Abstract

The distribution of the orbital elements of the known extreme trans-Neptunian objects or ETNOs has been found to be statistically incompatible with that of an unperturbed asteroid population following heliocentric or, better, barycentric orbits. Such trends, if confirmed by future discoveries of ETNOs, strongly suggest that one or more massive perturbers could be located well beyond Pluto. Within the trans-Plutonian planets paradigm, the Planet Nine hypothesis has received much attention as a robust scenario to explain the observed clustering in physical space of the perihelia of seven ETNOs which also exhibit clustering in orbital pole position. Here, we revisit the subject of clustering in perihelia and poles of the known ETNOs using barycentric orbits, and study the visibility of the latest incarnation of the orbit of Planet Nine applying Monte Carlo techniques and focusing on the effects of the apsidal anti-alignment constraint. We provide visibility maps indicating the most likely location of this putative planet if it is near aphelion. We also show that the available data suggest that at least two massive perturbers are present beyond Pluto.

1 INTRODUCTION

The distribution of the orbital parameters of the known extreme trans-Neptunian objects or ETNOs is statistically incompatible with that of an unperturbed asteroid population following Keplerian orbits (de la Fuente Marcos & de la Fuente Marcos 2014, 2016b; Trujillo & Sheppard 2014; de la Fuente Marcos, de la Fuente Marcos & Aarseth 2015, 2016; Gomes, Soares & Brasser 2015; Batygin & Brown 2016; Brown & Batygin 2016; Malhotra, Volk & Wang 2016). A number of plausible explanations have been suggested. These include the possible existence of one (Trujillo & Sheppard 2014; Gomes et al. 2015; Batygin & Brown 2016; Brown & Batygin 2016; Malhotra et al. 2016) or more (de la Fuente Marcos & de la Fuente Marcos 2014, 2016b; de la Fuente Marcos et al. 2015, 2016) trans-Plutonian planets, capture of ETNOs within the Sun's natal open cluster (Jílková et al. 2015), stellar encounters (Brasser & Schwamb 2015; Feng & Bailer-Jones 2015), being a by-product of Neptune's migration (Brown & Firth 2016) or the result of the inclination instability (Madigan & McCourt 2016), and having been induced by Milgromian dynamics (Paučo & Klačka 2016).

At present, most if not all of the unexpected orbital patterns found for the known ETNOs seem to be compatible with the trans-Plutonian planets paradigm that predicts the presence of one or more planetary bodies well beyond Pluto. Within this paradigm, the best studied theoretical framework is that of the so-called Planet Nine hypothesis, originally suggested by Batygin & Brown (2016) and further developed in Brown & Batygin (2016). The goal of this analytically and numerically supported conjecture is not only to explain the observed clustering in physical space of the perihelia and the positions of the orbital poles of seven ETNOs (see Appendix A for further discussion), but also to account for other, previously puzzling, pieces of observational evidence like the existence of low perihelion objects moving in nearly perpendicular orbits. The Planet Nine hypothesis is compatible with existing data (Cowan, Holder & Kaib 2016; Fienga et al. 2016; Fortney et al. 2016; Ginzburg, Sari & Loeb 2016; Linder & Mordasini 2016) but, if Planet Nine exists, it cannot be too massive or bright to have escaped detection during the last two decades of surveys and astrometric studies (Luhman 2014; Cowan et al. 2016; Fienga et al. 2016; Fortney et al. 2016; Ginzburg et al. 2016; Linder & Mordasini 2016). A super-Earth in the sub-Neptunian mass range is most likely and such planet may have been scattered out of the region of the Jovian planets early in the history of the Solar system (Bromley & Kenyon 2016) or even captured from another planetary system (Li & Adams 2016; Mustill, Raymond & Davies 2016); super-Earths may also form at 125–750 au from the Sun (Kenyon & Bromley 2015, 2016).

The analysis of the visibility of Planet Nine presented in de la Fuente Marcos & de la Fuente Marcos (2016a) revealed probable locations of this putative planet based on data provided in Batygin & Brown (2016) and Fienga et al. (2016); the original data have been significantly updated in Brown & Batygin (2016). In addition, independent calculations (de la Fuente Marcos et al. 2016) show that the apsidal anti-alignment constraint originally discussed in Batygin & Brown (2016) plays a fundamental role on the dynamical impact of a putative Planet Nine on the orbital evolution of the known ETNOs. Here, we improve the results presented in de la Fuente Marcos & de la Fuente Marcos (2016a) focusing on the effects of the apsidal anti-alignment constraint. This paper is organized as follows. Section 2 presents an analysis of clustering in barycentric elements, pericentre and orbital pole positions, which is subsequently discussed. An updated evaluation of the visibility of Planet Nine virtual orbits at aphelion is given in Section 3. Conclusions are summarized in Section 4.

2 CLUSTERING IN BARYCENTRIC PARAMETERS

The six (Batygin & Brown 2016) or seven (Brown & Batygin 2016) ETNOs singled out within the Planet Nine hypothesis (see Appendix A for details) have a > 226 au (heliocentric) and they exhibit clustering in perihelion location in absolute terms and also in orbital pole position. In order to better understand the context of these clusterings we study the line of apsides of the known ETNOs (see Table 1 and Fig. 1) and the projection of their orbital poles on to the plane of the sky (see Table 1 and Fig. 2). Here, we consider barycentric orbits as it can be argued (see the discussion in Malhotra et al. 2016) that the use of barycentric orbital elements instead of the usual heliocentric ones is more correct in this case.

Pericentres of the objects in Table 1. The objects singled out in Brown & Batygin (2016) are plotted in red.
Figure 1.

Pericentres of the objects in Table 1. The objects singled out in Brown & Batygin (2016) are plotted in red.

Poles of the objects in Table 1. Those singled out in Brown & Batygin (2016) are plotted in red, the known planets in blue, and various Planet Nine incarnations in green – P9v0 is the nominal solution in Batygin & Brown (2016), P9v1 is the one from Brown & Batygin (2016), and P9 is the previous one but enforcing apsidal anti-alignment.
Figure 2.

Poles of the objects in Table 1. Those singled out in Brown & Batygin (2016) are plotted in red, the known planets in blue, and various Planet Nine incarnations in green – P9v0 is the nominal solution in Batygin & Brown (2016), P9v1 is the one from Brown & Batygin (2016), and P9 is the previous one but enforcing apsidal anti-alignment.

In Trujillo & Sheppard (2014), the ETNOs are defined as asteroids with heliocentric semimajor axis greater than 150 au and perihelion greater than 30 au; at present, there are 16 known ETNOs. Because of the nature of their orbits, the ETNOs cannot experience a close approach to the known planets, including Neptune. Nevertheless, the orbits of the ETNOs are affected by indirect perturbations that induce variations in perihelion location. The perihelion distance of an ETNO depends on the value of its semimajor axis and eccentricity, e, as it is given by q = a(1 − e). However, its absolute position on the sky is only function of the inclination, i, the longitude of the ascending node, Ω, and the argument of perihelion, ω. In heliocentric ecliptic coordinates, the longitude and latitude of an object at perihelion, (lq, bq), are given by the expressions: tan (lq − Ω) = tan ω cos i and sin bq = sin ω sin i (see e.g. Murray & Dermott 1999). For an orbit with zero inclination, lq = Ω + ω and |$b_q=0^\circ$|⁠; therefore, if |$i=0^\circ$|⁠, the value of lq coincides with that of the longitude of perihelion parameter, ϖ = Ω + ω. In Brown & Batygin (2016), lq is called ‘perihelion longitude’ and bq is the ‘perihelion latitude’. Considering barycentric orbits, we denote the barycentric ecliptic coordinates of an ETNO at pericentre as (Lq, Bq). In Table 1 we show the values of q, Lq and Bq computed using the barycentric data in Table 2. The input values are from Jet Propulsion Laboratory's Small-Body Database1 (SBDB) and Horizons On-Line Ephemeris System (Giorgini et al. 1996).

