Abstract

Modelling of massive stars and supernovae (SNe) plays a crucial role in understanding galaxies. From this modelling we can derive fundamental constraints on stellar evolution, mass-loss processes, mixing, and the products of nucleosynthesis. Proper account must be taken of all important processes that populate and depopulate the levels (collisional excitation, de-excitation, ionization, recombination, photoionization, bound–bound processes). For the analysis of Type Ia SNe and core collapse SNe (Types Ib, Ic and II) Fe group elements are particularly important. Unfortunately little data is currently available and most noticeably absent are the photoionization cross-sections for the Fe-peaks which have high abundances in SNe. Important interactions for both photoionization and electron-impact excitation are calculated using the relativistic Dirac atomic R-matrix codes (darc) for low-ionization stages of Cobalt. All results are calculated up to photon energies of 45 eV and electron energies up to 20 eV. The wavefunction representation of Co iii has been generated using grasp0 by including the dominant 3d7, 3d6[4s, 4p], 3p43d9 and 3p63d9 configurations, resulting in 292 fine structure levels. Electron-impact collision strengths and Maxwellian averaged effective collision strengths across a wide range of astrophysically relevant temperatures are computed for Co iii. In addition, statistically weighted level-resolved ground and metastable photoionization cross-sections are presented for Co ii and compared directly with existing work.

1 INTRODUCTION

Lowly ionized species of Cobalt are often observed in astrophysical objects such as supernovae (SNe), cool stars (Bergemann, Pickering & Gehren 2010), early-type stars (Smith & Dworetsky 1993) and the solar spectrum (Pickering et al. 1998). These applications necessitate the need for high-quality atomic data which accurately describe the processes of excitation and photoionization. This is further evidenced in SNe by following the nucleosynthesis decay path of 56Ni→ 56Co→ 56Fe, which occurs post explosion. Our principal aim is to facilitate modelling within the astrophysics community with accurate and up-to-date atomic transitions necessary for synthetic spectral analysis, allowing detailed comparisons to be carried out with observation. Stand-alone reports stress both the importance and absence of photon/electron interaction with systems of Iron, Cobalt and Nickel (Ruiz-Lapuente 1995; Hillier 2011; Dessart et al. 2014).

The photoionization cross-sections are to be implemented into the 3D plus time-dependent computer code artis, which models the ejecta of Type Ia SNe as discussed in detail by Sim (2007); Kromer & Sim (2009). Currently, only hydrogenic approximations, or fits to the cross-sections are incorporated into the codes. It is our aim to provide ground and excited state contributions to all possible final states. The code is based on a similar approach by Lucy (2005), where methods for treatment of the transporting radiation, kinetic energies, and ionization energies are considered to compute light curves for particular models and symmetries.

The Opacity Project has been an invaluable source for such data, but is often limited when considering Fe-peak species (Cunto & Mendoza 1992; Cunto et al. 1993). These important Fe-peaks are difficult to investigate due to their open d-shell structure which gives rise to many hundreds of target states for each electronic configuration and typically thousands of closely coupled channels. Hence the target states require substantial configuration interaction expansions for their accurate representation. Fe ii is one such challenging case where over the last decade calculations for this ion have grown in size, complexity and sophistication. Significant differences, however, are still observed in the resulting atomic data as can be seen by the latest two major evaluations for the electron-impact excitation of Fe ii (Ramsbottom et al. 2007; Bautista et al. 2015). Factors of 2 to 3 disparity being the norm at the temperature of maximum abundance 104 K for many of the low-lying forbidden lines.

There have been a number of studies focused on essential atomic data between species of Co i-iii concerning bound transitions. These include oscillator strengths for neutral Cobalt between 2276 and 9357 Å (Cardon et al. 1982), transition probabilities through a multiconfiguration approach for comparison with observed infrared spectra (Nussbaumer & Storey 1988), and also a relativistic Hartree–Fock approach between the lowest 47 levels of Co ii (Quinet 1998). More recently, collision strengths and other radiative data have been calculated for Co ii (Storey, Zeippen & Sochi 2016) and Co iv (Aggarwal et al. 2016). During the preparation of this work, it has come to our attention a detailed study of electron-impact excitation cross-sections for Co iii conducted by Storey & Sochi (2016), which we shall compare with in Sections 2 and 3.

The early ion stages of, and even neutral Cobalt are clearly important as detailed in the literature. Early observations has shown strong Co ii lines in η Carinae (Thackeray 1976), confirmed more recently by Zethson et al. (2001) to be unusually strong, and in the UV regime in ζ Oph (Snow, Weiler & Oegerle 1979), confirmed by Federman et al. (1993). These lines are apparent in the binary star HR5049 (Dworetsky, Trueman & Stickland 1980; Dworetsky 1982) – which previously have been unidentified due to the lack of laboratory data. In this same study, the amount of Cobalt is estimated to be around 3.0 dex overabundant relative to the Sun.

Due to the decay path of 56Ni, Cobalt is often observed in various SNe at both early and late epochs. The Type II SNe 1987A, exploded in the large magellanic cloud, providing a study of the expanding ejecta as the 56Co decays. A large proportion of Fe ii and Co ii lines are blended due to their similar ionization energies, but the strong 1.547 μm line occurs from the transition a5F5 → b3F4 (Meikle et al. 1989; Li, McCray & Sunyaev 1993) in Co ii. The Co iii a4F9/2 → a2G9/2 0.589 μm line in another Type II SNe, 1991bg, is used as a diagnostic to infer the mass of synthesized 56Ni. It is also possible to deduce important properties such as the mass of the exploding star (Mazzali et al. 1997).

The Co ii and Co iii ions under discussion in this publication have also received much interest over the last decade. The mid-infrared spectrum of SNe 2003hv and 2005df show strong Co iii line emissions and even emission from Co iv (Gerardy et al. 2007). However, the collisional processes included in the model have been approximated using statistically weighted collision strengths. A study of the near-infrared spectra from SNe 2005df yields strong Co iii emission lines initially but by day 200 the majority of Cobalt has expectedly decayed down to Fe (Diamond, Hoeflich & Gerardy 2015). A number of Co iii lines are still visible at late times for Type Ia SNe as documented in (Ruiz-Lapuente 1995). These lines would be extremely beneficial in particular diagnostic work, but as outlined above, little collisional data exists. In addition the photoionization cross-sections employed in the models are obtained from a central potential approximation (Reilman & Manson 1979) for the ground state only. Co iii is also present in SNe 2014J and the 11.888 μm line is useful for monitoring the time evolution of the photosphere, and again, the mass of synthesized Ni (Telesco et al. 2015). It is evident from these works and the associated applications the importance of conducting sophisticated and complete calculations for the lowly ionized Fe-peak species of Fe, Ni and Co.

In Section 2, we discuss the development of an accurate structure model for Co iii to include in the R-matrix collisional calculations for electron-impact excitation and photoionization. The accuracy of this model will be tested by reassessing energy levels of the target states and the conformity of transition probabilities with previous assessments. In Section 3, we present level-resolved ground and excited state photoionization cross-sections for Co ii and a selection of collision strengths and effective collision strengths for the electron-impact excitation of Co iii. Comparisons will be made where possible with existing data but these are limited. Finally we summarize our findings and conclusions in Section 4.

2 IMPORTANT TRANSITIONS FOR SYNTHETIC SPECTRAL MODELLING

This paper focuses initially on transitions that occur between discrete states of our atomic system, Co iii. In Fig. 1, we graphically present some of the most important lines in the infrared and visible energy bands of the spectrum. Transitions among the ground state term 4F and levels of the parent ion Co iii with configuration 3d7 are shown on the right-hand side. The neighbouring system Co ii is also shown on the left complete with its fine-structure split J levels to indicate the photoionization process under investigation.

Important lines in the infrared and visible energy bands between levels of Co iii amongst the 3d7 configuration and involving the ground term 4F. The neighbouring system of Co ii is to the left with its split J levels to indicate the photoionization process.
Figure 1.

Important lines in the infrared and visible energy bands between levels of Co iii amongst the 3d7 configuration and involving the ground term 4F. The neighbouring system of Co ii is to the left with its split J levels to indicate the photoionization process.

2.1 Target description and bound state transitions

We first detail results obtained from transitions within the bound system of Co iii and our ab initio energy eigenvalues. The Dirac–Coulomb Hamiltonian can be written as,
(1)
which is then incorporated into the grasp0 computer package. α and β relates the Pauli spin matrices, c is the speed of light, Z = 27 is the atomic number and N = 25 is the number of electrons for the system.

As stated in the introduction, partially filled d-shell systems are difficult due to the hundreds of levels associated with a single configuration. Initially, we include three configurations, 3d7 and 3d6[4s, 4p] during the optimization process, denoted as model 1, which results in a total of 262 fine structure levels to describe the Co iii ion. The ground state of which is 3d7a4F9/2. Next we optimize all orbitals up to 3d on the configurations from the double electron promotions, 3s2, 3p2 → 3d2 and include in the total calculation all configurations from model 1 plus 3p63d9 (double promotion from 3s to 3d) and 3s23p43d9 (double promotion from 3p to 3d). This technique can be useful as it alleviates the necessity to include numerous pseudo-states into the calculation. We denote this model 2 which constitutes a total of 292 levels. Finally, by including 3d5[4s2, 4p2] and 3d54s4p, the number of levels drastically increases to 1259 levels, and we label this as model 3.

We present in Table 1 our ab initio energy levels obtained from grasp0 in eV for the lowest lying 50 levels alongside those observed by Sugar & Corliss (1985). We also present the  per cent difference between Sugar & Corliss (1985) and our model 2, and also provide the lowest 15 levels of Storey & Sochi (2016). Good agreement is found (<10 per cent for the majority of levels) between the present model 2 and model 3 energies and those of Storey & Sochi (2016). As with other Fe-peak ions, the energy levels of the lowest-lying 3d7 fine-structure states are notoriously difficult to determine. The highest disparities are found for these levels when compared with Sugar & Corliss (1985), the largest being for the 3d74F9/2 → 3d72H11/2 (1-12) transition. For levels indexed above 17 the differences are at most 10 to 11 per cent and for many levels by considerably less. The main problem is due to the fact that a single 3d orbital is used to describe the configuration state functions for multiple configurations of type 3d7 and 3d64s. Similar differences were reported by Ramsbottom (2009) for the low-lying 3d7 fine-structure levels of Fe ii. Despite the high  per cent differences found between these lowest levels in Table 1, overall the average  per cent change across the 171 Sugar & Corliss (1985) Jπ symmetries is a more acceptable 6.2 per cent. The differences between model 2 and model 3 are not significant enough to justify the much larger calculation, and we can also benefit by employing all 292 levels into the close-coupling wavefunction expansion of the Co iii. We therefore adopt our model 2 as the final model for the scattering calculation.

Table 1.

Energies for the lowest 50 levels of Co iii are presented in eV relative to the ground state 3d7 a4F9/2. S&C is from the work of Sugar & Corliss (1985). model 1, model 2, model 3 are the current results from grasp0 and the last column are the lowest 15 levels from Storey & Sochi (2016). We also present the  per cent difference between our current model 2 and S&C in the 6th column.

