Abstract

In anticipation of the Gaia astrometric mission, a large sample of spectroscopic binaries has been observed since 2010 with the Spectrographe pour l'Observation des PHénomènes des Intérieurs Stellaires et des Exoplanètes spectrograph at the Haute–Provence Observatory. Our aim is to derive the orbital elements of double-lined spectroscopic binaries (SB2s) with an accuracy sufficient to finally obtain the masses of the components with relative errors as small as 1 per cent when the astrometric measurements of Gaia are taken into account. In this paper, we present the results from five years of observations of 10 SB2 systems with periods ranging from 37 to 881 d. Using the todmor algorithm, we computed radial velocities from the spectra, and then derived the orbital elements of these binary systems. The minimum masses of the components are then obtained with an accuracy better than 1.2 per cent for the 10 binaries. Combining the radial velocities with existing interferometric measurements, we derived the masses of the primary and secondary components of HIP 87895 with an accuracy of 0.98 and 1.2 per cent, respectively.

1 INTRODUCTION

Mass is the most crucial input in stellar internal structure modelling. It predominantly influences the luminosity of a star at a given stage of its evolution, and also its lifetime. The knowledge of the mass of stars in a non-interacting binary system, together with the assumption that the components have same age and initial chemical composition, allows the age and the initial helium content of the system to be determined and therefore to characterize the structure and evolutionary stage of the components. Such modelling provides insights into the physical processes governing the structure of the stars. Moreover, provided masses are known with great accuracy (Lebreton 2005), it gives constraints on the free physical parameters of the models. Therefore, modelling stars with extremely accurate masses (at the 1 per cent level), in different ranges of masses, would allow us to firmly anchor the models of the more loosely constrained single stars.

This paper is the third in a series dedicated to the derivation of accurate masses of the components of double-lined spectroscopic binaries (SB2) with the forthcoming astrometric measurements from the Gaia satellite. In paper I (Halbwachs et al. 2014), we have presented our programme to derive accurate masses from Gaia and from high-precision spectroscopic observations. We have selected a sample of 68 SB2s for which we expect to derive very precise inclination with Gaia, and M sin 3i with the Spectrographe pour l'Observation des PHénomènes des Intérieurs Stellaires et des Exoplanètes (SOPHIE spectrograph, Haute–Provence Observatory). Our objective is to determine for these SB2 systems the masses of the two components with an accuracy about 1 per cent. We have been observing these stars since 2010 with SOPHIE. The first result of our programme was the detection of the secondary component in the spectra of 20 binaries which were previously known as single-lined (paper I). Second result was the determination of masses for two SB2 with accuracy between 0.26 and 2.4 per cent, using astrometric measurements from Precision Integrated-Optics Nead-infrared Imaging ExpeRiment (PIONIER) and radial velocities (RVs) from SOPHIE (paper II).

Here, we present the accurate orbits measured for 10 SB2s (Table 1) with periods ranging from 37 to 881 d. After 5 yr of observations with SOPHIE, we collected a total of 123 spectra. In addition, a large number of previously published measurements is available for each of them in the SB9 catalogue (Pourbaix et al. 2004). Four of these targets are new SB2 identified in paper I, and previously known as SB1. Finally, we combined the RV measurements of one star (HIP 87895) with existing interferometric measurements and derive the masses of the two components.

Table 1.

10 SB2 analysed in this paper.

HIP HD V Perioda |$N_{\rm spec}^{\phantom{spec}b}$| Time spanc SNRd 
  (mag) (d)  (period)  
Previously published SB2
12081 15850 7.72 443.49 11 3.3 80 
17732 23626 6.27 277.89 11 5.5 120 
56275 100215 7.99 47.88 13 30.7 80 
87895 163840 6.33 880.78 14 2.1 120 
95575 183255 8.05 166.36 13 11.9 75 
100321 195850 7.02 37.94 11 45.3 80 
SB2 identified in paper I, previously published as SB1
13791 18328 8.87 48.71 13 28.8 40 
61727 110025 7.58 54.88 12 28.3 80 
62935 120005 8.53 139.00 11 10.6 40 
67195 120005 6.50 39.28 14 37.3 120 
HIP HD V Perioda |$N_{\rm spec}^{\phantom{spec}b}$| Time spanc SNRd 
  (mag) (d)  (period)  
Previously published SB2
12081 15850 7.72 443.49 11 3.3 80 
17732 23626 6.27 277.89 11 5.5 120 
56275 100215 7.99 47.88 13 30.7 80 
87895 163840 6.33 880.78 14 2.1 120 
95575 183255 8.05 166.36 13 11.9 75 
100321 195850 7.02 37.94 11 45.3 80 
SB2 identified in paper I, previously published as SB1
13791 18328 8.87 48.71 13 28.8 40 
61727 110025 7.58 54.88 12 28.3 80 
62935 120005 8.53 139.00 11 10.6 40 
67195 120005 6.50 39.28 14 37.3 120 