Table 1.

Pericentre distances, q, ecliptic coordinates at pericentre, (Lq, Bq), and projected pole positions, (Lp, Bp), of the 16 objects discussed in this paper computed using barycentric orbits, see also Figs 1 and 2. (Epoch: 2457600.5, 2016 July 31.0 00:00:00.0 TDB. J2000.0 ecliptic and equinox. Input data from the SBDB; data as of 2016 July 13.)

Objectq (au)Lq (⁠|$^\circ$|⁠)Bq (⁠|$^\circ$|⁠)Lp (⁠|$^\circ$|⁠)Bp (⁠|$^\circ$|⁠)
(82158) 2001 FP18534.25185.283.5289.3659.20
(90377) Sedna76.1996.31− 8.9454.4078.07
(148209) 2000 CR10544.1287.28− 15.3938.2967.24
(445473) 2010 VZ9834.3571.21− 3.2627.4085.49
2002 GB3235.34213.248.4987.0475.81
2003 HB5738.10208.322.88107.8774.50
2003 SS42239.42359.91− 8.2861.0573.21
2004 VN11247.3235.65− 13.59336.0264.45
2005 RH5239.00336.9810.83216.1169.55
2007 TG42235.5639.41− 17.8822.9171.40
2007 VJ30535.183.15− 4.40294.3878.02
2010 GB17448.56118.83− 4.6540.7168.44
2012 VP11380.4426.32− 21.940.8065.95
2013 GP13641.06248.0821.91120.7356.46
2013 RF9836.2827.88− 19.93337.5360.40
2015 SO2033.1728.89− 2.05303.6366.59
Objectq (au)Lq (⁠|$^\circ$|⁠)Bq (⁠|$^\circ$|⁠)Lp (⁠|$^\circ$|⁠)Bp (⁠|$^\circ$|⁠)
(82158) 2001 FP18534.25185.283.5289.3659.20
(90377) Sedna76.1996.31− 8.9454.4078.07
(148209) 2000 CR10544.1287.28− 15.3938.2967.24
(445473) 2010 VZ9834.3571.21− 3.2627.4085.49
2002 GB3235.34213.248.4987.0475.81
2003 HB5738.10208.322.88107.8774.50
2003 SS42239.42359.91− 8.2861.0573.21
2004 VN11247.3235.65− 13.59336.0264.45
2005 RH5239.00336.9810.83216.1169.55
2007 TG42235.5639.41− 17.8822.9171.40
2007 VJ30535.183.15− 4.40294.3878.02
2010 GB17448.56118.83− 4.6540.7168.44
2012 VP11380.4426.32− 21.940.8065.95
2013 GP13641.06248.0821.91120.7356.46
2013 RF9836.2827.88− 19.93337.5360.40
2015 SO2033.1728.89− 2.05303.6366.59
Table 1.

Pericentre distances, q, ecliptic coordinates at pericentre, (Lq, Bq), and projected pole positions, (Lp, Bp), of the 16 objects discussed in this paper computed using barycentric orbits, see also Figs 1 and 2. (Epoch: 2457600.5, 2016 July 31.0 00:00:00.0 TDB. J2000.0 ecliptic and equinox. Input data from the SBDB; data as of 2016 July 13.)

Objectq (au)Lq (⁠|$^\circ$|⁠)Bq (⁠|$^\circ$|⁠)Lp (⁠|$^\circ$|⁠)Bp (⁠|$^\circ$|⁠)
(82158) 2001 FP18534.25185.283.5289.3659.20
(90377) Sedna76.1996.31− 8.9454.4078.07
(148209) 2000 CR10544.1287.28− 15.3938.2967.24
(445473) 2010 VZ9834.3571.21− 3.2627.4085.49
2002 GB3235.34213.248.4987.0475.81
2003 HB5738.10208.322.88107.8774.50
2003 SS42239.42359.91− 8.2861.0573.21
2004 VN11247.3235.65− 13.59336.0264.45
2005 RH5239.00336.9810.83216.1169.55
2007 TG42235.5639.41− 17.8822.9171.40
2007 VJ30535.183.15− 4.40294.3878.02
2010 GB17448.56118.83− 4.6540.7168.44
2012 VP11380.4426.32− 21.940.8065.95
2013 GP13641.06248.0821.91120.7356.46
2013 RF9836.2827.88− 19.93337.5360.40
2015 SO2033.1728.89− 2.05303.6366.59
Objectq (au)Lq (⁠|$^\circ$|⁠)Bq (⁠|$^\circ$|⁠)Lp (⁠|$^\circ$|⁠)Bp (⁠|$^\circ$|⁠)
(82158) 2001 FP18534.25185.283.5289.3659.20
(90377) Sedna76.1996.31− 8.9454.4078.07
(148209) 2000 CR10544.1287.28− 15.3938.2967.24
(445473) 2010 VZ9834.3571.21− 3.2627.4085.49
2002 GB3235.34213.248.4987.0475.81
2003 HB5738.10208.322.88107.8774.50
2003 SS42239.42359.91− 8.2861.0573.21
2004 VN11247.3235.65− 13.59336.0264.45
2005 RH5239.00336.9810.83216.1169.55
2007 TG42235.5639.41− 17.8822.9171.40
2007 VJ30535.183.15− 4.40294.3878.02
2010 GB17448.56118.83− 4.6540.7168.44
2012 VP11380.4426.32− 21.940.8065.95
2013 GP13641.06248.0821.91120.7356.46
2013 RF9836.2827.88− 19.93337.5360.40
2015 SO2033.1728.89− 2.05303.6366.59
Table 2.

Barycentric orbital elements and parameters – q = a(1 − e), Q = a(1 + e) is the aphelion distance, ϖ = Ω + ω, P is the orbital period, Ω* and ω* are Ω and ω in the interval (−π, π) instead of the regular (0, 2π) – of the known ETNOs. The statistical parameters are Q1, first quartile, Q3, third quartile, IQR, interquartile range, OL, lower outlier limit (Q1 − 1.5IQR), and OU, upper outlier limit (Q3 + 1.5IQR). Input data as in Table 1.