IndexLevelS&CModel 1Model 2Per centModel 3Storey
13d7 a4F9/20.000 000.000 000.000 000.00.000 000.000 00
23d7 a4F7/20.104 300.103 550.099 394.70.099 800.102 16
33d7 a4F5/20.179 940.180 010.172 554.10.173 210.177 05
43d7 a4F3/20.231 450.232 630.222 803.70.223 620.228 38
53d7 a4P5/21.884 802.394 052.204 3616.92.197 612.293 69
63d7 a4P3/21.912 852.426 372.232 7116.72.226 082.329 04
73d7 a4P1/21.960 362.472 832.278 7516.22.272 442.370 33
83d7 a2G9/22.104 962.390 592.389 9213.52.388 422.427 73
93d7 a2G7/22.202 732.489 672.482 5012.72.481 382.523 95
103d7 a2P3/22.503 853.162 292.852 4313.92.843 343.178 09
113d7 a2P1/22.593 563.270 652.964 2814.32.956 733.282 36
123d7 a2H11/22.816 963.183 563.352 7019.03.352 603.184 78
133d7 a2H9/22.905 483.268 363.431 1618.13.431 433.270 58
143d7 a|$^2_2$|D5/22.858 933.446 723.062 777.13.047 403.447 26
153d7 a|$^2_2$|D3/23.004 983.603 583.231 407.53.218 733.599 63
163d7 a2F5/24.590 025.513 925.366 0916.95.357 16
173d7 a2F7/24.626 665.558 375.408 6316.95.399 98
183d64s a6D9/25.757 626.708 466.068 495.46.201 78
193d64s a6D7/25.827 646.789 426.146 505.56.279 25
203d64s a6D5/25.878 766.848 696.203 785.56.336 14
213d64s a6D3/25.913 876.889 476.243 245.56.375 36
223d64s a6D1/25.934 486.913 406.266 435.66.398 40
233d64s a4D7/26.909 548.420 157.722 5511.88.049 98
243d64s a4D5/26.989 468.512 857.811 9611.88.138 68
253d64s a4D3/27.041 668.573 687.870 8411.88.197 22
263d64s a4D1/27.071 678.608 777.904 8011.88.230 95
273d7 a|$^2_1$|D3/28.671 617.930 647.965 45
283d7 a|$^2_1$|D5/28.610 188.001 197.893 75
293d64s b4P5/28.794 7110.250 659.638 349.69.809 74
303d64s a4H13/28.880 1410.001 209.382 435.69.553 49
313d64s a4H11/28.911 2110.031 989.412 435.69.583 37
323d64s a4H9/28.937 1910.058 059.437 865.69.608 83
333d64s a4H7/28.960 4010.080 579.459 635.69.630 75
343d64s b4P3/28.969 2610.465 639.845 809.810.017 10
353d64s b4P1/29.077 4410.594 399.970 619.810.140 09
363d64s b4F9/29.086 3110.423 029.810 438.09.981 84
373d64s b4F7/29.117 8210.460 169.846 058.010.016 92
383d64s b4F5/29.140 9310.491 019.875 668.010.046 24
393d64s b4F3/29.157 7010.515 409.898 938.110.069 29
403d64s a4G11/29.487 1410.772 3710.159 947.110.335 33
413d64s b2P3/29.520 8811.328 1010.679 6412.210.964 74
423d64s a4G9/29.561 8010.852 4610.237 817.110.408 98
433d64s a4G7/29.594 2810.886 4210.271 107.010.441 58
443d64s b2H11/29.597 8211.049 0210.397 018.310.678 36
453d64s a4G5/29.605 3410.895 2610.280 197.010.451 25
463d64s b2P1/29.724 6111.570 4210.915 8212.211.197 12
473d64s b2H9/29.624 0211.082 8310.429 078.410.713 76
483d64s b2F7/29.785 8011.447 7810.802 1810.411.085 48
493d64s b2F5/29.847 4911.533 7210.882 8610.511.168 01
503d64s b2G9/210.211 7511.831 4411.184 709.611.470 76
IndexLevelS&CModel 1Model 2Per centModel 3Storey
13d7 a4F9/20.000 000.000 000.000 000.00.000 000.000 00
23d7 a4F7/20.104 300.103 550.099 394.70.099 800.102 16
33d7 a4F5/20.179 940.180 010.172 554.10.173 210.177 05
43d7 a4F3/20.231 450.232 630.222 803.70.223 620.228 38
53d7 a4P5/21.884 802.394 052.204 3616.92.197 612.293 69
63d7 a4P3/21.912 852.426 372.232 7116.72.226 082.329 04
73d7 a4P1/21.960 362.472 832.278 7516.22.272 442.370 33
83d7 a2G9/22.104 962.390 592.389 9213.52.388 422.427 73
93d7 a2G7/22.202 732.489 672.482 5012.72.481 382.523 95
103d7 a2P3/22.503 853.162 292.852 4313.92.843 343.178 09
113d7 a2P1/22.593 563.270 652.964 2814.32.956 733.282 36
123d7 a2H11/22.816 963.183 563.352 7019.03.352 603.184 78
133d7 a2H9/22.905 483.268 363.431 1618.13.431 433.270 58
143d7 a|$^2_2$|D5/22.858 933.446 723.062 777.13.047 403.447 26
153d7 a|$^2_2$|D3/23.004 983.603 583.231 407.53.218 733.599 63
163d7 a2F5/24.590 025.513 925.366 0916.95.357 16
173d7 a2F7/24.626 665.558 375.408 6316.95.399 98
183d64s a6D9/25.757 626.708 466.068 495.46.201 78
193d64s a6D7/25.827 646.789 426.146 505.56.279 25
203d64s a6D5/25.878 766.848 696.203 785.56.336 14
213d64s a6D3/25.913 876.889 476.243 245.56.375 36
223d64s a6D1/25.934 486.913 406.266 435.66.398 40
233d64s a4D7/26.909 548.420 157.722 5511.88.049 98
243d64s a4D5/26.989 468.512 857.811 9611.88.138 68
253d64s a4D3/27.041 668.573 687.870 8411.88.197 22
263d64s a4D1/27.071 678.608 777.904 8011.88.230 95
273d7 a|$^2_1$|D3/28.671 617.930 647.965 45
283d7 a|$^2_1$|D5/28.610 188.001 197.893 75
293d64s b4P5/28.794 7110.250 659.638 349.69.809 74
303d64s a4H13/28.880 1410.001 209.382 435.69.553 49
313d64s a4H11/28.911 2110.031 989.412 435.69.583 37
323d64s a4H9/28.937 1910.058 059.437 865.69.608 83
333d64s a4H7/28.960 4010.080 579.459 635.69.630 75
343d64s b4P3/28.969 2610.465 639.845 809.810.017 10
353d64s b4P1/29.077 4410.594 399.970 619.810.140 09
363d64s b4F9/29.086 3110.423 029.810 438.09.981 84
373d64s b4F7/29.117 8210.460 169.846 058.010.016 92
383d64s b4F5/29.140 9310.491 019.875 668.010.046 24
393d64s b4F3/29.157 7010.515 409.898 938.110.069 29
403d64s a4G11/29.487 1410.772 3710.159 947.110.335 33
413d64s b2P3/29.520 8811.328 1010.679 6412.210.964 74
423d64s a4G9/29.561 8010.852 4610.237 817.110.408 98
433d64s a4G7/29.594 2810.886 4210.271 107.010.441 58
443d64s b2H11/29.597 8211.049 0210.397 018.310.678 36
453d64s a4G5/29.605 3410.895 2610.280 197.010.451 25
463d64s b2P1/29.724 6111.570 4210.915 8212.211.197 12
473d64s b2H9/29.624 0211.082 8310.429 078.410.713 76
483d64s b2F7/29.785 8011.447 7810.802 1810.411.085 48
493d64s b2F5/29.847 4911.533 7210.882 8610.511.168 01
503d64s b2G9/210.211 7511.831 4411.184 709.611.470 76
Table 1.

Energies for the lowest 50 levels of Co iii are presented in eV relative to the ground state 3d7 a4F9/2. S&C is from the work of Sugar & Corliss (1985). model 1, model 2, model 3 are the current results from grasp0 and the last column are the lowest 15 levels from Storey & Sochi (2016). We also present the  per cent difference between our current model 2 and S&C in the 6th column.

IndexLevelS&CModel 1Model 2Per centModel 3Storey
13d7 a4F9/20.000 000.000 000.000 000.00.000 000.000 00
23d7 a4F7/20.104 300.103 550.099 394.70.099 800.102 16
33d7 a4F5/20.179 940.180 010.172 554.10.173 210.177 05
43d7 a4F3/20.231 450.232 630.222 803.70.223 620.228 38
53d7 a4P5/21.884 802.394 052.204 3616.92.197 612.293 69
63d7 a4P3/21.912 852.426 372.232 7116.72.226 082.329 04
73d7 a4P1/21.960 362.472 832.278 7516.22.272 442.370 33
83d7 a2G9/22.104 962.390 592.389 9213.52.388 422.427 73
93d7 a2G7/22.202 732.489 672.482 5012.72.481 382.523 95
103d7 a2P3/22.503 853.162 292.852 4313.92.843 343.178 09
113d7 a2P1/22.593 563.270 652.964 2814.32.956 733.282 36
123d7 a2H11/22.816 963.183 563.352 7019.03.352 603.184 78
133d7 a2H9/22.905 483.268 363.431 1618.13.431 433.270 58
143d7 a|$^2_2$|D5/22.858 933.446 723.062 777.13.047 403.447 26
153d7 a|$^2_2$|D3/23.004 983.603 583.231 407.53.218 733.599 63
163d7 a2F5/24.590 025.513 925.366 0916.95.357 16
173d7 a2F7/24.626 665.558 375.408 6316.95.399 98
183d64s a6D9/25.757 626.708 466.068 495.46.201 78
193d64s a6D7/25.827 646.789 426.146 505.56.279 25
203d64s a6D5/25.878 766.848 696.203 785.56.336 14
213d64s a6D3/25.913 876.889 476.243 245.56.375 36
223d64s a6D1/25.934 486.913 406.266 435.66.398 40
233d64s a4D7/26.909 548.420 157.722 5511.88.049 98
243d64s a4D5/26.989 468.512 857.811 9611.88.138 68
253d64s a4D3/27.041 668.573 687.870 8411.88.197 22
263d64s a4D1/27.071 678.608 777.904 8011.88.230 95
273d7 a|$^2_1$|D3/28.671 617.930 647.965 45
283d7 a|$^2_1$|D5/28.610 188.001 197.893 75
293d64s b4P5/28.794 7110.250 659.638 349.69.809 74
303d64s a4H13/28.880 1410.001 209.382 435.69.553 49
313d64s a4H11/28.911 2110.031 989.412 435.69.583 37
323d64s a4H9/28.937 1910.058 059.437 865.69.608 83
333d64s a4H7/28.960 4010.080 579.459 635.69.630 75
343d64s b4P3/28.969 2610.465 639.845 809.810.017 10
353d64s b4P1/29.077 4410.594 399.970 619.810.140 09
363d64s b4F9/29.086 3110.423 029.810 438.09.981 84
373d64s b4F7/29.117 8210.460 169.846 058.010.016 92
383d64s b4F5/29.140 9310.491 019.875 668.010.046 24
393d64s b4F3/29.157 7010.515 409.898 938.110.069 29
403d64s a4G11/29.487 1410.772 3710.159 947.110.335 33
413d64s b2P3/29.520 8811.328 1010.679 6412.210.964 74
423d64s a4G9/29.561 8010.852 4610.237 817.110.408 98
433d64s a4G7/29.594 2810.886 4210.271 107.010.441 58
443d64s b2H11/29.597 8211.049 0210.397 018.310.678 36
453d64s a4G5/29.605 3410.895 2610.280 197.010.451 25
463d64s b2P1/29.724 6111.570 4210.915 8212.211.197 12
473d64s b2H9/29.624 0211.082 8310.429 078.410.713 76
483d64s b2F7/29.785 8011.447 7810.802 1810.411.085 48
493d64s b2F5/29.847 4911.533 7210.882 8610.511.168 01
503d64s b2G9/210.211 7511.831 4411.184 709.611.470 76
IndexLevelS&CModel 1Model 2Per centModel 3Storey
13d7 a4F9/20.000 000.000 000.000 000.00.000 000.000 00
23d7 a4F7/20.104 300.103 550.099 394.70.099 800.102 16
33d7 a4F5/20.179 940.180 010.172 554.10.173 210.177 05
43d7 a4F3/20.231 450.232 630.222 803.70.223 620.228 38
53d7 a4P5/21.884 802.394 052.204 3616.92.197 612.293 69
63d7 a4P3/21.912 852.426 372.232 7116.72.226 082.329 04
73d7 a4P1/21.960 362.472 832.278 7516.22.272 442.370 33
83d7 a2G9/22.104 962.390 592.389 9213.52.388 422.427 73
93d7 a2G7/22.202 732.489 672.482 5012.72.481 382.523 95
103d7 a2P3/22.503 853.162 292.852 4313.92.843 343.178 09
113d7 a2P1/22.593 563.270 652.964 2814.32.956 733.282 36
123d7 a2H11/22.816 963.183 563.352 7019.03.352 603.184 78
133d7 a2H9/22.905 483.268 363.431 1618.13.431 433.270 58
143d7 a|$^2_2$|D5/22.858 933.446 723.062 777.13.047 403.447 26
153d7 a|$^2_2$|D3/23.004 983.603 583.231 407.53.218 733.599 63
163d7 a2F5/24.590 025.513 925.366 0916.95.357 16
173d7 a2F7/24.626 665.558 375.408 6316.95.399 98
183d64s a6D9/25.757 626.708 466.068 495.46.201 78
193d64s a6D7/25.827 646.789 426.146 505.56.279 25
203d64s a6D5/25.878 766.848 696.203 785.56.336 14
213d64s a6D3/25.913 876.889 476.243 245.56.375 36
223d64s a6D1/25.934 486.913 406.266 435.66.398 40
233d64s a4D7/26.909 548.420 157.722 5511.88.049 98
243d64s a4D5/26.989 468.512 857.811 9611.88.138 68
253d64s a4D3/27.041 668.573 687.870 8411.88.197 22
263d64s a4D1/27.071 678.608 777.904 8011.88.230 95
273d7 a|$^2_1$|D3/28.671 617.930 647.965 45
283d7 a|$^2_1$|D5/28.610 188.001 197.893 75
293d64s b4P5/28.794 7110.250 659.638 349.69.809 74
303d64s a4H13/28.880 1410.001 209.382 435.69.553 49
313d64s a4H11/28.911 2110.031 989.412 435.69.583 37
323d64s a4H9/28.937 1910.058 059.437 865.69.608 83
333d64s a4H7/28.960 4010.080 579.459 635.69.630 75
343d64s b4P3/28.969 2610.465 639.845 809.810.017 10
353d64s b4P1/29.077 4410.594 399.970 619.810.140 09
363d64s b4F9/29.086 3110.423 029.810 438.09.981 84
373d64s b4F7/29.117 8210.460 169.846 058.010.016 92
383d64s b4F5/29.140 9310.491 019.875 668.010.046 24
393d64s b4F3/29.157 7010.515 409.898 938.110.069 29
403d64s a4G11/29.487 1410.772 3710.159 947.110.335 33
413d64s b2P3/29.520 8811.328 1010.679 6412.210.964 74
423d64s a4G9/29.561 8010.852 4610.237 817.110.408 98
433d64s a4G7/29.594 2810.886 4210.271 107.010.441 58
443d64s b2H11/29.597 8211.049 0210.397 018.310.678 36
453d64s a4G5/29.605 3410.895 2610.280 197.010.451 25
463d64s b2P1/29.724 6111.570 4210.915 8212.211.197 12
473d64s b2H9/29.624 0211.082 8310.429 078.410.713 76
483d64s b2F7/29.785 8011.447 7810.802 1810.411.085 48
493d64s b2F5/29.847 4911.533 7210.882 8610.511.168 01
503d64s b2G9/210.211 7511.831 4411.184 709.611.470 76
The A-value, or transition probability, can be calculated at this stage of the calculation. It is a direct measure of the line strength between two states of our system, and we therefore require accurate wavefunctions and energies. We can account for the discrepancy between grasp0 and Sugar & Corliss (1985) energy states by considering the following multiplicative scaling factor,
(2)
Here we set η = 3 or η = 5 for electric and magnetic dipole or quadrupole transitions between two states j and i. It is found that these are shifted by a fraction of the recorded values. A procedure through a least-squares fitting process (Cowan 1981) is the most commonly implemented source of A-values for this ion stage of Cobalt (Hansen, Raassen & Uylings 1984) to date. A total of 130 forbidden transitions within this 3d7 complex are reported, and are provided for comparison in Fig. 2 against our results after the scaling in equation (2) has been performed. The A-values are presented on a logarithmic versus logarithmic scale to incorporate the various magnitudes of results. To investigate this comparison more closely, we present in Table 2 a selection of transitions among the lowest 7 levels of Co iii. Comparisons are made between the values of Hansen et al. (1984), the present model 2 with scaled transition energy levels and the recent results from Storey & Sochi (2016). Excellent agreement is evident for the bulk of the transitions considered with the greatest difference of 12.7 per cent occurring for the 3d7a4F3/2–3d7a4P5/2 (4–5) transition.
Present theoretical A-values after the scaling factors in equation (2) have been applied, plotted against the results of Hansen et al. (1984) in s−1 on a log/log scale.
Figure 2.