aThe period values are taken from the SB9 catalogue (Pourbaix et al. 2004).

bNspec gives the number of spectra collected with SOPHIE.

cThe time span is the total span of observation epochs, counted in number of periods.

dSNR is the median signal-to-noise ratio of each sample.

Table 1.

10 SB2 analysed in this paper.

HIP HD V Perioda |$N_{\rm spec}^{\phantom{spec}b}$| Time spanc SNRd 
  (mag) (d)  (period)  
Previously published SB2
12081 15850 7.72 443.49 11 3.3 80 
17732 23626 6.27 277.89 11 5.5 120 
56275 100215 7.99 47.88 13 30.7 80 
87895 163840 6.33 880.78 14 2.1 120 
95575 183255 8.05 166.36 13 11.9 75 
100321 195850 7.02 37.94 11 45.3 80 
SB2 identified in paper I, previously published as SB1
13791 18328 8.87 48.71 13 28.8 40 
61727 110025 7.58 54.88 12 28.3 80 
62935 120005 8.53 139.00 11 10.6 40 
67195 120005 6.50 39.28 14 37.3 120 
HIP HD V Perioda |$N_{\rm spec}^{\phantom{spec}b}$| Time spanc SNRd 
  (mag) (d)  (period)  
Previously published SB2
12081 15850 7.72 443.49 11 3.3 80 
17732 23626 6.27 277.89 11 5.5 120 
56275 100215 7.99 47.88 13 30.7 80 
87895 163840 6.33 880.78 14 2.1 120 
95575 183255 8.05 166.36 13 11.9 75 
100321 195850 7.02 37.94 11 45.3 80 
SB2 identified in paper I, previously published as SB1
13791 18328 8.87 48.71 13 28.8 40 
61727 110025 7.58 54.88 12 28.3 80 
62935 120005 8.53 139.00 11 10.6 40 
67195 120005 6.50 39.28 14 37.3 120 

aThe period values are taken from the SB9 catalogue (Pourbaix et al. 2004).

bNspec gives the number of spectra collected with SOPHIE.

cThe time span is the total span of observation epochs, counted in number of periods.

dSNR is the median signal-to-noise ratio of each sample.

The observations are presented in Section 2. The method of measurements of RVs from SOPHIE's observations is explained in Section 3. We derive the orbital solutions in Section 4, discussing in particular the issue of the uncertainties when combining different data sets from different instruments. The derivation of the masses of HIP 87895 is discussed in Section 5. Finally, we summarize and conclude on our findings in Section 6.

2 OBSERVATIONS

The observations were performed at the T193 telescope of the Haute–Provence Observatory, with the SOPHIE spectrograph. SOPHIE is dedicated to the search of extrasolar planets, and, thanks to its high resolution (R ∼ 75 000), it enables accurate stellar RVs to be measured for SB2 components.

The spectra were all reduced through SOPHIE's pipeline, including localization of the orders on the frame, optimal order extraction, cosmic ray rejection, wavelength calibration, flat-fielding and bias subtraction. The minimum signal-to-noise ratio (SNR) is 40 for the faintest stars of the sample, but it may be as large as 150 for a 6 mag star. Before each observation run, ephemerides were derived from existing orbits provided by the SB9 catalogue (Pourbaix et al. 2004), and priority classes were assigned on the basis of the orbital phase. Four classes were used, the lowest priority corresponds to stars with expected RVs of primary and secondary component sufficiently different to permit accurate measurements, and the highest priority is reserved to the observations of the periastron of eccentric orbits.