Objecta (au)ei (⁠|$^\circ$|⁠)Ω (⁠|$^\circ$|⁠)ω (⁠|$^\circ$|⁠)ϖ (⁠|$^\circ$|⁠)q (au)Q (au)P (yr)Ω* (⁠|$^\circ$|⁠)ω* (⁠|$^\circ$|⁠)
82158215.979 150.841 4130.801 34179.358 926.884 51186.243 4334.252 44397.705 863172.011 64179.358 926.884 51
Sedna506.088 460.849 4511.928 56144.402 51311.285 6995.688 2076.190 98935.985 9411 377.757 35144.402 51− 48.714 31
148209221.971 880.801 2222.755 98128.285 90316.689 2284.975 1244.122 67399.821 083304.942 85128.285 90− 43.310 78
445473153.361 000.776 024.510 50117.398 58313.725 5771.124 1534.350 48272.371 521897.970 30117.398 58− 46.274 43
2002 GB32206.509 310.828 8714.192 46177.043 9537.047 20214.091 1535.339 79377.678 832965.694 98177.043 9537.047 20
2003 HB57159.665 570.761 3815.500 28197.871 0710.829 77208.700 8438.098 95281.232 182016.201 47− 162.128 9310.829 77
2003 SS422197.895 670.800 7816.785 97151.046 90209.928 640.975 5439.424 55356.366 792782.091 80151.046 90− 150.071 36
2004 VN112327.435 210.855 4825.547 6166.022 80326.996 9933.019 7947.322 01607.548 415921.136 7566.022 80− 33.003 01
2005 RH52153.677 480.746 2420.445 77306.110 6732.538 53338.649 2038.997 10268.357 861903.848 38− 53.889 3332.538 53
2007 TG422502.042 480.929 1618.595 30112.910 71285.685 1238.595 8335.562 65968.522 3011 241.589 33112.910 71− 74.314 88
2007 VJ305192.099 340.816 8411.983 7624.382 39338.334 912.717 3035.184 70349.013 982660.760 7724.382 39− 21.665 09
2010 GB174351.127 350.861 6921.562 45130.714 44347.245 10117.959 5448.562 88653.691 826575.276 41130.714 44− 12.754 90
2012 VP113263.165 640.694 3624.051 5590.803 92293.549 6524.353 5780.435 15445.896 134266.392 4090.803 92− 66.450 35
2013 GP136149.786 730.725 8733.539 04210.727 2942.478 18253.205 4741.060 79258.512 671832.006 56− 149.272 7142.478 18
2013 RF98317.065 250.885 5729.600 6667.533 81316.375 2823.909 0936.282 42597.848 085642.089 8267.533 81− 43.624 72
2015 SO20164.902 890.798 8523.411 0633.633 83354.830 2328.464 0633.170 08296.635 702116.213 1733.633 83− 5.169 77
Mean255.173 340.810 8220.325 77133.640 48221.526 54107.667 0243.647 35466.699 324354.749 0066.140 48− 25.973 46
Std. dev.116.486 330.061 057.724 9571.950 62140.157 70102.408 4314.310 74226.780 103103.338 12105.712 2949.062 88
Median211.244 230.809 0321.004 11129.500 17302.417 6778.049 6338.548 02387.692 353068.853 31101.857 31− 27.334 05
Q1163.593 560.772 3615.173 3284.986 3941.120 4427.436 4435.301 02292.784 822091.210 2431.320 97− 46.884 40
Q3319.657 740.850 9624.425 56177.622 69319.266 16191.857 7844.922 51600.273 175711.851 55134.136 467.870 82
IQR156.064 180.078 609.252 2492.636 30278.145 73164.421 359.621 49307.488 353620.641 31102.815 4954.755 23
OL− 70.502 720.654 461.294 96− 53.968 06− 376.098 15− 219.195 5820.868 79− 168.447 70− 3339.751 72− 122.902 26− 129.017 24
OU553.754 020.968 8638.303 93316.577 14736.484 75438.489 8059.354 741061.505 6811 142.813 51288.359 6990.003 66
Statistics of Sedna, 148209, 2004VN112, 2007 TG422, 2010 GB174, 2012 VP113 and 2013 RF98
Mean355.556 610.839 5622.006 02105.810 58313.975 2959.785 8852.639 82658.473 406904.169 27105.810 58− 46.024 71
Std. dev.110.144 550.074 775.602 8731.460 2120.470 8938.763 5718.275 09220.425 833199.111 0431.460 2120.470 89
Median327.435 210.855 4822.755 98112.910 71316.375 2838.595 8347.322 01607.548 415921.136 75112.910 71− 43.624 72
Q1290.115 450.825 3420.078 8879.168 86302.417 6728.686 6840.202 55521.872 114954.241 1179.168 86− 57.582 33
Q3426.584 910.873 6324.799 58129.500 17321.843 1090.331 6662.376 93794.838 888908.432 87129.500 17− 38.156 90
IQR136.469 470.048 294.720 7050.331 3119.425 4361.644 9822.174 38272.966 773954.191 7650.331 3119.425 43
OL85.411 240.752 9012.997 823.671 90273.279 52− 63.780 806.940 97112.421 95− 977.046 533.671 90− 86.720 48
OU631.289 120.946 0731.880 63204.997 13350.981 25182.799 1495.638 511204.289 0314 839.720 51204.997 13− 9.018 75
Objecta (au)ei (⁠|$^\circ$|⁠)Ω (⁠|$^\circ$|⁠)ω (⁠|$^\circ$|⁠)ϖ (⁠|$^\circ$|⁠)q (au)Q (au)P (yr)Ω* (⁠|$^\circ$|⁠)ω* (⁠|$^\circ$|⁠)
82158215.979 150.841 4130.801 34179.358 926.884 51186.243 4334.252 44397.705 863172.011 64179.358 926.884 51
Sedna506.088 460.849 4511.928 56144.402 51311.285 6995.688 2076.190 98935.985 9411 377.757 35144.402 51− 48.714 31
148209221.971 880.801 2222.755 98128.285 90316.689 2284.975 1244.122 67399.821 083304.942 85128.285 90− 43.310 78
445473153.361 000.776 024.510 50117.398 58313.725 5771.124 1534.350 48272.371 521897.970 30117.398 58− 46.274 43
2002 GB32206.509 310.828 8714.192 46177.043 9537.047 20214.091 1535.339 79377.678 832965.694 98177.043 9537.047 20
2003 HB57159.665 570.761 3815.500 28197.871 0710.829 77208.700 8438.098 95281.232 182016.201 47− 162.128 9310.829 77
2003 SS422197.895 670.800 7816.785 97151.046 90209.928 640.975 5439.424 55356.366 792782.091 80151.046 90− 150.071 36
2004 VN112327.435 210.855 4825.547 6166.022 80326.996 9933.019 7947.322 01607.548 415921.136 7566.022 80− 33.003 01
2005 RH52153.677 480.746 2420.445 77306.110 6732.538 53338.649 2038.997 10268.357 861903.848 38− 53.889 3332.538 53
2007 TG422502.042 480.929 1618.595 30112.910 71285.685 1238.595 8335.562 65968.522 3011 241.589 33112.910 71− 74.314 88
2007 VJ305192.099 340.816 8411.983 7624.382 39338.334 912.717 3035.184 70349.013 982660.760 7724.382 39− 21.665 09
2010 GB174351.127 350.861 6921.562 45130.714 44347.245 10117.959 5448.562 88653.691 826575.276 41130.714 44− 12.754 90
2012 VP113263.165 640.694 3624.051 5590.803 92293.549 6524.353 5780.435 15445.896 134266.392 4090.803 92− 66.450 35
2013 GP136149.786 730.725 8733.539 04210.727 2942.478 18253.205 4741.060 79258.512 671832.006 56− 149.272 7142.478 18
2013 RF98317.065 250.885 5729.600 6667.533 81316.375 2823.909 0936.282 42597.848 085642.089 8267.533 81− 43.624 72
2015 SO20164.902 890.798 8523.411 0633.633 83354.830 2328.464 0633.170 08296.635 702116.213 1733.633 83− 5.169 77
Mean255.173 340.810 8220.325 77133.640 48221.526 54107.667 0243.647 35466.699 324354.749 0066.140 48− 25.973 46
Std. dev.116.486 330.061 057.724 9571.950 62140.157 70102.408 4314.310 74226.780 103103.338 12105.712 2949.062 88
Median211.244 230.809 0321.004 11129.500 17302.417 6778.049 6338.548 02387.692 353068.853 31101.857 31− 27.334 05
Q1163.593 560.772 3615.173 3284.986 3941.120 4427.436 4435.301 02292.784 822091.210 2431.320 97− 46.884 40
Q3319.657 740.850 9624.425 56177.622 69319.266 16191.857 7844.922 51600.273 175711.851 55134.136 467.870 82
IQR156.064 180.078 609.252 2492.636 30278.145 73164.421 359.621 49307.488 353620.641 31102.815 4954.755 23
OL− 70.502 720.654 461.294 96− 53.968 06− 376.098 15− 219.195 5820.868 79− 168.447 70− 3339.751 72− 122.902 26− 129.017 24
OU553.754 020.968 8638.303 93316.577 14736.484 75438.489 8059.354 741061.505 6811 142.813 51288.359 6990.003 66
Statistics of Sedna, 148209, 2004VN112, 2007 TG422, 2010 GB174, 2012 VP113 and 2013 RF98
Mean355.556 610.839 5622.006 02105.810 58313.975 2959.785 8852.639 82658.473 406904.169 27105.810 58− 46.024 71
Std. dev.110.144 550.074 775.602 8731.460 2120.470 8938.763 5718.275 09220.425 833199.111 0431.460 2120.470 89
Median327.435 210.855 4822.755 98112.910 71316.375 2838.595 8347.322 01607.548 415921.136 75112.910 71− 43.624 72
Q1290.115 450.825 3420.078 8879.168 86302.417 6728.686 6840.202 55521.872 114954.241 1179.168 86− 57.582 33
Q3426.584 910.873 6324.799 58129.500 17321.843 1090.331 6662.376 93794.838 888908.432 87129.500 17− 38.156 90
IQR136.469 470.048 294.720 7050.331 3119.425 4361.644 9822.174 38272.966 773954.191 7650.331 3119.425 43
OL85.411 240.752 9012.997 823.671 90273.279 52− 63.780 806.940 97112.421 95− 977.046 533.671 90− 86.720 48
OU631.289 120.946 0731.880 63204.997 13350.981 25182.799 1495.638 511204.289 0314 839.720 51204.997 13− 9.018 75
Table 2.