Present theoretical A-values after the scaling factors in equation (2) have been applied, plotted against the results of Hansen et al. (1984) in s−1 on a log/log scale.

Table 2.

A-values from Fivet, Quinet & Bautista (2016), Hansen et al. (1984), our current model 2 after the multiplicative scaling factors in equation (2) have been applied and results from Storey for transitions amongst the lowest 7 levels.

i − jFivetHansenModel 2Storey
1 – 22.00 × 10−22.00 × 10−22.00 × 10−22.00 × 10−2
1 – 31.80 × 10−91.75 × 10−9
1 – 56.65 × 10−24.80 × 10−24.53 × 10−25.55 × 10−2
2 – 31.31 × 10−21.30 × 10−21.31 × 10−21.31 × 10−2
2 – 45.90 × 10−105.70 × 10−10
2 – 51.78 × 10−21.35 × 10−21.26 × 10−21.51 × 10−2
2 – 63.73 × 10−22.70 × 10−22.58 × 10−23.14 × 10−2
3 – 44.63 × 10−34.70 × 10−34.63 × 10−34.63 × 10−3
3 – 52.60 × 10−32.45 × 10−33.14 × 10−3
3 – 62.21 × 10−21.63 × 10−21.50 × 10−21.85 × 10−2
3 – 72.73 × 10−22.00 × 10−21.89 × 10−22.30 × 10−2
4 – 54.00 × 10−43.55 × 10−4
4 – 64.40 × 10−34.22 × 10−35.14 × 10−3
4 – 73.60 × 10−22.60 × 10−22.47 × 10−23.02 × 10−2
5 – 62.70 × 10−42.69 × 10−4
5 – 75.50 × 10−95.20 × 10−9
6 – 72.50 × 10−32.47 × 10−32.45 × 10−3
i − jFivetHansenModel 2Storey
1 – 22.00 × 10−22.00 × 10−22.00 × 10−22.00 × 10−2
1 – 31.80 × 10−91.75 × 10−9
1 – 56.65 × 10−24.80 × 10−24.53 × 10−25.55 × 10−2
2 – 31.31 × 10−21.30 × 10−21.31 × 10−21.31 × 10−2
2 – 45.90 × 10−105.70 × 10−10
2 – 51.78 × 10−21.35 × 10−21.26 × 10−21.51 × 10−2
2 – 63.73 × 10−22.70 × 10−22.58 × 10−23.14 × 10−2
3 – 44.63 × 10−34.70 × 10−34.63 × 10−34.63 × 10−3
3 – 52.60 × 10−32.45 × 10−33.14 × 10−3
3 – 62.21 × 10−21.63 × 10−21.50 × 10−21.85 × 10−2
3 – 72.73 × 10−22.00 × 10−21.89 × 10−22.30 × 10−2
4 – 54.00 × 10−43.55 × 10−4
4 – 64.40 × 10−34.22 × 10−35.14 × 10−3
4 – 73.60 × 10−22.60 × 10−22.47 × 10−23.02 × 10−2
5 – 62.70 × 10−42.69 × 10−4
5 – 75.50 × 10−95.20 × 10−9
6 – 72.50 × 10−32.47 × 10−32.45 × 10−3
Table 2.

A-values from Fivet, Quinet & Bautista (2016), Hansen et al. (1984), our current model 2 after the multiplicative scaling factors in equation (2) have been applied and results from Storey for transitions amongst the lowest 7 levels.

i − jFivetHansenModel 2Storey
1 – 22.00 × 10−22.00 × 10−22.00 × 10−22.00 × 10−2
1 – 31.80 × 10−91.75 × 10−9
1 – 56.65 × 10−24.80 × 10−24.53 × 10−25.55 × 10−2
2 – 31.31 × 10−21.30 × 10−21.31 × 10−21.31 × 10−2
2 – 45.90 × 10−105.70 × 10−10
2 – 51.78 × 10−21.35 × 10−21.26 × 10−21.51 × 10−2
2 – 63.73 × 10−22.70 × 10−22.58 × 10−23.14 × 10−2
3 – 44.63 × 10−34.70 × 10−34.63 × 10−34.63 × 10−3
3 – 52.60 × 10−32.45 × 10−33.14 × 10−3
3 – 62.21 × 10−21.63 × 10−21.50 × 10−21.85 × 10−2
3 – 72.73 × 10−22.00 × 10−21.89 × 10−22.30 × 10−2
4 – 54.00 × 10−43.55 × 10−4
4 – 64.40 × 10−34.22 × 10−35.14 × 10−3
4 – 73.60 × 10−22.60 × 10−22.47 × 10−23.02 × 10−2
5 – 62.70 × 10−42.69 × 10−4
5 – 75.50 × 10−95.20 × 10−9
6 – 72.50 × 10−32.47 × 10−32.45 × 10−3
i − jFivetHansenModel 2Storey
1 – 22.00 × 10−22.00 × 10−22.00 × 10−22.00 × 10−2
1 – 31.80 × 10−91.75 × 10−9
1 – 56.65 × 10−24.80 × 10−24.53 × 10−25.55 × 10−2
2 – 31.31 × 10−21.30 × 10−21.31 × 10−21.31 × 10−2
2 – 45.90 × 10−105.70 × 10−10
2 – 51.78 × 10−21.35 × 10−21.26 × 10−21.51 × 10−2
2 – 63.73 × 10−22.70 × 10−22.58 × 10−23.14 × 10−2
3 – 44.63 × 10−34.70 × 10−34.63 × 10−34.63 × 10−3
3 – 52.60 × 10−32.45 × 10−33.14 × 10−3
3 – 62.21 × 10−21.63 × 10−21.50 × 10−21.85 × 10−2
3 – 72.73 × 10−22.00 × 10−21.89 × 10−22.30 × 10−2
4 – 54.00 × 10−43.55 × 10−4
4 – 64.40 × 10−34.22 × 10−35.14 × 10−3
4 – 73.60 × 10−22.60 × 10−22.47 × 10−23.02 × 10−2
5 – 62.70 × 10−42.69 × 10−4
5 – 75.50 × 10−95.20 × 10−9
6 – 72.50 × 10−32.47 × 10−32.45 × 10−3

A much larger calculation for doubly ionized Fe-peak species has been performed recently by Fivet et al. (2016) using the same suite of codes as Hansen et al. (1984), and also by considering the computer package autostructure, (Eissner, Jones & Nussbaumer 1974; Badnell 1986), where the optimization process is carried out with a Thomas–Fermi–Dirac potential using lambda scaling parameters. Numerous doubly ionized ions of Fe, Ni and Co were considered in this publication. Single and double electron promotions out of the 3d, and also single electron promotions out of the 3s to the 5s orbital were included and comprised the basis expansion for both calculations. This is the most sophisticated and complete report for radiative rates in Co iii to date. Within the 3d7 complex, we vary approximately 27 per cent on average compared with both methods of Fivet et al. (2016).

2.2 The R-matrix method

To extend this problem to include interactions with photons and electrons, we consider the R-matrix method. A general overview of the theory can be found in Burke (2011). The theory was developed to perform electron scattering by Burke, Hibbert & Robb (1971) and extended for photoionization by Burke & Taylor (1975).

These calculations can be performed using a non-orthogonal B-spline basis set approach (Zatsarinny & Froese Fischer 2000; Zatsarinny & Bartschat 2004), intermediate-coupling frame transformation methods (Griffin, Badnell & Pindzola 1998) and one-body perturbation corrections to the non-relativistic Hamiltonian via the Breit–Pauli operators (Scott & Burke 1980) to name a few. In this paper, we consider the Dirac atomic R-matrix codes (darc) which includes relativistic effects through the Dirac Hamiltonian in equation (1) for this mid to heavy species ion. The wavefunctions obtained from grasp0 are formatted suitable for inclusion into darc. Validity of these methods between the outlined theoretical approaches are always important, and enhance the robustness of the techniques carried out as seen in Tyndall et al. (2016) for Ar+ and Fernández-Menchero, Del Zanna & Badnell (2015) for Al9 +. Therefore, it is possible to benchmark sophisticated experimental techniques against theory (Müller et al. 2009; Gharaibeh et al. 2011).

2.3 Photoionization

The photoionization process is described by,
(3)
where a photon leads to the ionization of an electron directly, or via a Rydberg resonance. The process in equation (3) can be formally calculated as,

for initial and final scattering wavefunctions subject to the total dipole contribution. ω = hν is the photon energy or ω → ω−1 when considering the velocity operator, D. α is the fine structure constant, a0 is the Bohr radius and gi is the statistical weight of the initial state wavefunction. The summation is then carried out over all dipole-allowed transitions. The total wavefunctions Ψ are obtained from the momenta couplings with those wavefunctions obtained in Section 2.1. We represent these σp in units of Mb (≡ 10−18cm2) throughout this work.

The transitions of interest are calculated within the lowest eight fine-structure levels of Co ii pertaining to the two LSπ states as noted in equation (3). We also maintain a closed 3p6 core and are only concerned with low-energy transitions above threshold. Therefore, all even and odd allowed dipole symmetries up to J = 6 are calculated subject to the selection rules.

2.4 Electron-impact excitation

The collision strength between an initial state i and final state j can be obtained from the cross-section, σe,
(4)
These collision strengths represent a detailed spectrum, complete with the already mentioned auto-ionizing states. To present the results in a more concise format, we assume a Maxwellian distribution of the colliding electron velocities. We define the effective collision strength as
(5)
where ϵf is the ejected energy of the electron, 3800 ≤ T ≤ 40 000 in K, and k = 8.617 × 10−5 eV K−1 is the Boltzmann constant. Each ϒij is calculated for 11 electron temperatures.