Among all the observed SB2, we have selected those which were observed over at least one period, and which received a minimum of 11 observations. Table 1 summarizes this information. Given the very high quality of the measurements, an SB2 orbit could be derived in principle from only six of those observations, provided they were made at the most relevant phases. However, we show in Section 4 that 11 observations are necessary to validate the RV uncertainties, and to correct them when necessary.

3 RADIAL VELOCITY MEASUREMENTS

The RVs of the components are derived using the TwO-Dimensional CORrelation algorithm todcor (Zucker & Mazeh 1994; Zucker et al. 2004). It calculates the cross-correlation of an SB2 spectrum and two best-matching stellar atmosphere models, one for each component of the observed binary system. This two-dimensional cross-correlation function (2D-CCF) is maximized at the RVs of both components. The multi-order version of todcor, named todmor (Zucker et al. 2004), determines the RVs of both components from the gathering of 2D-CCF obtained from each order of the spectrum.

All SOPHIE multi-orders spectra were corrected for the blaze using the response function provided by SOPHIE's pipeline; then for each of them, the pseudo-continuum was detrended using a p-percentile filter (paper II, or e.g. Hodgson et al. 1985).

For both components of each binary, we determined the best-matching theoretical spectra from the phoenix stellar atmosphere models (Husser et al. 2013). We optimized the 2D-CCF with respect to effective temperature Teff, rotational broadening v sin i, metallicity [Fe/H], surface gravity log (g), and flux ratio at 4916 Å, α = F2/F1. Furthermore, each theoretical spectrum is convolved with the instrument line spread function, here modelled by a Gaussian, and pseudo-continuum detrended like the observed spectrum. The spectral parameters obtained through this method are given in Table 2. We determined spectral parameters from four spectra per binary on average, with the two components well individualized. The values and their uncertainties given in Table 2 are the average and standard deviation of the individual estimations. The 1σ uncertainties do not include known systematics of theoretical models with respect to real spectral types (see e.g. Torres et al. 2012).

Table 2.

The stellar parameters determined by optimization of the 2D-CCF obtained with todmor. Explanations in Section 3.

HIPTeff,1log g1V1sin i1a[Fe/H]α
HDTeff,2log g2V2sin i2a
(K)(dex)(km s−1)(dex)(flux ratio)
1208162904.2411.9−0.370.635
15850± 23±0.05±0.1±0.01±0.012
60034.306.5
± 13±0.01±0.1
1379161734.315.5−0.340.034
18328± 6±0.01±0.1±0.01±0.001
49535.090
± 95±0.01
1773260303.349.4−0.710.258
23626± 7±0.03±0.1±0.01±0.004
60513.840
± 18±0.01
5627568893.9320.6−0.330.036
100215± 36±0.11±1±0.01±0.002
49064.330
± 75±0.01
6172764613.829.8−0.480.070
110025± 31±0.15±0.1±0.06±0.007
52564.317.7
± 168±0.141.4
6293558184.034.9−0.270.054
112138± 85±0.08±0.4±0.01±0.015
43784.400
± 115±0.13
6719564114.2913.6−0.210.027
120005± 29±0.13±0.2±0.03±0.002
44784.724.5
± 418±0.21±0.1
8789559704.334.7−0.190.036
163840± 1±0.01±0.1±0.01±0.004
43854.810
± 134±0.04
9557549084.753.4−0.880.431
183255± 5±0.03±0.1±0.01±0.008
40884.510
± 5±0.03
10032164854.1714.2−0.390.207
195850± 6±0.05±0.2±0.01±0.011
55584.395.5
± 62±0.04± 1
HIPTeff,1log g1V1sin i1a[Fe/H]α
HDTeff,2log g2V2sin i2a
(K)(dex)(km s−1)(dex)(flux ratio)
1208162904.2411.9−0.370.635
15850± 23±0.05±0.1±0.01±0.012
60034.306.5
± 13±0.01±0.1
1379161734.315.5−0.340.034
18328± 6±0.01±0.1±0.01±0.001
49535.090
± 95±0.01
1773260303.349.4−0.710.258
23626± 7±0.03±0.1±0.01±0.004
60513.840
± 18±0.01
5627568893.9320.6−0.330.036
100215± 36±0.11±1±0.01±0.002
49064.330
± 75±0.01
6172764613.829.8−0.480.070
110025± 31±0.15±0.1±0.06±0.007
52564.317.7
± 168±0.141.4
6293558184.034.9−0.270.054
112138± 85±0.08±0.4±0.01±0.015
43784.400
± 115±0.13
6719564114.2913.6−0.210.027
120005± 29±0.13±0.2±0.03±0.002
44784.724.5
± 418±0.21±0.1
8789559704.334.7−0.190.036
163840± 1±0.01±0.1±0.01±0.004
43854.810
± 134±0.04
9557549084.753.4−0.880.431
183255± 5±0.03±0.1±0.01±0.008
40884.510
± 5±0.03
10032164854.1714.2−0.390.207
195850± 6±0.05±0.2±0.01±0.011
55584.395.5
± 62±0.04± 1