Barycentric orbital elements and parameters – q = a(1 − e), Q = a(1 + e) is the aphelion distance, ϖ = Ω + ω, P is the orbital period, Ω* and ω* are Ω and ω in the interval (−π, π) instead of the regular (0, 2π) – of the known ETNOs. The statistical parameters are Q1, first quartile, Q3, third quartile, IQR, interquartile range, OL, lower outlier limit (Q1 − 1.5IQR), and OU, upper outlier limit (Q3 + 1.5IQR). Input data as in Table 1.

Objecta (au)ei (⁠|$^\circ$|⁠)Ω (⁠|$^\circ$|⁠)ω (⁠|$^\circ$|⁠)ϖ (⁠|$^\circ$|⁠)q (au)Q (au)P (yr)Ω* (⁠|$^\circ$|⁠)ω* (⁠|$^\circ$|⁠)
82158215.979 150.841 4130.801 34179.358 926.884 51186.243 4334.252 44397.705 863172.011 64179.358 926.884 51
Sedna506.088 460.849 4511.928 56144.402 51311.285 6995.688 2076.190 98935.985 9411 377.757 35144.402 51− 48.714 31
148209221.971 880.801 2222.755 98128.285 90316.689 2284.975 1244.122 67399.821 083304.942 85128.285 90− 43.310 78
445473153.361 000.776 024.510 50117.398 58313.725 5771.124 1534.350 48272.371 521897.970 30117.398 58− 46.274 43
2002 GB32206.509 310.828 8714.192 46177.043 9537.047 20214.091 1535.339 79377.678 832965.694 98177.043 9537.047 20
2003 HB57159.665 570.761 3815.500 28197.871 0710.829 77208.700 8438.098 95281.232 182016.201 47− 162.128 9310.829 77
2003 SS422197.895 670.800 7816.785 97151.046 90209.928 640.975 5439.424 55356.366 792782.091 80151.046 90− 150.071 36
2004 VN112327.435 210.855 4825.547 6166.022 80326.996 9933.019 7947.322 01607.548 415921.136 7566.022 80− 33.003 01
2005 RH52153.677 480.746 2420.445 77306.110 6732.538 53338.649 2038.997 10268.357 861903.848 38− 53.889 3332.538 53
2007 TG422502.042 480.929 1618.595 30112.910 71285.685 1238.595 8335.562 65968.522 3011 241.589 33112.910 71− 74.314 88
2007 VJ305192.099 340.816 8411.983 7624.382 39338.334 912.717 3035.184 70349.013 982660.760 7724.382 39− 21.665 09
2010 GB174351.127 350.861 6921.562 45130.714 44347.245 10117.959 5448.562 88653.691 826575.276 41130.714 44− 12.754 90
2012 VP113263.165 640.694 3624.051 5590.803 92293.549 6524.353 5780.435 15445.896 134266.392 4090.803 92− 66.450 35
2013 GP136149.786 730.725 8733.539 04210.727 2942.478 18253.205 4741.060 79258.512 671832.006 56− 149.272 7142.478 18
2013 RF98317.065 250.885 5729.600 6667.533 81316.375 2823.909 0936.282 42597.848 085642.089 8267.533 81− 43.624 72
2015 SO20164.902 890.798 8523.411 0633.633 83354.830 2328.464 0633.170 08296.635 702116.213 1733.633 83− 5.169 77
Mean255.173 340.810 8220.325 77133.640 48221.526 54107.667 0243.647 35466.699 324354.749 0066.140 48− 25.973 46
Std. dev.116.486 330.061 057.724 9571.950 62140.157 70102.408 4314.310 74226.780 103103.338 12105.712 2949.062 88
Median211.244 230.809 0321.004 11129.500 17302.417 6778.049 6338.548 02387.692 353068.853 31101.857 31− 27.334 05
Q1163.593 560.772 3615.173 3284.986 3941.120 4427.436 4435.301 02292.784 822091.210 2431.320 97− 46.884 40
Q3319.657 740.850 9624.425 56177.622 69319.266 16191.857 7844.922 51600.273 175711.851 55134.136 467.870 82
IQR156.064 180.078 609.252 2492.636 30278.145 73164.421 359.621 49307.488 353620.641 31102.815 4954.755 23
OL− 70.502 720.654 461.294 96− 53.968 06− 376.098 15− 219.195 5820.868 79− 168.447 70− 3339.751 72− 122.902 26− 129.017 24
OU553.754 020.968 8638.303 93316.577 14736.484 75438.489 8059.354 741061.505 6811 142.813 51288.359 6990.003 66
Statistics of Sedna, 148209, 2004VN112, 2007 TG422, 2010 GB174, 2012 VP113 and 2013 RF98
Mean355.556 610.839 5622.006 02105.810 58313.975 2959.785 8852.639 82658.473 406904.169 27105.810 58− 46.024 71
Std. dev.110.144 550.074 775.602 8731.460 2120.470 8938.763 5718.275 09220.425 833199.111 0431.460 2120.470 89
Median327.435 210.855 4822.755 98112.910 71316.375 2838.595 8347.322 01607.548 415921.136 75112.910 71− 43.624 72
Q1290.115 450.825 3420.078 8879.168 86302.417 6728.686 6840.202 55521.872 114954.241 1179.168 86− 57.582 33
Q3426.584 910.873 6324.799 58129.500 17321.843 1090.331 6662.376 93794.838 888908.432 87129.500 17− 38.156 90
IQR136.469 470.048 294.720 7050.331 3119.425 4361.644 9822.174 38272.966 773954.191 7650.331 3119.425 43
OL85.411 240.752 9012.997 823.671 90273.279 52− 63.780 806.940 97112.421 95− 977.046 533.671 90− 86.720 48
OU631.289 120.946 0731.880 63204.997 13350.981 25182.799 1495.638 511204.289 0314 839.720 51204.997 13− 9.018 75
Objecta (au)ei (⁠|$^\circ$|⁠)Ω (⁠|$^\circ$|⁠)ω (⁠|$^\circ$|⁠)ϖ (⁠|$^\circ$|⁠)q (au)Q (au)P (yr)Ω* (⁠|$^\circ$|⁠)ω* (⁠|$^\circ$|⁠)
82158215.979 150.841 4130.801 34179.358 926.884 51186.243 4334.252 44397.705 863172.011 64179.358 926.884 51
Sedna506.088 460.849 4511.928 56144.402 51311.285 6995.688 2076.190 98935.985 9411 377.757 35144.402 51− 48.714 31
148209221.971 880.801 2222.755 98128.285 90316.689 2284.975 1244.122 67399.821 083304.942 85128.285 90− 43.310 78
445473153.361 000.776 024.510 50117.398 58313.725 5771.124 1534.350 48272.371 521897.970 30117.398 58− 46.274 43
2002 GB32206.509 310.828 8714.192 46177.043 9537.047 20214.091 1535.339 79377.678 832965.694 98177.043 9537.047 20
2003 HB57159.665 570.761 3815.500 28197.871 0710.829 77208.700 8438.098 95281.232 182016.201 47− 162.128 9310.829 77
2003 SS422197.895 670.800 7816.785 97151.046 90209.928 640.975 5439.424 55356.366 792782.091 80151.046 90− 150.071 36
2004 VN112327.435 210.855 4825.547 6166.022 80326.996 9933.019 7947.322 01607.548 415921.136 7566.022 80− 33.003 01
2005 RH52153.677 480.746 2420.445 77306.110 6732.538 53338.649 2038.997 10268.357 861903.848 38− 53.889 3332.538 53
2007 TG422502.042 480.929 1618.595 30112.910 71285.685 1238.595 8335.562 65968.522 3011 241.589 33112.910 71− 74.314 88
2007 VJ305192.099 340.816 8411.983 7624.382 39338.334 912.717 3035.184 70349.013 982660.760 7724.382 39− 21.665 09
2010 GB174351.127 350.861 6921.562 45130.714 44347.245 10117.959 5448.562 88653.691 826575.276 41130.714 44− 12.754 90
2012 VP113263.165 640.694 3624.051 5590.803 92293.549 6524.353 5780.435 15445.896 134266.392 4090.803 92− 66.450 35
2013 GP136149.786 730.725 8733.539 04210.727 2942.478 18253.205 4741.060 79258.512 671832.006 56− 149.272 7142.478 18
2013 RF98317.065 250.885 5729.600 6667.533 81316.375 2823.909 0936.282 42597.848 085642.089 8267.533 81− 43.624 72
2015 SO20164.902 890.798 8523.411 0633.633 83354.830 2328.464 0633.170 08296.635 702116.213 1733.633 83− 5.169 77
Mean255.173 340.810 8220.325 77133.640 48221.526 54107.667 0243.647 35466.699 324354.749 0066.140 48− 25.973 46
Std. dev.116.486 330.061 057.724 9571.950 62140.157 70102.408 4314.310 74226.780 103103.338 12105.712 2949.062 88
Median211.244 230.809 0321.004 11129.500 17302.417 6778.049 6338.548 02387.692 353068.853 31101.857 31− 27.334 05
Q1163.593 560.772 3615.173 3284.986 3941.120 4427.436 4435.301 02292.784 822091.210 2431.320 97− 46.884 40
Q3319.657 740.850 9624.425 56177.622 69319.266 16191.857 7844.922 51600.273 175711.851 55134.136 467.870 82
IQR156.064 180.078 609.252 2492.636 30278.145 73164.421 359.621 49307.488 353620.641 31102.815 4954.755 23
OL− 70.502 720.654 461.294 96− 53.968 06− 376.098 15− 219.195 5820.868 79− 168.447 70− 3339.751 72− 122.902 26− 129.017 24
OU553.754 020.968 8638.303 93316.577 14736.484 75438.489 8059.354 741061.505 6811 142.813 51288.359 6990.003 66
Statistics of Sedna, 148209, 2004VN112, 2007 TG422, 2010 GB174, 2012 VP113 and 2013 RF98
Mean355.556 610.839 5622.006 02105.810 58313.975 2959.785 8852.639 82658.473 406904.169 27105.810 58− 46.024 71
Std. dev.110.144 550.074 775.602 8731.460 2120.470 8938.763 5718.275 09220.425 833199.111 0431.460 2120.470 89
Median327.435 210.855 4822.755 98112.910 71316.375 2838.595 8347.322 01607.548 415921.136 75112.910 71− 43.624 72
Q1290.115 450.825 3420.078 8879.168 86302.417 6728.686 6840.202 55521.872 114954.241 1179.168 86− 57.582 33
Q3426.584 910.873 6324.799 58129.500 17321.843 1090.331 6662.376 93794.838 888908.432 87129.500 17− 38.156 90
IQR136.469 470.048 294.720 7050.331 3119.425 4361.644 9822.174 38272.966 773954.191 7650.331 3119.425 43
OL85.411 240.752 9012.997 823.671 90273.279 52− 63.780 806.940 97112.421 95− 977.046 533.671 90− 86.720 48
OU631.289 120.946 0731.880 63204.997 13350.981 25182.799 1495.638 511204.289 0314 839.720 51204.997 13− 9.018 75