We calculate the main contribution to the collision strength defined in equation (4) from the partial waves up to J = 13 of both even and odd parity. These are obtained by considering appropriate total multiplicity and orbital angular momentum partial waves. However, in order to converge transitions at higher energies, we explicitly calculate partial waves up to J = 38 and use top-up procedures outlined in Burgess (1974) to account for further contribution to the total cross-section. The collision strengths can be extended to high-energy limits through an interpolation technique described by Burgess & Tully (1992).

3 RESULTS

As mentioned previously, the photoionization of Co ii and electron-impact excitation of Co iii rely on an accurate description of the Co iii wavefunctions. We are able to retain consistency throughout the calculation, and the fundamental R-matrix conditions apply to both processes. We select a total of 14 continuum basis orbitals per angular momenta to describe the scattered electron. The R-matrix boundary is then set at 10.88 au in order to enclose the radial extent of the 4p orbital. To make comparisons between observation, the target thresholds obtained in Table 1 have been shifted to those of Sugar & Corliss (1985).

3.1 Photoionization

In this section, we detail our results from the photoionization process described by equation (3). There is minimal atomic data for this interaction in the literature as only the total ground state transition exists. The first compilation is from Reilman & Manson (1979), using Hartree–Slater wavefunctions from a central field potential. Secondly, and more recently, Verner et al. (1993) have calculated cross-sections using the Hartree–Dirac–Slater potential and then applying an analytic fitting procedure. Recently, the Los Alamos suite of codes by Fontes et al. (2015) have been used to obtain results by a distorted wave method. For this we look at the photoionization of a 3d electron into the configuration averaged final states. To carefully resolve these spectra, we have employed a total of 200 000 equally spaced energy points over a photoelectron energy range of 20 eV. This ensures the high nl Rydberg resonant states are properly delineated.

The initial bound states that are required, corresponding to the left-hand side of equation (3) are calculated first. In Table 3, we present the energies relative to the ground state 3d7 a3F9/2 of Co iii from our current R-matrix results and compare with those of Pickering et al. (1998). We deviate ≈0.47 eV for the 3d8 and ≈0.32 eV for the 3d7(4F)4s. Despite these discrepancies good agreement is evident for the splitting between all eight fine-structure levels.

Table 3.

Bound state energies of the lowest eight states of Co ii relative to the ground state 3d7 a3F9/2 of Co iii compared with the relative energies of Pickering et al. (1998), labelled as Pickering.

IndexLevelPickeringCurrentΔ
13p63d8 a3F4−17.0844−16.62320.46
23p63d8 a3F3−16.9666−16.50040.47
33p63d8 a3F2−16.8864−16.41590.47
43p63d7(4F)4s a5F5−16.6690−16.35310.32
53p63d7(4F)4s a5F4−16.5849−16.26940.32
63p63d7(4F)4s a5F3−16.5189−16.20310.32
73p63d7(4F)4s a5F2−16.4707−16.15440.32
83p63d7(4F)4s a5F1−16.4391−16.12240.32
IndexLevelPickeringCurrentΔ
13p63d8 a3F4−17.0844−16.62320.46
23p63d8 a3F3−16.9666−16.50040.47
33p63d8 a3F2−16.8864−16.41590.47
43p63d7(4F)4s a5F5−16.6690−16.35310.32
53p63d7(4F)4s a5F4−16.5849−16.26940.32
63p63d7(4F)4s a5F3−16.5189−16.20310.32
73p63d7(4F)4s a5F2−16.4707−16.15440.32
83p63d7(4F)4s a5F1−16.4391−16.12240.32
Table 3.

Bound state energies of the lowest eight states of Co ii relative to the ground state 3d7 a3F9/2 of Co iii compared with the relative energies of Pickering et al. (1998), labelled as Pickering.

IndexLevelPickeringCurrentΔ
13p63d8 a3F4−17.0844−16.62320.46
23p63d8 a3F3−16.9666−16.50040.47
33p63d8 a3F2−16.8864−16.41590.47
43p63d7(4F)4s a5F5−16.6690−16.35310.32
53p63d7(4F)4s a5F4−16.5849−16.26940.32
63p63d7(4F)4s a5F3−16.5189−16.20310.32
73p63d7(4F)4s a5F2−16.4707−16.15440.32
83p63d7(4F)4s a5F1−16.4391−16.12240.32
IndexLevelPickeringCurrentΔ
13p63d8 a3F4−17.0844−16.62320.46
23p63d8 a3F3−16.9666−16.50040.47
33p63d8 a3F2−16.8864−16.41590.47
43p63d7(4F)4s a5F5−16.6690−16.35310.32
53p63d7(4F)4s a5F4−16.5849−16.26940.32
63p63d7(4F)4s a5F3−16.5189−16.20310.32
73p63d7(4F)4s a5F2−16.4707−16.15440.32
83p63d7(4F)4s a5F1−16.4391−16.12240.32

In Fig. 3, we present the photoionization cross-section representing the statistically weighted initial state 3d8 a3F to all allowed final states. The results in this figure have been convoluted with a 10 meV Gaussian profile at full-width at half-maximum to better compare with experiment. We directly compare here with the results of all three previously mentioned theoretical methods (Reilman & Manson 1979; Verner et al. 1993; Fontes et al. 2015). These methods do not include auto-ionization states and therefore only background cross-sections are presented. It is clear however that the results are in excellent agreement, with only Reilman & Manson (1979) reaching factors of 2 or more difference in the <20 eV region. As over 200 eigenenergies obtained from grasp0 are < 28 eV of photon energy, this above threshold region is dominated by multiple Rydberg resonances series converging on to these states.

Photoionization cross-sections in Mb against the photon energy in eV. The solid black curve is the total initial ground state, statistically weighted 3d83F to all allowed dipole final states. The crosses are results from Reilman & Manson (1979), the diamonds are from Verner et al. (1993), and finally the circles are those from the distorted wave calculation. (Fontes et al. 2015)
Figure 3.

Photoionization cross-sections in Mb against the photon energy in eV. The solid black curve is the total initial ground state, statistically weighted 3d83F to all allowed dipole final states. The crosses are results from Reilman & Manson (1979), the diamonds are from Verner et al. (1993), and finally the circles are those from the distorted wave calculation. (Fontes et al. 2015)

The second statistically weighted bound state a5F of Co ii is from the configuration 3d74s. In Fig. 4, we present the total photoionization cross-section for this metastable level and compare with the earlier work of Reilman & Manson (1979). This cross-section is weighted as a consequence of its five fine-structure split levels 1 < J < 5. Again, the photoionization of the 3d electron is favourable, so we expect the majority of the spectrum to be accounted for from the 3d64s target states, which are accessible at 5.757 62 eV above the ionization threshold. Good agreement is found between the two calculations for the background cross-section, particularly in the higher photon energy range above 25 eV.

Photoionization cross-sections in Mb against the photon energy in eV. The solid black curve is the photoionization, statistically averaged levels of 3d74s 5F to all allowed dipole final states. The crosses are results from Reilman & Manson (1979).
Figure 4.

Photoionization cross-sections in Mb against the photon energy in eV. The solid black curve is the photoionization, statistically averaged levels of 3d74s 5F to all allowed dipole final states. The crosses are results from Reilman & Manson (1979).

3.2 Electron-impact excitation

The procedures outlined in Section 2.4 are now applied to obtain accurate collision strengths and the corresponding effective collision strengths describing the electron-impact excitation of Co iii. There has been work carried out recently on both singly ionized Co ii (Storey et al. 2016) and also Co iii (Storey & Sochi 2016). The work of Storey & Sochi (2016) is similar to our current evaluation, but differences are evident in the method considered. Their basis set has been optimized using autostructure, and also includes a |$4\bar{{\rm d}}$| orbital plus additional configuration interaction. However, only a total of 109 fine structure levels have been included in the close coupling target representation. The semi-relativistic Breit–Pauli R-matrix approach was considered during the scattering calculation.

It is necessary to obtain a level of convergence in the spectra of collision strengths by applying a mesh with incremental step sizes in electron energy until convergence is achieved. Initially 5000 equally spaced energy points were considered and it was found by the time we had reached 40 000 energy points, the effective collision strengths had converged for the forbidden transitions among the 292 levels. To extend the energy region we incorporated an additional coarse mesh above the last valence threshold. Due to the long-range nature of the Coulomb potential further contributions to the collision strengths arise from the higher partial waves, particularly for the dipole allowed lines. We compute these additional contributions using the Burgess (1974) sum rule as well as a geometric series for the long-range non-dipole transitions. Hence converged total collision strengths were accurately generated for all 42 486 transitions among the 292 fine-structure levels included in the collision calculation. The corresponding effective collision strengths were obtained by averaging these finely resolved collision strengths over a Maxwellian distribution of electron velocities for electron temperatures ranging from 3800 to 40 000 K.

We present in Fig. 5 the resulting collision strengths and effective collision strengths for a selection of the forbidden near-infrared transitions involving the fine-structure split levels of the 4F ground state of Co iii. Panel (a) represents transition from level 1→ 2, panel (b) 1 → 3, and panel (c) 2 → 3. The collision strength is strongest here for the Ω1 → 2 transition due to the ΔJ = 0 partial wave.

The collision strengths, (a) Ω1 → 2, (b) Ω1 → 3 and (c) Ω2 → 3 presented as a function of electron energy in eV. Also presented are the corresponding effective collision strengths as a function of temperature in K. Solid black lines with stars are the current data set and the dashed line with crosses represent the results from Storey & Sochi (2016).
Figure 5.

The collision strengths, (a) Ω1 → 2, (b) Ω1 → 3 and (c) Ω2 → 3 presented as a function of electron energy in eV. Also presented are the corresponding effective collision strengths as a function of temperature in K. Solid black lines with stars are the current data set and the dashed line with crosses represent the results from Storey & Sochi (2016).

Comparison of the effective collision strengths are made for each transition with the work of Storey & Sochi (2016) and good agreement is found for all temperatures above 10 000 K. For temperatures below this value the two calculations deviate somewhat, most probably due to the differing resonance profiles converging on to differing threshold positions. The present calculation has shifted the thresholds to lie in their exact observed positions listed in Table 1. In Fig. 6 we present the effective collision strengths for some higher lying transitions, the 3d74F9/2–3d72G9/2 (1 → 8), 3d72P1/2–3d72H9/2 (11 → 13) and 3d72G7/2–3d72H9/2 (9 → 13). Excellent agreement is evident for all three transitions when a comparison is made with the data of Storey & Sochi (2016) across all temperatures where a comparison is possible. The collision strengths and effective collision strengths for all 42 486 forbidden and allowed lines are available from the authors on request but we present in Table 4 the effective collision strengths for all transitions among the lowest 11 3d7 fine-structure levels across nine temperatures of astrophysical importance.1

The effective collision strengths, ϒ1 → 8 (top), ϒ11 → 13 (middle) and ϒ9 → 13 (bottom), presented as a function of temperature in K (bottom). Solid black lines with stars are the current data set and the dashed line with crosses represent the results from Storey & Sochi (2016).
Figure 6.

The effective collision strengths, ϒ1 → 8 (top), ϒ11 → 13 (middle) and ϒ9 → 13 (bottom), presented as a function of temperature in K (bottom). Solid black lines with stars are the current data set and the dashed line with crosses represent the results from Storey & Sochi (2016).

Table 4.