aA null value is given to V sin i with no error bar whenever found less than SOPHIE's typical pixel size ∼2 km s−1.

Table 2.

The stellar parameters determined by optimization of the 2D-CCF obtained with todmor. Explanations in Section 3.

HIPTeff,1log g1V1sin i1a[Fe/H]α
HDTeff,2log g2V2sin i2a
(K)(dex)(km s−1)(dex)(flux ratio)
1208162904.2411.9−0.370.635
15850± 23±0.05±0.1±0.01±0.012
60034.306.5
± 13±0.01±0.1
1379161734.315.5−0.340.034
18328± 6±0.01±0.1±0.01±0.001
49535.090
± 95±0.01
1773260303.349.4−0.710.258
23626± 7±0.03±0.1±0.01±0.004
60513.840
± 18±0.01
5627568893.9320.6−0.330.036
100215± 36±0.11±1±0.01±0.002
49064.330
± 75±0.01
6172764613.829.8−0.480.070
110025± 31±0.15±0.1±0.06±0.007
52564.317.7
± 168±0.141.4
6293558184.034.9−0.270.054
112138± 85±0.08±0.4±0.01±0.015
43784.400
± 115±0.13
6719564114.2913.6−0.210.027
120005± 29±0.13±0.2±0.03±0.002
44784.724.5
± 418±0.21±0.1
8789559704.334.7−0.190.036
163840± 1±0.01±0.1±0.01±0.004
43854.810
± 134±0.04
9557549084.753.4−0.880.431
183255± 5±0.03±0.1±0.01±0.008
40884.510
± 5±0.03
10032164854.1714.2−0.390.207
195850± 6±0.05±0.2±0.01±0.011
55584.395.5
± 62±0.04± 1
HIPTeff,1log g1V1sin i1a[Fe/H]α
HDTeff,2log g2V2sin i2a
(K)(dex)(km s−1)(dex)(flux ratio)
1208162904.2411.9−0.370.635
15850± 23±0.05±0.1±0.01±0.012
60034.306.5
± 13±0.01±0.1
1379161734.315.5−0.340.034
18328± 6±0.01±0.1±0.01±0.001
49535.090
± 95±0.01
1773260303.349.4−0.710.258
23626± 7±0.03±0.1±0.01±0.004
60513.840
± 18±0.01
5627568893.9320.6−0.330.036
100215± 36±0.11±1±0.01±0.002
49064.330
± 75±0.01
6172764613.829.8−0.480.070
110025± 31±0.15±0.1±0.06±0.007
52564.317.7
± 168±0.141.4
6293558184.034.9−0.270.054
112138± 85±0.08±0.4±0.01±0.015
43784.400
± 115±0.13
6719564114.2913.6−0.210.027
120005± 29±0.13±0.2±0.03±0.002
44784.724.5
± 418±0.21±0.1
8789559704.334.7−0.190.036
163840± 1±0.01±0.1±0.01±0.004
43854.810
± 134±0.04
9557549084.753.4−0.880.431
183255± 5±0.03±0.1±0.01±0.008
40884.510
± 5±0.03
10032164854.1714.2−0.390.207
195850± 6±0.05±0.2±0.01±0.011
55584.395.5
± 62±0.04± 1

aA null value is given to V sin i with no error bar whenever found less than SOPHIE's typical pixel size ∼2 km s−1.