Fig. 1 shows the position in the sky at pericentre as a function of the pericentre distance for the known ETNOs. The objects in Brown & Batygin (2016) are plotted in red; the average angular separation at pericentre for this group is 44|$^\circ$|±30|$^\circ$|⁠, but the pair 2012 VP113–2013 RF98 has a separation of 2| $_{.}^{\circ}$|5, 2004 VN112–2007 TG422 has 5| $_{.}^{\circ}$|6, and 2004 VN112–2013 RF98 has 9| $_{.}^{\circ}$|8. In addition to this clustering, other obvious groupings are also visible. The dispersion of these additional groupings in ecliptic coordinates is similar to that of the set singled out by Brown & Batygin (2016), but their dispersion in q is considerably lower. ETNOs (82158) 2001 FP185, 2002 GB32 and 2003 HB57 have a nearly common line of apsides; the same can be said about (445473) 2010 VZ98, 2007 VJ305 and 2015 SO20. The case for the first grouping is particularly strong. Out of 16 known ETNOs, only five reach pericentre north from the ecliptic, i.e. |$B_q>0^\circ$|⁠; these objects are 82158, 2002 GB32, 2003 HB57, 2005 RH52 and 2013 GP136. This represents a 2σ departure from an isotropic distribution in Bq, where |$\sigma =\sqrt{n}/2$| is the standard deviation for binomial statistics. This marginally significant result suggests that an unknown massive perturber has aligned the apsidal orientation of these objects, but the Planet Nine hypothesis cannot explain this pattern (Batygin & Brown 2016); another perturber is needed as the line of apsides is scarcely affected by indirect perturbations from the known planets. A nearly common line of apsides is also expected in a set of objects resulting from the break-up of a single object at pericentre. Such scenario might be linked to some of the groupings observed.

In Table 1 we show the current values of the position in the sky of the poles of the orbits of the known ETNOs computed using the data in Table 2; the ecliptic coordinates of the pole are |$(L_{\rm p}, B_{\rm p}) = (\Omega -90^\circ , 90^\circ -i)$|⁠. Fig. 2 shows the poles of the known ETNOs and also those of the known planets of the Solar system and various nominal orbits of Planet Nine (epoch 2457600.5 JD). The objects singled out in Brown & Batygin (2016) and Planet Nine appear to exhibit a relative arrangement in terms of position of their orbital poles similar to the one existing between Neptune and Pluto. For this group, the average polar separation is 16|$^\circ$|±8|$^\circ$|⁠, but the pair 148209–2010 GB174 has 1| $_{.}^{\circ}$|5, 2004 VN112–2013 RF98 has 4| $_{.}^{\circ}$|1, 148209–2007 TG422 has 6| $_{.}^{\circ}$|8, 2007 TG422–2010 GB174 has 6| $_{.}^{\circ}$|8, and 2007 TG422–2012 VP113 has 9| $_{.}^{\circ}$|6. On the other hand, the ETNOs 2002 GB32 and 2003 HB57 not only exhibit apsidal alignment but their orbital poles are also very close.

