,
2008a
,
J. Chem. Phys.
,
129
,
044309

Ovsyannikov
R. I.
,
Thiel
W.
,
Yurchenko
S. N.
,
Carvajal
M.
,
Jensen
P.
,
2008b
,
J. Mol. Spectrosc.
,
252
,
121

Owens
A.
,
Yurchenko
S. N.
,
Thiel
W.
,
Špirko
V.
,
2015a
,
MNRAS
,
450
,
3191

Owens
A.
,
Yurchenko
S. N.
,
Polyansky
O. L.
,
Ovsyannikov
R. I.
,
Thiel
W.
,
Špirko
V.
,
2015b
,
MNRAS
,
454
,
2292

Owens
A.
,
Yurchenko
S. N.
,
Thiel
W.
,
Špirko
V.
,
2016
,
Phys. Rev. A
,
93
,
052506

Papoušek
D.
,
Birk
H.
,
Magg
U.
,
Jones
H.
,
1989
,
J. Mol. Spectrosc.
,
135
,
105

Scappini
F.
,
Schwarz
R.
,
1981
,
Chem. Phys. Lett.
,
80
,
350

Sousa-Silva
C.
,
Yurchenko
S. N.
,
Tennyson
J.
,
2013
,
J. Mol. Spectrosc.
,
288
,
28

Sousa-Silva
C.
,
Hesketh
N.
,
Yurchenko
S. N.
,
Hill
C.
,
Tennyson
J.
,
2014
,
J. Quant. Spectrosc. Radiat. Transf.
,
142
,
66

Sousa-Silva
C.
,
Al-Refaie
A. F.
,
Tennyson
J.
,
Yurchenko
S. N.
,
2015
,
MNRAS
,
446
,
2337

Sousa-Silva
C.
,
Tennyson
J.
,
Yurchenko
S. N.
,
2016
,
J. Chem. Phys.
,
145
,
091102

Špirko
V.
,
2014
,
J. Phys. Chem. Lett.
,
5
,
919

Tarrago
G.
,
Dang-Nhu
M.
,
Goldman
A.
,
1981
,
J. Mol. Spectrosc.
,
88
,
311

Thompson
R. I.
,
2013
,
MNRAS
,
431
,
2576

Ulenikov
O. N.
et al. ,
2002
,
J. Mol. Spectrosc.
,
215
,
295

Yachmenev
A.
,
Yurchenko
S. N.
,
2015
,
J. Chem. Phys.
,
143
,
014105

Yurchenko
S. N.
,
Carvajal
M.
,
Jensen
P.
,
Herregodts
F.
,
Huet
T. R.
,
2003
,
Chem. Phys.
,
290
,
59

Yurchenko
S. N.
,
Thiel
W.
,
Patchkovskii
S.
,
Jensen
P.
,
2005
,
Phys. Chem. Chem. Phys.
,
7
,
573

Yurchenko
S. N.
,
Carvajal
M.
,
Thiel
W.
,
Jensen
P.
,
2006
,
J. Mol. Spectrosc.
,
239
,
71

Yurchenko
S. N.
,
Thiel
W.
,
Jensen
P.
,
2007
,
J. Mol. Spectrosc.
,
245
,
126

Yurchenko
S. N.
,
Yachmenev
A.
,
Ovsyannikov
R. I.
,
2017
,
J. Chem. Theory Comput.
,
13
,
4368