It is worth mentioning that the derived metallicity [Fe/H] is systematically subsolar. Optimizing the CCF of several spectra of the Sun obtained by observing Vesta and Ceres with SOPHIE gave spectral parameters consistent with the known values for the Sun except metallicity that was found to be −0.33 dex. However, we kept the values of metallicity that maximized the 2D-CCF, as given in Table 2.

We then applied todmor to all multi-order spectra of each target and determined the RVs of both components discarding all orders harbouring strong telluric lines. For each of the non-discarded orders, we calculated a 2D-CCF, and used the maximum of this function to derive RVs for the primary and the secondary. Final velocities for each component are obtained by averaging these measurements and incorporating a correction for order-to-order systematics – typically 200–500 m s−1. The final velocities are displayed in Table 3. They are used to derive the orbital solutions for the 10 SB2 in the next section.

Table 3.

New radial velocities from SOPHIE and obtained with todmor. Outliers are marked with an asterisk (*) and are not taken into account in the analysis.

BJD RV1 σRV1 RV2 σRV2 O1−C1 O2−C2
−2400000 (km s−1(km s−1(km s−1(km s−1(km s−1(km s−1)
HIP 12081
55440.6175 −19.3006 0.0348 4.5327 0.0179 0.0498 0.0052
55532.3450 5.2930 0.0401 −22.3033 0.0200 −0.0023 −0.0206
55605.3276 −3.1655 0.0775 −13.1499 0.0355 −0.0492 −0.0175
55784.5923 −16.8235 0.0334 2.0058 0.0190 0.2120 −0.0034
55864.4742 −22.3574 0.0424 7.7735 0.0166 −0.0294 0.0069
55933.2302 11.2363 0.0450 −28.6746 0.0186 0.0576 0.0081
55966.2854 6.7183 0.0361 −23.8320 0.0214 0.0144 −0.0170
56148.6082 −11.1919 0.1043 −4.4740 0.0530 −0.0939 −0.0243
56243.3824 −18.1414 0.0393 3.3409 0.0191 0.1222 −0.0043
56323.3304 −20.6003 0.0384 5.8376 0.0160 −0.0433 −0.0025
56889.6346 1.3632 0.0490 −18.2750 0.0237 −0.2906 0.0463
HIP 13791
55605.3577 −21.0198 0.0155 12.5004 0.2343 −0.0602 −0.3409
55784.6009 −8.0152* 0.0119* 0.2619* 0.2294* −0.1650* 9.5587*
55864.4964 −0.6383 0.0104 −21.6297 0.1661 0.0092 −0.1697
55965.3042 4.6405 0.0114 −30.1618 0.1654 0.0038 0.2217
56148.6243 −13.0655 0.0099 −0.6196 0.1373 0.0105 −0.1477
56243.4109 −16.3507 0.0099 5.5330 0.1533 0.0154 0.4489
56323.3367 −15.3310 0.0114 3.6038 0.1777 −0.0089 0.2826
56525.5659 −22.8333 0.0117 15.9524 0.1816 0.0041 −0.0597
56526.6076 −22.7883 0.0113 15.7956 0.1800 0.0231 −0.1728
56618.4809 −20.1445 0.0113 11.3540 0.1775 −0.0036 −0.1047
56701.3400 9.2144 0.0116 −36.7152* 0.2370* 0.0088 1.3839*
56890.6072 4.3730 0.0110 −30.1670 0.1576 −0.0229 −0.1901