As for the overall clustering in orbital parameter space, it has been claimed that the ETNOs exhibit clustering in the values of their ω (Trujillo & Sheppard 2014), e and i (de la Fuente Marcos & de la Fuente Marcos 2014), and Ω (Brown & Firth 2016). Table 2 presents the descriptive statistics of the known ETNOs; in this table, unphysical values are shown for completeness. The bottom block of statistics in Table 2 (see also Appendix A) focuses on the seven ETNOs singled out in Brown & Batygin (2016). The overall statistics is only slightly different from that of the heliocentric orbital elements. The mean value of the barycentric e of the known ETNOs amounts to 0.81±0.06, the barycentric i is 20|$^\circ$|±8|$^\circ$|⁠, the barycentric Ω is 134|$^\circ$|±72|$^\circ$|⁠, and the barycentric ω is −26|$^\circ$|±49|$^\circ$|(see ω* in Table 2). Clustering in e may be due to selection effects, but the others cannot be explained as resulting from observational biases, they must have a dynamical origin (de la Fuente Marcos & de la Fuente Marcos 2014). For the ETNO sample in Brown & Batygin (2016), the average values of the barycentric orbital parameters are e = 0.84 ± 0.07, |$i=22^\circ \pm 6^\circ$|⁠, |$\Omega =106^\circ \pm 31^\circ$| and |$\omega =314^\circ \pm 20^\circ$|⁠.

Regarding the issue of statistical outliers and assuming that outliers are observations that fall below Q1 − 1.5 IQR or above Q3 + 1.5 IQR, where Q1 is the first quartile, Q3 is the third quartile, and IQR is the interquartile range, we observe a small but relevant number of outliers. For the entire sample, 2003 SS422 is an outlier in terms of ω* (see Table 2), Sedna and 2012 VP113 are outliers in terms of q, and Sedna and 2007 TG422 are outliers in terms of orbital period. In terms of size (not shown in the table), Sedna is a very significant outlier with H = 1.6 mag when the lower and upper limits for outliers are 4.7 mag and 8.7 mag, respectively. As for the sample of ETNOs in Brown & Batygin (2016), Sedna is an statistical outlier in terms of i.

3 VISIBILITY ANALYSIS

Here, we apply the Monte Carlo approach (Metropolis & Ulam 1949) described in de la Fuente Marcos & de la Fuente Marcos (2014) to construct visibility maps indicating the most probable location of this putative planet if it is near aphelion. Each Monte Carlo experiment consists of 107 test orbits uniformly distributed in parameter space. The analyses in e.g. Cowan et al. (2016), Fienga et al. (2016), Fortney et al. (2016), Ginzburg et al. (2016) and Linder & Mordasini (2016) strongly disfavour a present-day Planet Nine located at perihelion and they do not discard the aphelion which is also favoured in Brown & Batygin (2016).

3.1 Batygin & Brown (2016)

The resonant coupling mechanism described in Batygin & Brown (2016) emphasizes the existence of simultaneous apsidal anti-alignment and nodal alignment, i.e. Δϖ librates about 180|$^\circ$|and ΔΩ librates about 0|$^\circ$|⁠. The relative values of ϖ and Ω of the ETNO with respect to those of the perturber must oscillate in order to maintain orbital confinement but see Beust (2016) for a detailed analysis. In Batygin & Brown (2016), the value of ω of the putative Planet Nine is 138|$^\circ$|±21|$^\circ$|⁠. It is also indicated that the average value of Ω for their six ETNOs is 113|$^\circ$|±13|$^\circ$|and that of ω is 318|$^\circ$|±8|$^\circ$|⁠. Applying the conditions for stability and using the other values discussed in their work, we generate a synthetic population of Planet Nines with a ∈ (400, 1500) au, e ∈ (0.5, 0.8), i ∈ (15, 45)|$^\circ$|⁠, Ω ∈ (100, 126)|$^\circ$|and ω ∈ (117, 159)|$^\circ$|⁠. Fig. 3, left-hand panels, shows the distribution in equatorial coordinates of the set of studied orbits. In this figure, the value of the parameter in the appropriate units is colour coded following the scale printed on the associated colour box. The location of the Galactic disc appears in panel D (inclination). The background stellar density is the highest towards this region. The distribution of Q, a and e is rather uniform as expected because the location in the sky of Planet Nine does not depend on these parameters (see above). The distribution in declination depends on i and ω; those orbits with higher values of i reach aphelion at lower declinations, the same behaviour is observed for the ones with lower values of ω. The location in right ascension mainly depends on the value of Ω, both increasing in direct proportion. Fig. 4, left-hand panels, shows that the frequency distribution in right ascension and declination is far from uniform; the probability of finding an orbit reaching aphelion is highest in the region limited by α ∈ (4.5, 5.5)h and |$\delta \in (6, 9)^\circ$|⁠. However, the mean values of Ω and ω for the six ETNOs of interest differ from those in Table A1.

Distribution in equatorial coordinates of the aphelia of the studied orbits as a function of various orbital parameters: Q (panel A), a (panel B), e (panel C), i (panel D), Ω (panel E), and ω (panel F). The left-hand panels show results using the sets of orbits in Batygin & Brown (2016), those of orbits from Brown & Batygin (2016) are displayed in the second to left-hand panels; the second to right-hand panels and the right-hand panels focus on the set of orbits described in Section 3.3, imposing Δϖ ∼180$^\circ$and ΔΩ ∼0$^\circ$ using the data in Tables 2 and A1, respectively. In panel D, the green circles give the location at discovery of known ETNOs (see table 2 in de la Fuente Marcos & de la Fuente Marcos 2016a), in red we have the Galactic disc that is arbitrarily defined as the region confined between galactic latitude −5$^\circ$ and 5$^\circ$, in pink the region enclosed between galactic latitude −30$^\circ$and 30$^\circ$, and in black the ecliptic.
Figure 3.

Distribution in equatorial coordinates of the aphelia of the studied orbits as a function of various orbital parameters: Q (panel A), a (panel B), e (panel C), i (panel D), Ω (panel E), and ω (panel F). The left-hand panels show results using the sets of orbits in Batygin & Brown (2016), those of orbits from Brown & Batygin (2016) are displayed in the second to left-hand panels; the second to right-hand panels and the right-hand panels focus on the set of orbits described in Section 3.3, imposing Δϖ ∼180|$^\circ$|and ΔΩ ∼0|$^\circ$| using the data in Tables 2 and A1, respectively. In panel D, the green circles give the location at discovery of known ETNOs (see table 2 in de la Fuente Marcos & de la Fuente Marcos 2016a), in red we have the Galactic disc that is arbitrarily defined as the region confined between galactic latitude −5|$^\circ$| and 5|$^\circ$|⁠, in pink the region enclosed between galactic latitude −30|$^\circ$|and 30|$^\circ$|⁠, and in black the ecliptic.

Frequency distribution in equatorial coordinates (right ascension, top panel, and declination, bottom panel) of the virtual orbits in Fig. 3. The number of bins is 2 n1/3, where n is the number of virtual orbits plotted, error bars are too small to be seen. The black circles correspond to data in table 2 of de la Fuente Marcos & de la Fuente Marcos (2016a).
Figure 4.

Frequency distribution in equatorial coordinates (right ascension, top panel, and declination, bottom panel) of the virtual orbits in Fig. 3. The number of bins is 2 n1/3, where n is the number of virtual orbits plotted, error bars are too small to be seen. The black circles correspond to data in table 2 of de la Fuente Marcos & de la Fuente Marcos (2016a).

Table A1.

As Table 2, bottom section, but only for the six objects singled out in Batygin & Brown (2016): (90377) Sedna, 2004 VN112, 2007 TG422, 2010 GB174, 2012 VP113 and 2013 RF98. Source data in Table 2, top section.