Effective collision strengths as defined by equation (5) are presented between an upper (j) and lower state (i), across a range of nine temperatures (K), 3800 < T < 25 100 K. We have denoted (a) ≡ ×10a.

log T (K)
ij3.63.73.83.944.14.24.34.4
122.92(0)2.90(0)2.86(0)2.82(0)2.77(0)2.70(0)2.63(0)2.54(0)2.44(0)
139.24(−1)9.36(−1)9.41(−1)9.37(−1)9.26(−1)9.06(−1)8.79(−1)8.45(−1)8.06(−1)
232.02(0)2.01(0)1.99(0)1.97(0)1.94(0)1.91(0)1.86(0)1.81(0)1.74(0)
143.17(−1)3.23(−1)3.26(−1)3.25(−1)3.21(−1)3.13(−1)3.03(−1)2.90(−1)2.75(−1)
247.46(−1)7.65(−1)7.77(−1)7.80(−1)7.76(−1)7.64(−1)7.43(−1)7.17(−1)6.85(−1)
341.42(0)1.42(0)1.42(0)1.42(0)1.40(0)1.39(0)1.36(0)1.32(0)1.28(0)
151.16(0)1.16(0)1.17(0)1.19(0)1.20(0)1.21(0)1.21(0)1.20(0)1.19(0)
258.11(−1)8.03(−1)8.02(−1)8.07(−1)8.13(−1)8.17(−1)8.15(−1)8.05(−1)7.89(−1)
355.72(−1)5.60(−1)5.53(−1)5.51(−1)5.50(−1)5.48(−1)5.43(−1)5.33(−1)5.19(−1)
453.68(−1)3.51(−1)3.37(−1)3.27(−1)3.20(−1)3.13(−1)3.06(−1)2.98(−1)2.88(−1)
164.84(−1)4.82(−1)4.84(−1)4.90(−1)4.95(−1)4.98(−1)4.97(−1)4.91(−1)4.82(−1)
265.54(−1)5.52(−1)5.53(−1)5.56(−1)5.60(−1)5.61(−1)5.58(−1)5.52(−1)5.41(−1)
364.55(−1)4.51(−1)4.51(−1)4.54(−1)4.57(−1)4.59(−1)4.57(−1)4.52(−1)4.44(−1)
462.92(−1)2.88(−1)2.89(−1)2.92(−1)2.96(−1)3.00(−1)3.02(−1)3.00(−1)2.96(−1)
566.14(−1)6.15(−1)6.21(−1)6.31(−1)6.44(−1)6.59(−1)6.73(−1)6.82(−1)6.87(−1)
171.86(−1)1.85(−1)1.85(−1)1.86(−1)1.87(−1)1.86(−1)1.84(−1)1.81(−1)1.76(−1)
272.03(−1)2.03(−1)2.06(−1)2.10(−1)2.15(−1)2.18(−1)2.19(−1)2.18(−1)2.14(−1)
372.34(−1)2.36(−1)2.39(−1)2.43(−1)2.48(−1)2.51(−1)2.53(−1)2.52(−1)2.48(−1)
472.19(−1)2.20(−1)2.22(−1)2.26(−1)2.29(−1)2.31(−1)2.32(−1)2.31(−1)2.28(−1)
572.43(−1)2.45(−1)2.49(−1)2.56(−1)2.65(−1)2.75(−1)2.85(−1)2.93(−1)2.98(−1)
672.73(−1)2.72(−1)2.72(−1)2.74(−1)2.76(−1)2.79(−1)2.81(−1)2.83(−1)2.82(−1)
181.22(0)1.20(0)1.19(0)1.19(0)1.19(0)1.19(0)1.19(0)1.19(0)1.18(0)
287.27(−1)7.14(−1)7.06(−1)7.02(−1)6.99(−1)6.98(−1)6.96(−1)6.92(−1)6.86(−1)
383.85(−1)3.76(−1)3.70(−1)3.65(−1)3.62(−1)3.59(−1)3.55(−1)3.51(−1)3.45(−1)
481.75(−1)1.69(−1)1.65(−1)1.60(−1)1.57(−1)1.53(−1)1.50(−1)1.46(−1)1.43(−1)
583.24(−1)3.18(−1)3.11(−1)3.07(−1)3.04(−1)3.02(−1)3.01(−1)3.00(−1)2.98(−1)
681.56(−1)1.51(−1)1.47(−1)1.43(−1)1.41(−1)1.40(−1)1.39(−1)1.38(−1)1.37(−1)
785.48(−2)5.20(−2)4.93(−2)4.70(−2)4.51(−2)4.36(−2)4.24(−2)4.14(−2)4.03(−2)
193.16(−1)3.10(−1)3.06(−1)3.05(−1)3.05(−1)3.04(−1)3.03(−1)3.01(−1)2.97(−1)
295.02(−1)4.99(−1)4.99(−1)5.01(−1)5.05(−1)5.08(−1)5.11(−1)5.12(−1)5.10(−1)
395.33(−1)5.29(−1)5.29(−1)5.31(−1)5.34(−1)5.37(−1)5.40(−1)5.41(−1)5.39(−1)
494.29(−1)4.27(−1)4.26(−1)4.27(−1)4.29(−1)4.32(−1)4.33(−1)4.34(−1)4.32(−1)
591.53(−1)1.46(−1)1.41(−1)1.37(−1)1.36(−1)1.36(−1)1.36(−1)1.37(−1)1.36(−1)
691.72(−1)1.66(−1)1.62(−1)1.58(−1)1.56(−1)1.56(−1)1.55(−1)1.55(−1)1.55(−1)
791.09(−1)1.06(−1)1.04(−1)1.02(−1)1.01(−1)9.99(−2)9.95(−2)9.92(−2)9.86(−2)
891.29(0)1.27(0)1.26(0)1.26(0)1.27(0)1.28(0)1.29(0)1.29(0)1.28(0)
1103.06(−1)3.04(−1)3.04(−1)3.03(−1)3.03(−1)3.02(−1)3.00(−1)2.99(−1)2.97(−1)
2102.76(−1)2.79(−1)2.82(−1)2.86(−1)2.88(−1)2.89(−1)2.87(−1)2.83(−1)2.78(−1)
3102.05(−1)2.09(−1)2.13(−1)2.18(−1)2.21(−1)2.21(−1)2.20(−1)2.16(−1)2.10(−1)
4101.29(−1)1.32(−1)1.36(−1)1.40(−1)1.43(−1)1.43(−1)1.42(−1)1.39(−1)1.34(−1)
5102.85(−1)2.84(−1)2.86(−1)2.89(−1)2.92(−1)2.95(−1)2.95(−1)2.93(−1)2.89(−1)
6102.29(−1)2.27(−1)2.27(−1)2.29(−1)2.31(−1)2.32(−1)2.31(−1)2.29(−1)2.25(−1)
7109.14(−2)9.23(−2)9.39(−2)9.56(−2)9.69(−2)9.75(−2)9.72(−2)9.60(−2)9.40(−2)
8104.12(−1)4.06(−1)4.01(−1)3.99(−1)3.99(−1)4.00(−1)4.03(−1)4.07(−1)4.09(−1)
9103.20(−1)3.17(−1)3.17(−1)3.20(−1)3.26(−1)3.34(−1)3.42(−1)3.47(−1)3.50(−1)
1118.09(−2)8.03(−2)8.01(−2)8.02(−2)8.05(−2)8.08(−2)8.09(−2)8.08(−2)8.03(−2)
2111.09(−1)1.10(−1)1.11(−1)1.11(−1)1.12(−1)1.12(−1)1.12(−1)1.11(−1)1.09(−1)
3111.16(−1)1.19(−1)1.22(−1)1.26(−1)1.28(−1)1.29(−1)1.28(−1)1.27(−1)1.24(−1)
4119.23(−2)9.71(−2)1.02(−1)1.07(−1)1.11(−1)1.13(−1)1.13(−1)1.11(−1)1.08(−1)
5117.49(−2)7.54(−2)7.66(−2)7.83(−2)8.00(−2)8.14(−2)8.23(−2)8.23(−2)8.14(−2)
6118.77(−2)8.98(−2)9.27(−2)9.61(−2)9.93(−2)1.02(−1)1.04(−1)1.04(−1)1.03(−1)
7116.77(−2)6.93(−2)7.18(−2)7.45(−2)7.70(−2)7.88(−2)7.96(−2)7.94(−2)7.81(−2)
8111.98(−1)1.90(−1)1.85(−1)1.81(−1)1.79(−1)1.78(−1)1.78(−1)1.79(−1)1.79(−1)
9112.06(−1)2.01(−1)1.99(−1)1.99(−1)2.00(−1)2.03(−1)2.07(−1)2.11(−1)2.14(−1)
10113.32(−1)3.24(−1)3.19(−1)3.17(−1)3.17(−1)3.17(−1)3.16(−1)3.14(−1)3.09(−1)
log T (K)
ij3.63.73.83.944.14.24.34.4
122.92(0)2.90(0)2.86(0)2.82(0)2.77(0)2.70(0)2.63(0)2.54(0)2.44(0)
139.24(−1)9.36(−1)9.41(−1)9.37(−1)9.26(−1)9.06(−1)8.79(−1)8.45(−1)8.06(−1)
232.02(0)2.01(0)1.99(0)1.97(0)1.94(0)1.91(0)1.86(0)1.81(0)1.74(0)
143.17(−1)3.23(−1)3.26(−1)3.25(−1)3.21(−1)3.13(−1)3.03(−1)2.90(−1)2.75(−1)
247.46(−1)7.65(−1)7.77(−1)7.80(−1)7.76(−1)7.64(−1)7.43(−1)7.17(−1)6.85(−1)
341.42(0)1.42(0)1.42(0)1.42(0)1.40(0)1.39(0)1.36(0)1.32(0)1.28(0)
151.16(0)1.16(0)1.17(0)1.19(0)1.20(0)1.21(0)1.21(0)1.20(0)1.19(0)
258.11(−1)8.03(−1)8.02(−1)8.07(−1)8.13(−1)8.17(−1)8.15(−1)8.05(−1)7.89(−1)
355.72(−1)5.60(−1)5.53(−1)5.51(−1)5.50(−1)5.48(−1)5.43(−1)5.33(−1)5.19(−1)
453.68(−1)3.51(−1)3.37(−1)3.27(−1)3.20(−1)3.13(−1)3.06(−1)2.98(−1)2.88(−1)
164.84(−1)4.82(−1)4.84(−1)4.90(−1)4.95(−1)4.98(−1)4.97(−1)4.91(−1)4.82(−1)
265.54(−1)5.52(−1)5.53(−1)5.56(−1)5.60(−1)5.61(−1)5.58(−1)5.52(−1)5.41(−1)
364.55(−1)4.51(−1)4.51(−1)4.54(−1)4.57(−1)4.59(−1)4.57(−1)4.52(−1)4.44(−1)
462.92(−1)2.88(−1)2.89(−1)2.92(−1)2.96(−1)3.00(−1)3.02(−1)3.00(−1)2.96(−1)
566.14(−1)6.15(−1)6.21(−1)6.31(−1)6.44(−1)6.59(−1)6.73(−1)6.82(−1)6.87(−1)
171.86(−1)1.85(−1)1.85(−1)1.86(−1)1.87(−1)1.86(−1)1.84(−1)1.81(−1)1.76(−1)
272.03(−1)2.03(−1)2.06(−1)2.10(−1)2.15(−1)2.18(−1)2.19(−1)2.18(−1)2.14(−1)
372.34(−1)2.36(−1)2.39(−1)2.43(−1)2.48(−1)2.51(−1)2.53(−1)2.52(−1)2.48(−1)
472.19(−1)2.20(−1)2.22(−1)2.26(−1)2.29(−1)2.31(−1)2.32(−1)2.31(−1)2.28(−1)
572.43(−1)2.45(−1)2.49(−1)2.56(−1)2.65(−1)2.75(−1)2.85(−1)2.93(−1)2.98(−1)
672.73(−1)2.72(−1)2.72(−1)2.74(−1)2.76(−1)2.79(−1)2.81(−1)2.83(−1)2.82(−1)
181.22(0)1.20(0)1.19(0)1.19(0)1.19(0)1.19(0)1.19(0)1.19(0)1.18(0)
287.27(−1)7.14(−1)7.06(−1)7.02(−1)6.99(−1)6.98(−1)6.96(−1)6.92(−1)6.86(−1)
383.85(−1)3.76(−1)3.70(−1)3.65(−1)3.62(−1)3.59(−1)3.55(−1)3.51(−1)3.45(−1)
481.75(−1)1.69(−1)1.65(−1)1.60(−1)1.57(−1)1.53(−1)1.50(−1)1.46(−1)1.43(−1)
583.24(−1)3.18(−1)3.11(−1)3.07(−1)3.04(−1)3.02(−1)3.01(−1)3.00(−1)2.98(−1)
681.56(−1)1.51(−1)1.47(−1)1.43(−1)1.41(−1)1.40(−1)1.39(−1)1.38(−1)1.37(−1)
785.48(−2)5.20(−2)4.93(−2)4.70(−2)4.51(−2)4.36(−2)4.24(−2)4.14(−2)4.03(−2)
193.16(−1)3.10(−1)3.06(−1)3.05(−1)3.05(−1)3.04(−1)3.03(−1)3.01(−1)2.97(−1)
295.02(−1)4.99(−1)4.99(−1)5.01(−1)5.05(−1)5.08(−1)5.11(−1)5.12(−1)5.10(−1)
395.33(−1)5.29(−1)5.29(−1)5.31(−1)5.34(−1)5.37(−1)5.40(−1)5.41(−1)5.39(−1)
494.29(−1)4.27(−1)4.26(−1)4.27(−1)4.29(−1)4.32(−1)4.33(−1)4.34(−1)4.32(−1)
591.53(−1)1.46(−1)1.41(−1)1.37(−1)1.36(−1)1.36(−1)1.36(−1)1.37(−1)1.36(−1)
691.72(−1)1.66(−1)1.62(−1)1.58(−1)1.56(−1)1.56(−1)1.55(−1)1.55(−1)1.55(−1)
791.09(−1)1.06(−1)1.04(−1)1.02(−1)1.01(−1)9.99(−2)9.95(−2)9.92(−2)9.86(−2)
891.29(0)1.27(0)1.26(0)1.26(0)1.27(0)1.28(0)1.29(0)1.29(0)1.28(0)
1103.06(−1)3.04(−1)3.04(−1)3.03(−1)3.03(−1)3.02(−1)3.00(−1)2.99(−1)2.97(−1)
2102.76(−1)2.79(−1)2.82(−1)2.86(−1)2.88(−1)2.89(−1)2.87(−1)2.83(−1)2.78(−1)
3102.05(−1)2.09(−1)2.13(−1)2.18(−1)2.21(−1)2.21(−1)2.20(−1)2.16(−1)2.10(−1)
4101.29(−1)1.32(−1)1.36(−1)1.40(−1)1.43(−1)1.43(−1)1.42(−1)1.39(−1)1.34(−1)
5102.85(−1)2.84(−1)2.86(−1)2.89(−1)2.92(−1)2.95(−1)2.95(−1)2.93(−1)2.89(−1)
6102.29(−1)2.27(−1)2.27(−1)2.29(−1)2.31(−1)2.32(−1)2.31(−1)2.29(−1)2.25(−1)
7109.14(−2)9.23(−2)9.39(−2)9.56(−2)9.69(−2)9.75(−2)9.72(−2)9.60(−2)9.40(−2)
8104.12(−1)4.06(−1)4.01(−1)3.99(−1)3.99(−1)4.00(−1)4.03(−1)4.07(−1)4.09(−1)
9103.20(−1)3.17(−1)3.17(−1)3.20(−1)3.26(−1)3.34(−1)3.42(−1)3.47(−1)3.50(−1)
1118.09(−2)8.03(−2)8.01(−2)8.02(−2)8.05(−2)8.08(−2)8.09(−2)8.08(−2)8.03(−2)
2111.09(−1)1.10(−1)1.11(−1)1.11(−1)1.12(−1)1.12(−1)1.12(−1)1.11(−1)1.09(−1)
3111.16(−1)1.19(−1)1.22(−1)1.26(−1)1.28(−1)1.29(−1)1.28(−1)1.27(−1)1.24(−1)
4119.23(−2)9.71(−2)1.02(−1)1.07(−1)1.11(−1)1.13(−1)1.13(−1)1.11(−1)1.08(−1)
5117.49(−2)7.54(−2)7.66(−2)7.83(−2)8.00(−2)8.14(−2)8.23(−2)8.23(−2)8.14(−2)
6118.77(−2)8.98(−2)9.27(−2)9.61(−2)9.93(−2)1.02(−1)1.04(−1)1.04(−1)1.03(−1)
7116.77(−2)6.93(−2)7.18(−2)7.45(−2)7.70(−2)7.88(−2)7.96(−2)7.94(−2)7.81(−2)
8111.98(−1)1.90(−1)1.85(−1)1.81(−1)1.79(−1)1.78(−1)1.78(−1)1.79(−1)1.79(−1)
9112.06(−1)2.01(−1)1.99(−1)1.99(−1)2.00(−1)2.03(−1)2.07(−1)2.11(−1)2.14(−1)
10113.32(−1)3.24(−1)3.19(−1)3.17(−1)3.17(−1)3.17(−1)3.16(−1)3.14(−1)3.09(−1)
Table 4.