57009.3890 −21.3907 0.0112 13.7637 0.1722 0.0158 0.1678
HIP 17732
55532.4636 −22.8766 0.0095 21.9980 0.0170 0.0019 −0.0197
55784.6076 −22.5330 0.0105 21.6484 0.0215 0.0016 0.0584
55933.2851 12.7972 0.0135 −22.2329 0.0328 0.0123 0.0946
55965.3166 12.1605 0.0099 −21.5826 0.0163 0.0003 −0.0318
56243.4535 12.1444 0.0089 −21.5210 0.0189 0.0060 0.0026
56323.3438 −16.6398 0.0178 14.2097 0.0550 0.0020 −0.0529
56525.5908 11.5734 0.0103 −20.8293 0.0201 −0.0154 0.0110
56618.4465 −22.5381 0.0096 21.6251 0.0163 −0.0060 0.0382
56890.6164 −20.9656 0.0110 19.5609 0.0322 0.0023 −0.0809
57009.3996 7.0245 0.0163 −15.2479 0.0403 −0.0123 −0.0676
57073.3157 12.5569 0.0093 −22.0421 0.0166 0.0009 0.0008
HIP 56275
55692.3811 7.9257 0.0226 −64.5112 0.1000 0.3626 0.0800
55863.6796 −46.4777 0.0309 35.6378 0.1108 0.2361 −0.0068
55933.6492 6.6220 0.0266 −63.0758 0.0791 0.0026 −0.2274
55966.5170 −36.2910 0.0297 17.1534 0.1229 0.5121 −0.1887
56243.6608 −41.0739 0.0280 24.3508 0.1038 −0.4721 −0.0067
56323.5683 −2.5587 0.0224 −44.7952 0.1061 0.4674 0.2403
56413.3606 6.2006 0.0221 −61.4924 0.0961 0.2601 0.1022
56414.3535 4.4350 0.0239 −59.8103 0.0548 −0.4309 −0.2002
56700.5640 5.7582 0.0178 −61.8093 0.1047 −0.3363 0.0697
57009.6387 −39.1607 0.0248 22.8202 0.0789 0.6746 −0.1217
57073.4672 −7.8378 0.0291 −37.3543 0.1066 −0.6925 0.0742
57159.4023 −49.4717 0.0484 39.0880 0.1873 −1.1735 0.5173
57160.3715 −46.9715 0.0302 37.0594 0.0909 0.5892 −0.1492
HIP 61727
55605.5848 −12.6740 0.0136 15.9258 0.1301 −0.0215 −0.3118
55693.3588 6.5327 0.0074 −13.5889 0.0846 −0.0088 0.3627
55933.6598 −18.4952 0.0158 25.9363 0.2306 −0.0041 0.5154
55965.6569 10.2366 0.0092 −19.6786 0.1063 0.0244 0.0466
56034.4583 −36.6083 0.0087 53.6952 0.1865 −0.0076 −0.2096
56323.6069 3.8442 0.0121 −10.5547 0.1624 0.0030 −0.8501
56413.4059 −12.8533 0.0134 16.2369 0.1274 −0.0334 −0.2641
BJD RV1 σRV1 RV2 σRV2 O1−C1 O2−C2
−2400000 (km s−1(km s−1(km s−1(km s−1(km s−1(km s−1)
HIP 12081
55440.6175 −19.3006 0.0348 4.5327 0.0179 0.0498 0.0052
55532.3450 5.2930 0.0401 −22.3033 0.0200 −0.0023 −0.0206
55605.3276 −3.1655 0.0775 −13.1499 0.0355 −0.0492 −0.0175
55784.5923 −16.8235 0.0334 2.0058 0.0190 0.2120 −0.0034
55864.4742 −22.3574 0.0424 7.7735 0.0166 −0.0294 0.0069
55933.2302 11.2363 0.0450 −28.6746 0.0186 0.0576 0.0081
55966.2854 6.7183 0.0361 −23.8320 0.0214 0.0144 −0.0170
56148.6082 −11.1919 0.1043 −4.4740 0.0530 −0.0939 −0.0243
56243.3824 −18.1414 0.0393 3.3409 0.0191 0.1222 −0.0043
56323.3304 −20.6003 0.0384 5.8376 0.0160 −0.0433 −0.0025
56889.6346 1.3632 0.0490 −18.2750 0.0237 −0.2906 0.0463