Parametera (au)ei (⁠|$^\circ$|⁠)Ω (⁠|$^\circ$|⁠)ω (⁠|$^\circ$|⁠)ϖ (⁠|$^\circ$|⁠)q (au)Q (au)P (yr)Ω* (⁠|$^\circ$|⁠)ω* (⁠|$^\circ$|⁠)
Mean377.820 730.845 9521.881 02102.064 70313.522 9755.587 6754.059 35701.582 117504.040 34102.064 70− 46.477 03
Std. dev.101.952 840.079 786.126 9432.708 2322.386 3940.682 7719.592 05206.627 253042.773 9332.708 2322.386 39
Median339.281 280.858 5922.807 00101.857 31313.830 4935.807 8147.942 45630.620 126248.206 58101.857 31− 46.169 51
Q1319.657 740.850 9619.337 0973.351 33297.983 6626.520 1239.042 32600.273 175711.851 5573.351 33− 62.016 34
Q3464.313 700.879 6025.173 59126.263 51324.341 5681.415 1169.283 95865.412 4110 075.011 10126.263 51− 35.658 44
IQR144.655 950.028 645.836 5052.912 1726.357 9054.894 9830.241 63265.139 244363.159 5552.912 1726.357 90
OL102.673 810.807 9910.582 33− 6.016 93258.446 81− 55.822 35− 6.320 13202.564 30− 832.887 77− 6.016 93− 101.553 19
OU681.297 630.922 5633.928 35205.631 77363.878 41163.757 58114.646 411263.121 2716 619.750 42205.631 773.878 41
Parametera (au)ei (⁠|$^\circ$|⁠)Ω (⁠|$^\circ$|⁠)ω (⁠|$^\circ$|⁠)ϖ (⁠|$^\circ$|⁠)q (au)Q (au)P (yr)Ω* (⁠|$^\circ$|⁠)ω* (⁠|$^\circ$|⁠)
Mean377.820 730.845 9521.881 02102.064 70313.522 9755.587 6754.059 35701.582 117504.040 34102.064 70− 46.477 03
Std. dev.101.952 840.079 786.126 9432.708 2322.386 3940.682 7719.592 05206.627 253042.773 9332.708 2322.386 39
Median339.281 280.858 5922.807 00101.857 31313.830 4935.807 8147.942 45630.620 126248.206 58101.857 31− 46.169 51
Q1319.657 740.850 9619.337 0973.351 33297.983 6626.520 1239.042 32600.273 175711.851 5573.351 33− 62.016 34
Q3464.313 700.879 6025.173 59126.263 51324.341 5681.415 1169.283 95865.412 4110 075.011 10126.263 51− 35.658 44
IQR144.655 950.028 645.836 5052.912 1726.357 9054.894 9830.241 63265.139 244363.159 5552.912 1726.357 90
OL102.673 810.807 9910.582 33− 6.016 93258.446 81− 55.822 35− 6.320 13202.564 30− 832.887 77− 6.016 93− 101.553 19
OU681.297 630.922 5633.928 35205.631 77363.878 41163.757 58114.646 411263.121 2716 619.750 42205.631 773.878 41
Table A1.

As Table 2, bottom section, but only for the six objects singled out in Batygin & Brown (2016): (90377) Sedna, 2004 VN112, 2007 TG422, 2010 GB174, 2012 VP113 and 2013 RF98. Source data in Table 2, top section.

Parametera (au)ei (⁠|$^\circ$|⁠)Ω (⁠|$^\circ$|⁠)ω (⁠|$^\circ$|⁠)ϖ (⁠|$^\circ$|⁠)q (au)Q (au)P (yr)Ω* (⁠|$^\circ$|⁠)ω* (⁠|$^\circ$|⁠)
Mean377.820 730.845 9521.881 02102.064 70313.522 9755.587 6754.059 35701.582 117504.040 34102.064 70− 46.477 03
Std. dev.101.952 840.079 786.126 9432.708 2322.386 3940.682 7719.592 05206.627 253042.773 9332.708 2322.386 39
Median339.281 280.858 5922.807 00101.857 31313.830 4935.807 8147.942 45630.620 126248.206 58101.857 31− 46.169 51
Q1319.657 740.850 9619.337 0973.351 33297.983 6626.520 1239.042 32600.273 175711.851 5573.351 33− 62.016 34
Q3464.313 700.879 6025.173 59126.263 51324.341 5681.415 1169.283 95865.412 4110 075.011 10126.263 51− 35.658 44
IQR144.655 950.028 645.836 5052.912 1726.357 9054.894 9830.241 63265.139 244363.159 5552.912 1726.357 90
OL102.673 810.807 9910.582 33− 6.016 93258.446 81− 55.822 35− 6.320 13202.564 30− 832.887 77− 6.016 93− 101.553 19
OU681.297 630.922 5633.928 35205.631 77363.878 41163.757 58114.646 411263.121 2716 619.750 42205.631 773.878 41
Parametera (au)ei (⁠|$^\circ$|⁠)Ω (⁠|$^\circ$|⁠)ω (⁠|$^\circ$|⁠)ϖ (⁠|$^\circ$|⁠)q (au)Q (au)P (yr)Ω* (⁠|$^\circ$|⁠)ω* (⁠|$^\circ$|⁠)
Mean377.820 730.845 9521.881 02102.064 70313.522 9755.587 6754.059 35701.582 117504.040 34102.064 70− 46.477 03
Std. dev.101.952 840.079 786.126 9432.708 2322.386 3940.682 7719.592 05206.627 253042.773 9332.708 2322.386 39
Median339.281 280.858 5922.807 00101.857 31313.830 4935.807 8147.942 45630.620 126248.206 58101.857 31− 46.169 51
Q1319.657 740.850 9619.337 0973.351 33297.983 6626.520 1239.042 32600.273 175711.851 5573.351 33− 62.016 34
Q3464.313 700.879 6025.173 59126.263 51324.341 5681.415 1169.283 95865.412 4110 075.011 10126.263 51− 35.658 44
IQR144.655 950.028 645.836 5052.912 1726.357 9054.894 9830.241 63265.139 244363.159 5552.912 1726.357 90
OL102.673 810.807 9910.582 33− 6.016 93258.446 81− 55.822 35− 6.320 13202.564 30− 832.887 77− 6.016 93− 101.553 19
OU681.297 630.922 5633.928 35205.631 77363.878 41163.757 58114.646 411263.121 2716 619.750 42205.631 773.878 41

3.2 Brown & Batygin (2016)

The Planet Nine hypothesis has been further developed in Brown & Batygin (2016). In this new work, the volume of orbital parameter space linked to the putative planet for an assumed mass of 10 M is enclosed by a ∈ (500, 800) au, e ∈ (0.32, 0.74), i ∈ (22, 40)|$^\circ$|⁠, Ω ∈ (72.2, 121.2)|$^\circ$|and ω ∈ (120, 160)|$^\circ$|⁠. Figs 3 and 4, second to left-hand panels, show similar trends to the previous ones but now the distribution in equatorial coordinates of the aphelia is wider. The probability is highest in the region limited by α ∈ (3, 5)h and |$\delta \in (-1, 10)^\circ$|⁠. This enlarges the optimal search area significantly. However, they use a value of lq of 241|$^\circ$|±15|$^\circ$|that is based on a value of 61|$^\circ$| for the seven ETNOs so Δlq – not Δϖ – librates about 180|$^\circ$|⁠; the average value of lq for these ETNOs from Table 1 is 62|$^\circ$|±38|$^\circ$|⁠, the average value of ϖ is 60|$^\circ$|±39|$^\circ$|⁠.