Effective collision strengths as defined by equation (5) are presented between an upper (j) and lower state (i), across a range of nine temperatures (K), 3800 < T < 25 100 K. We have denoted (a) ≡ ×10a.

log T (K)
ij3.63.73.83.944.14.24.34.4
122.92(0)2.90(0)2.86(0)2.82(0)2.77(0)2.70(0)2.63(0)2.54(0)2.44(0)
139.24(−1)9.36(−1)9.41(−1)9.37(−1)9.26(−1)9.06(−1)8.79(−1)8.45(−1)8.06(−1)
232.02(0)2.01(0)1.99(0)1.97(0)1.94(0)1.91(0)1.86(0)1.81(0)1.74(0)
143.17(−1)3.23(−1)3.26(−1)3.25(−1)3.21(−1)3.13(−1)3.03(−1)2.90(−1)2.75(−1)
247.46(−1)7.65(−1)7.77(−1)7.80(−1)7.76(−1)7.64(−1)7.43(−1)7.17(−1)6.85(−1)
341.42(0)1.42(0)1.42(0)1.42(0)1.40(0)1.39(0)1.36(0)1.32(0)1.28(0)
151.16(0)1.16(0)1.17(0)1.19(0)1.20(0)1.21(0)1.21(0)1.20(0)1.19(0)
258.11(−1)8.03(−1)8.02(−1)8.07(−1)8.13(−1)8.17(−1)8.15(−1)8.05(−1)7.89(−1)
355.72(−1)5.60(−1)5.53(−1)5.51(−1)5.50(−1)5.48(−1)5.43(−1)5.33(−1)5.19(−1)
453.68(−1)3.51(−1)3.37(−1)3.27(−1)3.20(−1)3.13(−1)3.06(−1)2.98(−1)2.88(−1)
164.84(−1)4.82(−1)4.84(−1)4.90(−1)4.95(−1)4.98(−1)4.97(−1)4.91(−1)4.82(−1)
265.54(−1)5.52(−1)5.53(−1)5.56(−1)5.60(−1)5.61(−1)5.58(−1)5.52(−1)5.41(−1)
364.55(−1)4.51(−1)4.51(−1)4.54(−1)4.57(−1)4.59(−1)4.57(−1)4.52(−1)4.44(−1)
462.92(−1)2.88(−1)2.89(−1)2.92(−1)2.96(−1)3.00(−1)3.02(−1)3.00(−1)2.96(−1)
566.14(−1)6.15(−1)6.21(−1)6.31(−1)6.44(−1)6.59(−1)6.73(−1)6.82(−1)6.87(−1)
171.86(−1)1.85(−1)1.85(−1)1.86(−1)1.87(−1)1.86(−1)1.84(−1)1.81(−1)1.76(−1)
272.03(−1)2.03(−1)2.06(−1)2.10(−1)2.15(−1)2.18(−1)2.19(−1)2.18(−1)2.14(−1)
372.34(−1)2.36(−1)2.39(−1)2.43(−1)2.48(−1)2.51(−1)2.53(−1)2.52(−1)2.48(−1)
472.19(−1)2.20(−1)2.22(−1)2.26(−1)2.29(−1)2.31(−1)2.32(−1)2.31(−1)2.28(−1)
572.43(−1)2.45(−1)2.49(−1)2.56(−1)2.65(−1)2.75(−1)2.85(−1)2.93(−1)2.98(−1)
672.73(−1)2.72(−1)2.72(−1)2.74(−1)2.76(−1)2.79(−1)2.81(−1)2.83(−1)2.82(−1)
181.22(0)1.20(0)1.19(0)1.19(0)1.19(0)1.19(0)1.19(0)1.19(0)1.18(0)
287.27(−1)7.14(−1)7.06(−1)7.02(−1)6.99(−1)6.98(−1)6.96(−1)6.92(−1)6.86(−1)
383.85(−1)3.76(−1)3.70(−1)3.65(−1)3.62(−1)3.59(−1)3.55(−1)3.51(−1)3.45(−1)
481.75(−1)1.69(−1)1.65(−1)1.60(−1)1.57(−1)1.53(−1)1.50(−1)1.46(−1)1.43(−1)
583.24(−1)3.18(−1)3.11(−1)3.07(−1)3.04(−1)3.02(−1)3.01(−1)3.00(−1)2.98(−1)
681.56(−1)1.51(−1)1.47(−1)1.43(−1)1.41(−1)1.40(−1)1.39(−1)1.38(−1)1.37(−1)
785.48(−2)5.20(−2)4.93(−2)4.70(−2)4.51(−2)4.36(−2)4.24(−2)4.14(−2)4.03(−2)
193.16(−1)3.10(−1)3.06(−1)3.05(−1)3.05(−1)3.04(−1)3.03(−1)3.01(−1)2.97(−1)
295.02(−1)4.99(−1)4.99(−1)5.01(−1)5.05(−1)5.08(−1)5.11(−1)5.12(−1)5.10(−1)
395.33(−1)5.29(−1)5.29(−1)5.31(−1)5.34(−1)5.37(−1)5.40(−1)5.41(−1)5.39(−1)
494.29(−1)4.27(−1)4.26(−1)4.27(−1)4.29(−1)4.32(−1)4.33(−1)4.34(−1)4.32(−1)
591.53(−1)1.46(−1)1.41(−1)1.37(−1)1.36(−1)1.36(−1)1.36(−1)1.37(−1)1.36(−1)
691.72(−1)1.66(−1)1.62(−1)1.58(−1)1.56(−1)1.56(−1)1.55(−1)1.55(−1)1.55(−1)
791.09(−1)1.06(−1)1.04(−1)1.02(−1)1.01(−1)9.99(−2)9.95(−2)9.92(−2)9.86(−2)
891.29(0)1.27(0)1.26(0)1.26(0)1.27(0)1.28(0)1.29(0)1.29(0)1.28(0)
1103.06(−1)3.04(−1)3.04(−1)3.03(−1)3.03(−1)3.02(−1)3.00(−1)2.99(−1)2.97(−1)
2102.76(−1)2.79(−1)2.82(−1)2.86(−1)2.88(−1)2.89(−1)2.87(−1)2.83(−1)2.78(−1)
3102.05(−1)2.09(−1)2.13(−1)2.18(−1)2.21(−1)2.21(−1)2.20(−1)2.16(−1)2.10(−1)
4101.29(−1)1.32(−1)1.36(−1)1.40(−1)1.43(−1)1.43(−1)1.42(−1)1.39(−1)1.34(−1)
5102.85(−1)2.84(−1)2.86(−1)2.89(−1)2.92(−1)2.95(−1)2.95(−1)2.93(−1)2.89(−1)
6102.29(−1)2.27(−1)2.27(−1)2.29(−1)2.31(−1)2.32(−1)2.31(−1)2.29(−1)2.25(−1)
7109.14(−2)9.23(−2)9.39(−2)9.56(−2)9.69(−2)9.75(−2)9.72(−2)9.60(−2)9.40(−2)
8104.12(−1)4.06(−1)4.01(−1)3.99(−1)3.99(−1)4.00(−1)4.03(−1)4.07(−1)4.09(−1)
9103.20(−1)3.17(−1)3.17(−1)3.20(−1)3.26(−1)3.34(−1)3.42(−1)3.47(−1)3.50(−1)
1118.09(−2)8.03(−2)8.01(−2)8.02(−2)8.05(−2)8.08(−2)8.09(−2)8.08(−2)8.03(−2)
2111.09(−1)1.10(−1)1.11(−1)1.11(−1)1.12(−1)1.12(−1)1.12(−1)1.11(−1)1.09(−1)
3111.16(−1)1.19(−1)1.22(−1)1.26(−1)1.28(−1)1.29(−1)1.28(−1)1.27(−1)1.24(−1)
4119.23(−2)9.71(−2)1.02(−1)1.07(−1)1.11(−1)1.13(−1)1.13(−1)1.11(−1)1.08(−1)
5117.49(−2)7.54(−2)7.66(−2)7.83(−2)8.00(−2)8.14(−2)8.23(−2)8.23(−2)8.14(−2)
6118.77(−2)8.98(−2)9.27(−2)9.61(−2)9.93(−2)1.02(−1)1.04(−1)1.04(−1)1.03(−1)
7116.77(−2)6.93(−2)7.18(−2)7.45(−2)7.70(−2)7.88(−2)7.96(−2)7.94(−2)7.81(−2)
8111.98(−1)1.90(−1)1.85(−1)1.81(−1)1.79(−1)1.78(−1)1.78(−1)1.79(−1)1.79(−1)
9112.06(−1)2.01(−1)1.99(−1)1.99(−1)2.00(−1)2.03(−1)2.07(−1)2.11(−1)2.14(−1)
10113.32(−1)3.24(−1)3.19(−1)3.17(−1)3.17(−1)3.17(−1)3.16(−1)3.14(−1)3.09(−1)
log T (K)
ij3.63.73.83.944.14.24.34.4
122.92(0)2.90(0)2.86(0)2.82(0)2.77(0)2.70(0)2.63(0)2.54(0)2.44(0)
139.24(−1)9.36(−1)9.41(−1)9.37(−1)9.26(−1)9.06(−1)8.79(−1)8.45(−1)8.06(−1)
232.02(0)2.01(0)1.99(0)1.97(0)1.94(0)1.91(0)1.86(0)1.81(0)1.74(0)
143.17(−1)3.23(−1)3.26(−1)3.25(−1)3.21(−1)3.13(−1)3.03(−1)2.90(−1)2.75(−1)
247.46(−1)7.65(−1)7.77(−1)7.80(−1)7.76(−1)7.64(−1)7.43(−1)7.17(−1)6.85(−1)
341.42(0)1.42(0)1.42(0)1.42(0)1.40(0)1.39(0)1.36(0)1.32(0)1.28(0)
151.16(0)1.16(0)1.17(0)1.19(0)1.20(0)1.21(0)1.21(0)1.20(0)1.19(0)
258.11(−1)8.03(−1)8.02(−1)8.07(−1)8.13(−1)8.17(−1)8.15(−1)8.05(−1)7.89(−1)
355.72(−1)5.60(−1)5.53(−1)5.51(−1)5.50(−1)5.48(−1)5.43(−1)5.33(−1)5.19(−1)
453.68(−1)3.51(−1)3.37(−1)3.27(−1)3.20(−1)3.13(−1)3.06(−1)2.98(−1)2.88(−1)
164.84(−1)4.82(−1)4.84(−1)4.90(−1)4.95(−1)4.98(−1)4.97(−1)4.91(−1)4.82(−1)
265.54(−1)5.52(−1)5.53(−1)5.56(−1)5.60(−1)5.61(−1)5.58(−1)5.52(−1)5.41(−1)
364.55(−1)4.51(−1)4.51(−1)4.54(−1)4.57(−1)4.59(−1)4.57(−1)4.52(−1)4.44(−1)
462.92(−1)2.88(−1)2.89(−1)2.92(−1)2.96(−1)3.00(−1)3.02(−1)3.00(−1)2.96(−1)
566.14(−1)6.15(−1)6.21(−1)6.31(−1)6.44(−1)6.59(−1)6.73(−1)6.82(−1)6.87(−1)
171.86(−1)1.85(−1)1.85(−1)1.86(−1)1.87(−1)1.86(−1)1.84(−1)1.81(−1)1.76(−1)
272.03(−1)2.03(−1)2.06(−1)2.10(−1)2.15(−1)2.18(−1)2.19(−1)2.18(−1)2.14(−1)
372.34(−1)2.36(−1)2.39(−1)2.43(−1)2.48(−1)2.51(−1)2.53(−1)2.52(−1)2.48(−1)
472.19(−1)2.20(−1)2.22(−1)2.26(−1)2.29(−1)2.31(−1)2.32(−1)2.31(−1)2.28(−1)
572.43(−1)2.45(−1)2.49(−1)2.56(−1)2.65(−1)2.75(−1)2.85(−1)2.93(−1)2.98(−1)
672.73(−1)2.72(−1)2.72(−1)2.74(−1)2.76(−1)2.79(−1)2.81(−1)2.83(−1)2.82(−1)
181.22(0)1.20(0)1.19(0)1.19(0)1.19(0)1.19(0)1.19(0)1.19(0)1.18(0)
287.27(−1)7.14(−1)7.06(−1)7.02(−1)6.99(−1)6.98(−1)6.96(−1)6.92(−1)6.86(−1)
383.85(−1)3.76(−1)3.70(−1)3.65(−1)3.62(−1)3.59(−1)3.55(−1)3.51(−1)3.45(−1)
481.75(−1)1.69(−1)1.65(−1)1.60(−1)1.57(−1)1.53(−1)1.50(−1)1.46(−1)1.43(−1)
583.24(−1)3.18(−1)3.11(−1)3.07(−1)3.04(−1)3.02(−1)3.01(−1)3.00(−1)2.98(−1)
681.56(−1)1.51(−1)1.47(−1)1.43(−1)1.41(−1)1.40(−1)1.39(−1)1.38(−1)1.37(−1)
785.48(−2)5.20(−2)4.93(−2)4.70(−2)4.51(−2)4.36(−2)4.24(−2)4.14(−2)4.03(−2)
193.16(−1)3.10(−1)3.06(−1)3.05(−1)3.05(−1)3.04(−1)3.03(−1)3.01(−1)2.97(−1)
295.02(−1)4.99(−1)4.99(−1)5.01(−1)5.05(−1)5.08(−1)5.11(−1)5.12(−1)5.10(−1)
395.33(−1)5.29(−1)5.29(−1)5.31(−1)5.34(−1)5.37(−1)5.40(−1)5.41(−1)5.39(−1)
494.29(−1)4.27(−1)4.26(−1)4.27(−1)4.29(−1)4.32(−1)4.33(−1)4.34(−1)4.32(−1)
591.53(−1)1.46(−1)1.41(−1)1.37(−1)1.36(−1)1.36(−1)1.36(−1)1.37(−1)1.36(−1)
691.72(−1)1.66(−1)1.62(−1)1.58(−1)1.56(−1)1.56(−1)1.55(−1)1.55(−1)1.55(−1)
791.09(−1)1.06(−1)1.04(−1)1.02(−1)1.01(−1)9.99(−2)9.95(−2)9.92(−2)9.86(−2)
891.29(0)1.27(0)1.26(0)1.26(0)1.27(0)1.28(0)1.29(0)1.29(0)1.28(0)
1103.06(−1)3.04(−1)3.04(−1)3.03(−1)3.03(−1)3.02(−1)3.00(−1)2.99(−1)2.97(−1)
2102.76(−1)2.79(−1)2.82(−1)2.86(−1)2.88(−1)2.89(−1)2.87(−1)2.83(−1)2.78(−1)
3102.05(−1)2.09(−1)2.13(−1)2.18(−1)2.21(−1)2.21(−1)2.20(−1)2.16(−1)2.10(−1)
4101.29(−1)1.32(−1)1.36(−1)1.40(−1)1.43(−1)1.43(−1)1.42(−1)1.39(−1)1.34(−1)
5102.85(−1)2.84(−1)2.86(−1)2.89(−1)2.92(−1)2.95(−1)2.95(−1)2.93(−1)2.89(−1)
6102.29(−1)2.27(−1)2.27(−1)2.29(−1)2.31(−1)2.32(−1)2.31(−1)2.29(−1)2.25(−1)
7109.14(−2)9.23(−2)9.39(−2)9.56(−2)9.69(−2)9.75(−2)9.72(−2)9.60(−2)9.40(−2)
8104.12(−1)4.06(−1)4.01(−1)3.99(−1)3.99(−1)4.00(−1)4.03(−1)4.07(−1)4.09(−1)
9103.20(−1)3.17(−1)3.17(−1)3.20(−1)3.26(−1)3.34(−1)3.42(−1)3.47(−1)3.50(−1)
1118.09(−2)8.03(−2)8.01(−2)8.02(−2)8.05(−2)8.08(−2)8.09(−2)8.08(−2)8.03(−2)
2111.09(−1)1.10(−1)1.11(−1)1.11(−1)1.12(−1)1.12(−1)1.12(−1)1.11(−1)1.09(−1)
3111.16(−1)1.19(−1)1.22(−1)1.26(−1)1.28(−1)1.29(−1)1.28(−1)1.27(−1)1.24(−1)
4119.23(−2)9.71(−2)1.02(−1)1.07(−1)1.11(−1)1.13(−1)1.13(−1)1.11(−1)1.08(−1)
5117.49(−2)7.54(−2)7.66(−2)7.83(−2)8.00(−2)8.14(−2)8.23(−2)8.23(−2)8.14(−2)
6118.77(−2)8.98(−2)9.27(−2)9.61(−2)9.93(−2)1.02(−1)1.04(−1)1.04(−1)1.03(−1)
7116.77(−2)6.93(−2)7.18(−2)7.45(−2)7.70(−2)7.88(−2)7.96(−2)7.94(−2)7.81(−2)
8111.98(−1)1.90(−1)1.85(−1)1.81(−1)1.79(−1)1.78(−1)1.78(−1)1.79(−1)1.79(−1)
9112.06(−1)2.01(−1)1.99(−1)1.99(−1)2.00(−1)2.03(−1)2.07(−1)2.11(−1)2.14(−1)
10113.32(−1)3.24(−1)3.19(−1)3.17(−1)3.17(−1)3.17(−1)3.16(−1)3.14(−1)3.09(−1)