HIP 13791
55605.3577 −21.0198 0.0155 12.5004 0.2343 −0.0602 −0.3409
55784.6009 −8.0152* 0.0119* 0.2619* 0.2294* −0.1650* 9.5587*
55864.4964 −0.6383 0.0104 −21.6297 0.1661 0.0092 −0.1697
55965.3042 4.6405 0.0114 −30.1618 0.1654 0.0038 0.2217
56148.6243 −13.0655 0.0099 −0.6196 0.1373 0.0105 −0.1477
56243.4109 −16.3507 0.0099 5.5330 0.1533 0.0154 0.4489
56323.3367 −15.3310 0.0114 3.6038 0.1777 −0.0089 0.2826
56525.5659 −22.8333 0.0117 15.9524 0.1816 0.0041 −0.0597
56526.6076 −22.7883 0.0113 15.7956 0.1800 0.0231 −0.1728
56618.4809 −20.1445 0.0113 11.3540 0.1775 −0.0036 −0.1047
56701.3400 9.2144 0.0116 −36.7152* 0.2370* 0.0088 1.3839*
56890.6072 4.3730 0.0110 −30.1670 0.1576 −0.0229 −0.1901
57009.3890 −21.3907 0.0112 13.7637 0.1722 0.0158 0.1678
HIP 17732
55532.4636 −22.8766 0.0095 21.9980 0.0170 0.0019 −0.0197
55784.6076 −22.5330 0.0105 21.6484 0.0215 0.0016 0.0584
55933.2851 12.7972 0.0135 −22.2329 0.0328 0.0123 0.0946
55965.3166 12.1605 0.0099 −21.5826 0.0163 0.0003 −0.0318
56243.4535 12.1444 0.0089 −21.5210 0.0189 0.0060 0.0026
56323.3438 −16.6398 0.0178 14.2097 0.0550 0.0020 −0.0529
56525.5908 11.5734 0.0103 −20.8293 0.0201 −0.0154 0.0110
56618.4465 −22.5381 0.0096 21.6251 0.0163 −0.0060 0.0382
56890.6164 −20.9656 0.0110 19.5609 0.0322 0.0023 −0.0809
57009.3996 7.0245 0.0163 −15.2479 0.0403 −0.0123 −0.0676
57073.3157 12.5569 0.0093 −22.0421 0.0166 0.0009 0.0008
HIP 56275
55692.3811 7.9257 0.0226 −64.5112 0.1000 0.3626 0.0800
55863.6796 −46.4777 0.0309 35.6378 0.1108 0.2361 −0.0068
55933.6492 6.6220 0.0266 −63.0758 0.0791 0.0026 −0.2274
55966.5170 −36.2910 0.0297 17.1534 0.1229 0.5121 −0.1887
56243.6608 −41.0739 0.0280 24.3508 0.1038 −0.4721 −0.0067
56323.5683 −2.5587 0.0224 −44.7952 0.1061 0.4674 0.2403
56413.3606 6.2006 0.0221 −61.4924 0.0961 0.2601 0.1022
56414.3535 4.4350 0.0239 −59.8103 0.0548 −0.4309 −0.2002
56700.5640 5.7582 0.0178 −61.8093 0.1047 −0.3363 0.0697
57009.6387 −39.1607 0.0248 22.8202 0.0789 0.6746 −0.1217
57073.4672 −7.8378 0.0291 −37.3543 0.1066 −0.6925 0.0742
57159.4023 −49.4717 0.0484 39.0880 0.1873 −1.1735 0.5173
57160.3715 −46.9715 0.0302 37.0594 0.0909 0.5892 −0.1492
HIP 61727
55605.5848 −12.6740 0.0136 15.9258 0.1301 −0.0215 −0.3118
55693.3588 6.5327 0.0074 −13.5889 0.0846 −0.0088 0.3627
55933.6598 −18.4952 0.0158 25.9363 0.2306 −0.0041 0.5154
55965.6569 10.2366 0.0092 −19.6786 0.1063 0.0244 0.0466
56034.4583 −36.6083 0.0087 53.6952 0.1865 −0.0076 −0.2096
56323.6069 3.8442 0.0121 −10.5547 0.1624 0.0030 −0.8501
56413.4059 −12.8533 0.0134 16.2369 0.1274 −0.0334 −0.2641
Table 3.