3.3 Enforcing apsidal anti-alignment

Here, we enforce apsidal anti-alignment and nodal alignment, using the data in Table 2, bottom section, and considering the Planet Nine orbital parameter domain defined by a ∈ (600, 800) au, e ∈ (0.5, 0.7), i ∈ (22, 40)|$^\circ$|⁠, Ω ∈ (74.4, 137.3)|$^\circ$|and ω ∈ (113.5, 154.4)|$^\circ$|⁠. Figs 3 and 4, second to right-hand panels, show that in this scenario, Planet Nine is most likely to be moving within α ∈ (3.0, 5.5)h and |$\delta \in (-1, 6)^\circ$|⁠, if it is near aphelion. If the data in Table A1 are used instead, then Ω ∈ (87, 117)|$^\circ$|and ω ∈ (118.5, 148.8)|$^\circ$|and we obtain Figs 3 and 4, right-hand panels. In this case, the putative planet is most likely moving within α ∈ (3.5, 4.5)h and |$\delta \in (-1, 2)^\circ$|⁠, i.e. projected towards the separation between the constellations of Taurus and Eridanus. In terms of probability, now the most likely location of Planet Nine is at α ∼ 4h and δ ∼ 0| $_{.}^{\circ}$|5, in Taurus. This area is compatible with Orbit A in de la Fuente Marcos et al. (2016).

4 CONCLUSIONS

In this paper, we have re-analysed the various clusterings in ETNO orbital parameter space claimed in the literature and explored the visibility of Planet Nine within the context of improved constraints. Our results confirm the findings in Batygin & Brown (2016) and Brown & Batygin (2016) regarding clustering but using barycentric orbits. However, the observed overall level of clustering may not be maintained by a putative Planet Nine alone, other perturbers should exist. Summarizing:

  • We confirm the existence of apsidal alignment and similar projected pole orientations among the currently known ETNOs. These patterns are consistent with the presence of perturbers beyond Pluto and/or, less likely, break-up of large asteroids at perihelion.

  • If Planet Nine is at aphelion, it is most likely moving within α ∈ (3.0, 5.5)h and |$\delta \in (-1, 6)^\circ$| if Δϖ ∼180|$^\circ$|and ΔΩ ∼0|$^\circ$|⁠.

We thank two anonymous referees for their constructive reports, and S. J. Aarseth, D. P. Whitmire, G. Carraro, D. Fabrycky, A. V. Tutukov, S. Mashchenko, S. Deen and J. Higley for comments on ETNOs and trans-Plutonian planets. This work was partially supported by the Spanish ‘Comunidad de Madrid’ under grant CAM S2009/ESP-1496. In preparation of this paper, we made use of the NASA Astrophysics Data System, the ASTRO-PH e-print server and the MPC data server.

REFERENCES

Batygin
K.
Brown
M. E.
2016
AJ
151
22

Beust
H.
2016
A&A
590
L2

Brasser
R.
Schwamb
M. E.
2015
MNRAS
446
3788

Bromley
B. C.
Kenyon
S. J.
2016
ApJ
826
64

Brown
M. E.
Batygin
K.
2016
ApJ
824
L23

Brown
R. B.
Firth
J. A.
2016
MNRAS
456
1587

Cowan
N. B.
Holder
G.
Kaib
N. A.
2016
ApJ
822
L2

de la Fuente Marcos
C.
de la Fuente Marcos
R.
2014
MNRAS
443
L59

de la Fuente Marcos
C.
de la Fuente Marcos
R.
2016a
MNRAS
459
L66

de la Fuente Marcos
C.
de la Fuente Marcos
R.
2016b
MNRAS
460
L64

de la Fuente Marcos
C.
de la Fuente Marcos
R.
Aarseth
S. J.
2015
MNRAS
446
1867

de la Fuente Marcos
C.
de la Fuente Marcos
R.
Aarseth
S. J.
2016
MNRAS
460
L123

Feng
F.
Bailer-Jones
C. A. L.
2015
MNRAS
454
3267

Fienga
A.
Laskar
J.
Manche
H.
Gastineau
M.
2016
A&A
587
L8

Fortney
J. J.
et al.
2016
ApJ
824
L25

Ginzburg
S.
Sari
R.
Loeb
A.
2016
ApJ
822
L11

Giorgini
J. D.
et al.
1996
BAAS
28
1158

Gomes
R. S.
Soares
J. S.
Brasser
R.
2015
Icarus
258
37

Jílková
L.
Portegies Zwart
S.
Pijloo
T.
Hammer
M.
2015
MNRAS
453
3157

Kenyon
S. J.
Bromley
B. C.
2015
ApJ
806
42

Kenyon
S. J.
Bromley
B. C.
2016
ApJ
825
33

Li
G.
Adams
F. C.
2016
ApJ
823
L3

Linder
E. F.
Mordasini
C.
2016
A&A
589
A134

Luhman
K. L.
2014
ApJ
781
4

Madigan
A.-M.
McCourt
M.
2016
MNRAS
457
L89

Malhotra
R.
Volk
K.
Wang
X.
2016
ApJ
824
L22

Metropolis
N.
Ulam
S.
1949
J. Am. Stat. Assoc.
44
335

Murray
C. D.
Dermott
S. F.
1999
Solar System Dynamics
Cambridge Univ. Press
Cambridge
97

Mustill
A. J.
Raymond
S. N.
Davies
M. B.
2016
MNRAS
460
L109

Paučo
R.
Klačka
J.
2016
A&A
589
A63

Trujillo
C. A.
Sheppard
S. S.
2014
Nature
507
471

APPENDIX A: Further details on the comparison with the results of Brown & Batygin (2016)

According to the heliocentric orbital solutions publicly available from the SBDB, the six (not seven) objects singled out in Batygin & Brown (2016) all have values of the heliocentric semimajor axis, a, larger than 257 au; Brown & Batygin (2016) indicate that their semimajor axes are larger than 227 au. The six original objects in Batygin & Brown (2016) – namely, (90377) Sedna (a = 499 au), 2004 VN112 (a = 318 au), 2007 TG422 (a = 483 au), 2010 GB174 (a = 370 au), 2012 VP113 (a = 258 au) and 2013 RF98 (a = 307 au) – do not have the largest values of the perihelion distance, only four of them – Sedna (q = 76 au), 2004 VN112 (q = 47 au), 2010 GB174 (q = 49 au) and 2012 VP113 (q = 80 au) – are in this situation. In Brown & Batygin (2016), it is said that the seven objects with a > 227 au are singled out. However, fig. 1(a) in Brown & Batygin (2016) highlights in red only six objects (those singled out in Batygin & Brown 2016), not seven; (148209) 2000 CR105 (a = 226 au, q = 44 au), which has the eighth largest value of the heliocentric semimajor axis and the fifth largest perihelion distance, appears in green in that figure. The ETNO with the seventh largest value of the heliocentric semimajor axis is (82158) 2001 FP185 (a = 227 au, q = 34 au), not 148209 as erroneously stated in Brown & Batygin (2016). Our analysis in Figs 1 and 2 shows that 82158 is unlikely to be dynamically connected with the original six ETNOs singled out in Batygin & Brown (2016), but 148209 very probably is. Therefore, the seven objects of interest within the context of the Planet Nine hypothesis are: Sedna, 148209, 2004VN112, 2007 TG422, 2010 GB174, 2012 VP113 and 2013 RF98.

In terms of barycentric (not heliocentric) orbits, see Table 2, 148209 has the seventh largest value of the semimajor axis and 82158 has the eighth largest.

Table A1 shows the statistics for the six original objects in Batygin & Brown (2016); the average values of the orbital parameters are e = 0.85 ± 0.08, |$i=22^\circ \pm 6^\circ$|⁠, |$\Omega =102^\circ \pm 33^\circ$| and |$\omega =314^\circ \pm 22^\circ$| (these values have been used in the discussion in Section 3.1). The average angular separation at pericentre for this group is 45|$^\circ$|±34|$^\circ$|and the average polar separation is 16|$^\circ$|±8|$^\circ$|⁠. For the sample of ETNOs in Batygin & Brown (2016), both 2007 TG422 and 2012 VP113 are statistical outliers in terms of e (see Tables 2 and A1).

The expression for the eccentricity of the putative Planet Nine in Brown & Batygin (2016) produces negative values for masses under ∼6.38 M and the lower limit of the value of the semimajor axis. Production of unphysical values is the main reason why it has not been applied to select the range in eccentricities used in Section 3.3.