3.3 Line ratios

Combining the electron-impact excitation rates with the decay rates (A-values), it is possible to investigate important infrared and visible line ratios. For simplicity and purpose of this study, we neglect the recombination and ionization process from the neighbouring ion stages and focus on the populating mechanisms solely of Co iii. Assuming local thermal equilibrium and detailed balance, we can derive the collisional radiative modelling approach detailed in (Griffin et al. 1997). We can therefore investigate selected transitions that have been suggested as temperature or density diagnostics.

We present in Table 5 a comparison of emissivities (ρij) between our current results, and those from Storey & Sochi (2016) for particular transitions at electron densities Ne = 104 cm−3 and Ne = 107 cm−3. The emissivities are calculated relative to the H β line [see equation (1) in Storey & Sochi (2016)], where the effective recombination coefficients |$\bar{\alpha }_{4\rightarrow 2}$| can be found in Hummer & Storey (1987) and Storey & Hummer (1995). The wavelengths are those from National Institute of Standards and Technology (NIST) and we use our current set of A-values. In general there is excellent agreement for all emissivities considered with the major outlier ρ1 → 2 found to be around 30 per cent at Ne = 104 cm−3. This is evident from the strong ϒ1 → 2 from Fig. 5(a) at T = 104 K. By replacing this one effective collision strength to ϒ1 → 2(T = 10 000) = 4.18, then the ρ1 → 2 differences are within a much more agreeable 8 per cent. A similar argument follows for the large differences in the ρ2 → 3 at low electron density.

Table 5.

Emissivities relative to H β for a select number of transitions. The results are from our Present calculation and those presented in Storey & Sochi (2016) for two electron densities at one temperature, T = 10 000 K.

ρ (Ne = 104)ρ (Ne = 107)
i − jPresentStoreyPresentStorey
1 – 24.06 × 1045.85 × 1046.69 × 1027.49 × 102
1 – 52.24 × 1042.27 × 1042.19 × 1032.62 × 103
1 – 82.89 × 1042.83 × 1041.15 × 1041.26 × 104
2 – 38.79 × 1031.26 × 1042.14 × 1022.17 × 102
2 – 55.89 × 1035.83 × 103
2 – 66.87 × 1036.93 × 1037.70 × 1029.23 × 102
2 – 88.65 × 1038.47 × 1033.45 × 1033.78 × 103
2 – 93.54 × 1033.82 × 103
2 – 133.84 × 1034.07 × 1035.15 × 1035.39 × 103
3 – 41.49 × 1031.94 × 1033.20 × 1013.26 × 101
3 – 63.83 × 1033.91 × 103
3 – 92.56 × 1032.74 × 103
3 – 152.02 × 1032.38 × 103
4 – 151.04 × 1031.24 × 103
8 – 123.90 × 1033.82 × 103
8 – 145.36 × 1027.49 × 102
ρ (Ne = 104)ρ (Ne = 107)
i − jPresentStoreyPresentStorey
1 – 24.06 × 1045.85 × 1046.69 × 1027.49 × 102
1 – 52.24 × 1042.27 × 1042.19 × 1032.62 × 103
1 – 82.89 × 1042.83 × 1041.15 × 1041.26 × 104
2 – 38.79 × 1031.26 × 1042.14 × 1022.17 × 102
2 – 55.89 × 1035.83 × 103
2 – 66.87 × 1036.93 × 1037.70 × 1029.23 × 102
2 – 88.65 × 1038.47 × 1033.45 × 1033.78 × 103
2 – 93.54 × 1033.82 × 103
2 – 133.84 × 1034.07 × 1035.15 × 1035.39 × 103
3 – 41.49 × 1031.94 × 1033.20 × 1013.26 × 101
3 – 63.83 × 1033.91 × 103
3 – 92.56 × 1032.74 × 103
3 – 152.02 × 1032.38 × 103
4 – 151.04 × 1031.24 × 103
8 – 123.90 × 1033.82 × 103
8 – 145.36 × 1027.49 × 102
Table 5.

Emissivities relative to H β for a select number of transitions. The results are from our Present calculation and those presented in Storey & Sochi (2016) for two electron densities at one temperature, T = 10 000 K.

ρ (Ne = 104)ρ (Ne = 107)
i − jPresentStoreyPresentStorey
1 – 24.06 × 1045.85 × 1046.69 × 1027.49 × 102
1 – 52.24 × 1042.27 × 1042.19 × 1032.62 × 103
1 – 82.89 × 1042.83 × 1041.15 × 1041.26 × 104
2 – 38.79 × 1031.26 × 1042.14 × 1022.17 × 102
2 – 55.89 × 1035.83 × 103
2 – 66.87 × 1036.93 × 1037.70 × 1029.23 × 102
2 – 88.65 × 1038.47 × 1033.45 × 1033.78 × 103
2 – 93.54 × 1033.82 × 103
2 – 133.84 × 1034.07 × 1035.15 × 1035.39 × 103
3 – 41.49 × 1031.94 × 1033.20 × 1013.26 × 101
3 – 63.83 × 1033.91 × 103
3 – 92.56 × 1032.74 × 103
3 – 152.02 × 1032.38 × 103
4 – 151.04 × 1031.24 × 103
8 – 123.90 × 1033.82 × 103
8 – 145.36 × 1027.49 × 102
ρ (Ne = 104)ρ (Ne = 107)
i − jPresentStoreyPresentStorey
1 – 24.06 × 1045.85 × 1046.69 × 1027.49 × 102
1 – 52.24 × 1042.27 × 1042.19 × 1032.62 × 103
1 – 82.89 × 1042.83 × 1041.15 × 1041.26 × 104
2 – 38.79 × 1031.26 × 1042.14 × 1022.17 × 102
2 – 55.89 × 1035.83 × 103
2 – 66.87 × 1036.93 × 1037.70 × 1029.23 × 102
2 – 88.65 × 1038.47 × 1033.45 × 1033.78 × 103
2 – 93.54 × 1033.82 × 103
2 – 133.84 × 1034.07 × 1035.15 × 1035.39 × 103
3 – 41.49 × 1031.94 × 1033.20 × 1013.26 × 101
3 – 63.83 × 1033.91 × 103
3 – 92.56 × 1032.74 × 103
3 – 152.02 × 1032.38 × 103
4 – 151.04 × 1031.24 × 103
8 – 123.90 × 1033.82 × 103
8 – 145.36 × 1027.49 × 102
Another useful quantity to investigate is the line ratio which is defined by
where the populations of the nth level in terms of the ground state are given by Nn and the decay rates are the results from Section 2.1.
Fig. 7 depicts the results of the line ratio [0.66 μm]/[0.69 μm] which corresponds to the transitions,
as a function of electron density for particular temperatures. The dashed line provides the lowest temperature, T = 3980 K, with increasing T to T = 5010, 6310 and 7940 K. The line ratio is constant for densities Ne < 104 cm−3 and also Ne > 107 cm−3 for the temperatures considered. This could be considered a useful diagnostic for densities in the range of 104 cm−3 <Ne < 3 × 105 cm−3 where it remains constant for increasing temperatures before it reaches its minimum ≈5 × 105 cm−3
The line ratio [0.66 μm]/[0.69 μm] as a function of electron density (cm−3). The dashed curve is the lowest temperature, T = 3980 K. The remaining solid black curves are for temperatures T = 5010, 6310, and 7940 K for decreasing line ratio.
Figure 7.

The line ratio [0.66 μm]/[0.69 μm] as a function of electron density (cm−3). The dashed curve is the lowest temperature, T = 3980 K. The remaining solid black curves are for temperatures T = 5010, 6310, and 7940 K for decreasing line ratio.

Next we consider lines suggested by Ruiz-Lapuente (1995), (around the wavelength region 6000–6500 Å) to be applied as density diagnostics. At 10 000 K, we can see the photon emissivity coefficients of the 8 → 1 and 8 → 2 lines becomes more dominant for increasing temperatures, and are in the ideal wavelength region. Telesco et al. (2015) also suggests the 2 → 1, 11.88 μm as a useful diagnostic line. We finally present the results of three line ratios,
and,

We plot all three line ratios above in Fig. 8 as a function of electron temperature. The red dashed curve is the lowest electron density in each subfigure, Ne = 102 cm−3, and the remaining solid curves correspond to Ne = 104, 105, and 106 cm−3. Each line ratio is a varying function of increasing temperature across the range of interest. The line ratios for the two lowest densities are generally unchanged, and therefore they provide useful diagnostics for this density range. As Ne = 105 cm−3 and beyond, the line ratio begins to diverge, and becomes constant again for even larger densities.

The line ratio [11.88 μm]/[0.66 μm] (left), [11.88 μm]/[0.59 μm] (middle), and [11.88 μm]/[0.62 μm] (right) as a function of electron temperature (K). The red, dashed curve is the lowest density, Ne = 102 cm−3. The remaining solid black curves are for densities Ne = 104 cm−3, 105, and 106 cm−3 for decreasing line ratio.
Figure 8.

The line ratio [11.88 μm]/[0.66 μm] (left), [11.88 μm]/[0.59 μm] (middle), and [11.88 μm]/[0.62 μm] (right) as a function of electron temperature (K). The red, dashed curve is the lowest density, Ne = 102 cm−3. The remaining solid black curves are for densities Ne = 104 cm−3, 105, and 106 cm−3 for decreasing line ratio.

4 CONCLUSION

In this paper, we present an extensive set of atomic data for the photoionization of Co ii and the electron-impact excitation of Co iii. Initially we have exploited the computer code grasp0 to obtain a description of the atomic wavefunctions and generate energy levels for the 292 fine-structure bound target states and the corresponding A-values for transitions between these levels. Furthermore, the darc computer package has been employed to extend the problem to include photon and electron interactions. We present statistically weighted, level-resolved ground and metastable photoionization cross-sections for the Co ii ion as well as collision strengths and Maxwellian averaged effective collision strengths describing the electron-impact excitation of the Co iii ion. Comparisons are made with other works where possible and good agreement is found where a comparison is available. The reliability of the atomic data presented has been rigorously tested through a variety of means, such as the sophistication of the current calculations where great care has been taken to ensure the inclusion of important correlation and configuration-interaction in the wavefunction expansions. In addition the complex resonance structures in the cross-sections (photoionization and excitation) have been accurately resolved through a series of calculations incorporating mesh sizes with finer and finer energy increments. A proper consideration was also taken of the contributions from the high partial waves to ensure convergence of the collision strengths for the allowed transitions in particular (which are not presented in this work). A conclusive assessment of the accuracy of the presented Maxwellian averaged collision strengths will necessarily come from any subsequent astrophysical or diagnostic application. In Section 3.3 the electron-impact excitation rates were combined with the decay rates (A-values) to investigate important infrared and visible line ratios. During this process we were able to identify useful transitions that could be used as temperature and/or density sensitive diagnostic lines.

The work conducted has been supported by STFC through the grant ST/K000802/1. The authors would also like to acknowledge time on the Stuttgart, Hazelhen machine under the PAMOP (44009) project where all calculations have been performed.

1

The results are also in the form of an adf04 file on http://open.adas.ac.uk and on QUB pure.

REFERENCES

Aggarwal
K. M.
Bogdanovich
P.
Karpuškienė
R.
Keenan
F. P.
Kisielius
R.
Stancalie
V.
2016
At. Data Nucl. Data Tables
107
140

Badnell
N. R.
1986
J. Phys. B: At. Mol. Phys.
19
3827

Bautista
M. A.
Fivet
V.
Ballance
C.
Quinet
P.
Ferland
G.
Mendoza
C.
Kallman
T. R.
2015
ApJ
808
174

Bergemann
M.
Pickering
J. C.
Gehren
T.
2010
MNRAS
401
1334

Burgess
A.
1974
J. Phys. B: At. Mol. Phys.
7
L364

Burgess
A.
Tully
J. A.
1992
A&A
254
436

Burke
P. G.
2011
R-Matrix Theory of Atomic Collisions
Springer-Verlag
Berlin

Burke
P. G.
Taylor
K. T.
1975
J. Phys. B: At. Mol. Phys.
8
2620

Burke
P. G.
Hibbert
A.
Robb
W. D.
1971
J. Phys. B: At. Mol. Phys.
4
153

Cardon
B. L.
Smith
P. L.
Scalo
J. M.
Testerman
L.
Whaling
W.
1982
ApJ
260
395

Cowan
R. D.
1981
The Theory of Atomic Structure and Spectra
Univ. California Press
Berkeley

Cunto
W.
Mendoza
C.
1992
Rev. Mex. Astron. Astrophys.
23
107

Cunto
W.
Mendoza
C.
Ochsenbein
F.
Zeippen
C. J.
1993
A&A
275
L5

Dessart
L.
Hillier
D. J.
Blondin
S.
Khokhlov
A.
2014
MNRAS
441
3249

Diamond
T. R.
Hoeflich
P.
Gerardy
C. L.
2015
ApJ
806
107

Dworetsky
M. M.
1982
Observatory
102
138

Dworetsky
M. M.
Trueman
M. R. G.
Stickland
D. J.
1980
A&A
85
138

Eissner
W.
Jones
M.
Nussbaumer
H.
1974
Comput. Phys. Commun.
8
270

Federman
S. R.
Sheffer
Y.
Lambert
D. L.
Gilliland
R. L.
1993
ApJ
413
L51

Fernández-Menchero
L.
Del Zanna
G.
Badnell
N. R.
2015
MNRAS
450
4174

Fivet
V.
Quinet
P.
Bautista
M. A.
2016
A&A
585
A121

Fontes
C. J.
et al.
2015
J. Phys. B: At. Mol. Phys.
48
144014

Gerardy
C. L.
et al.
2007
ApJ
661
995

Gharaibeh
M. F.
et al.
2011
J. Phys. B: At. Mol. Phys.
44
175208

Griffin
D. C.
Pindzola
M. S.
Shaw
J. A.
Badnell
N. R.
O'Mullane
M.
Summers
H. P.
1997
J. Phys. B: At. Mol. Phys.
30
3543

Griffin
D. C.
Badnell
N. R.
Pindzola
M. S.
1998
J. Phys. B: At. Mol. Phys.
31
3713

Hansen
J. E.
Raassen
A. J. J.
Uylings
P. H. M.
1984
ApJ
277
435

Hillier
D. J.
2011
Ap&SS
336
87

Hummer
D. G.
Storey
P. J.
1987
MNRAS
224
801

Kromer
M.
Sim
S. A.
2009
MNRAS
398
1809

Li
H.
McCray
R.
Sunyaev
R. A.
1993
ApJ
419
824

Lucy
L. B.
2005
A&A
429
19

Mazzali
P. A.
Chugai
N.
Turatto
M.
Lucy
L. B.
Danziger
I. J.
Cappellaro
E.
della Valle
M.
Benetti
S.
1997
MNRAS
284
151

Meikle
W. P. S.
Spyromilio
J.
Varani
G. F.
Allen
D. A.
1989
MNRAS
238
193

Müller
A.
et al.
2009
J. Phys. B: At. Mol. Phys.
42
235602

Nussbaumer
H.
Storey
P. J.
1988
A&A
200
L25

Pickering
J. C.
Raassen
A. J. J.
Uylings
P. H. M.
Johansson
S.
1998
ApJS
117
261

Quinet
P.
1998
A&AS
129
147

Ramsbottom
C. A.
2009
At. Data Nucl. Data Tables
95
910

Ramsbottom
C. A.
Hudson
C. E.
Norrington
P. H.
Scott
M. P.
2007
A&A
475
765

Reilman
R. F.
Manson
S. T.
1979
ApJS
40
815

Ruiz-Lapuente
P.
1995
Adelman
S. J.
Wiese
W. L.
ASP Conf. Ser. Vol. 78, Calculated Late-time Spectra of Type IA Supernovae: Atomic Needs and Astrophysical Interest
Astron. Soc. Pac.
San Francisco
291

Scott
N. S.
Burke
P. G.
1980
J. Phys. B: At. Mol. Phys.
13
4299

Sim
S. A.
2007
MNRAS
375
154

Smith
K. C.
Dworetsky
M. M.
1993
A&A
274
335

Snow
T. P.
Jr
Weiler
E. J.
Oegerle
W. R.
1979
ApJ
234
506

Storey
P. J.
Hummer
D. G.
1995
MNRAS
272
41

Storey
P. J.
Sochi
T.
2016
MNRAS
459
2558

Storey
P. J.
Zeippen
C. J.
Sochi
T.
2016
MNRAS
456
1974

Sugar
J.
Corliss
C.
1985
Atomic Energy Levels of the Iron-Period Elements: Potassium Through Nickel
American Chemical Society
Washington

Telesco
C. M.
et al.
2015
ApJ
798
93

Thackeray
A. D.
1976
MNRAS
174
59

Tyndall
N. B.
Ramsbottom
C. A.
Ballance
C. P.
Hibbert
A.
2016
MNRAS
456
366

Verner
D. A.
Yakovlev
D. G.
Band
I. M.
Trzhaskovskaya
M. B.
1993
At. Data Nucl. Data Tables
55
233

Zatsarinny
O.
Bartschat
K.
2004
J. Phys. B: At. Mol. Phys.
37
4693

Zatsarinny
O.
Froese Fischer
C.
2000
J. Phys. B: At. Mol. Phys.
33
313

Zethson
T.
Gull
T. R.
Hartman
H.
Johansson
S.
Davidson
K.
Ishibashi
K.
2001
AJ
122
322