New radial velocities from SOPHIE and obtained with todmor. Outliers are marked with an asterisk (*) and are not taken into account in the analysis.

BJD RV1 σRV1 RV2 σRV2 O1−C1 O2−C2
−2400000 (km s−1(km s−1(km s−1(km s−1(km s−1(km s−1)
HIP 12081
55440.6175 −19.3006 0.0348 4.5327 0.0179 0.0498 0.0052
55532.3450 5.2930 0.0401 −22.3033 0.0200 −0.0023 −0.0206
55605.3276 −3.1655 0.0775 −13.1499 0.0355 −0.0492 −0.0175
55784.5923 −16.8235 0.0334 2.0058 0.0190 0.2120 −0.0034
55864.4742 −22.3574 0.0424 7.7735 0.0166 −0.0294 0.0069
55933.2302 11.2363 0.0450 −28.6746 0.0186 0.0576 0.0081
55966.2854 6.7183 0.0361 −23.8320 0.0214 0.0144 −0.0170
56148.6082 −11.1919 0.1043 −4.4740 0.0530 −0.0939 −0.0243
56243.3824 −18.1414 0.0393 3.3409 0.0191 0.1222 −0.0043
56323.3304 −20.6003 0.0384 5.8376 0.0160 −0.0433 −0.0025
56889.6346 1.3632 0.0490 −18.2750 0.0237 −0.2906 0.0463
HIP 13791
55605.3577 −21.0198 0.0155 12.5004 0.2343 −0.0602 −0.3409
55784.6009 −8.0152* 0.0119* 0.2619* 0.2294* −0.1650* 9.5587*
55864.4964 −0.6383 0.0104 −21.6297 0.1661 0.0092 −0.1697
55965.3042 4.6405 0.0114 −30.1618 0.1654 0.0038 0.2217
56148.6243 −13.0655 0.0099 −0.6196 0.1373 0.0105 −0.1477
56243.4109 −16.3507 0.0099 5.5330 0.1533 0.0154 0.4489
56323.3367 −15.3310 0.0114 3.6038 0.1777 −0.0089 0.2826
56525.5659 −22.8333 0.0117 15.9524 0.1816 0.0041 −0.0597
56526.6076 −22.7883 0.0113 15.7956 0.1800 0.0231 −0.1728
56618.4809 −20.1445 0.0113 11.3540 0.1775 −0.0036 −0.1047
56701.3400 9.2144 0.0116 −36.7152* 0.2370* 0.0088 1.3839*
56890.6072 4.3730 0.0110 −30.1670 0.1576 −0.0229 −0.1901
57009.3890 −21.3907 0.0112 13.7637 0.1722 0.0158 0.1678
HIP 17732
55532.4636 −22.8766 0.0095 21.9980 0.0170 0.0019 −0.0197
55784.6076 −22.5330 0.0105 21.6484 0.0215 0.0016 0.0584
55933.2851 12.7972 0.0135 −22.2329 0.0328 0.0123 0.0946
55965.3166 12.1605 0.0099 −21.5826 0.0163 0.0003 −0.0318
56243.4535 12.1444 0.0089 −21.5210 0.0189 0.0060 0.0026
56323.3438 −16.6398 0.0178 14.2097 0.0550 0.0020 −0.0529
56525.5908 11.5734 0.0103 −20.8293 0.0201 −0.0154 0.0110
56618.4465 −22.5381 0.0096 21.6251 0.0163 −0.0060 0.0382
56890.6164 −20.9656 0.0110 19.5609 0.0322 0.0023 −0.0809
57009.3996 7.0245 0.0163 −15.2479 0.0403 −0.0123 −0.0676
57073.3157 12.5569 0.0093 −22.0421 0.0166 0.0009 0.0008
HIP 56275
55692.3811 7.9257 0.0226 −64.5112 0.1000 0.3626 0.0800
55863.6796 −46.4777 0.0309 35.6378 0.1108 0.2361 −0.0068
55933.6492 6.6220 0.0266 −63.0758 0.0791 0.0026 −0.2274
55966.5170 −36.2910 0.0297 17.1534 0.1229 0.5121 −0.1887
56243.6608 −41.0739 0.0280 24.3508 0.1038 −0.4721 −0.0067
56323.5683 −2.5587 0.0224 −44.7952 0.1061 0.4674 0.2403
56413.3606 6.2006 0.0221 −61.4924 0.0961 0.2601 0.1022
56414.3535 4.4350 0.0239 −59.8103 0.0548 −0.4309 −0.2002
56700.5640 5.7582 0.0178 −61.8093 0.1047 −0.3363 0.0697
57009.6387 −39.1607 0.0248 22.8202 0.0789 0.6746 −0.1217
57073.4672 −7.8378 0.0291 −37.3543 0.1066 −0.6925 0.0742
57159.4023 −49.4717 0.0484 39.0880 0.1873 −1.1735 0.5173
57160.3715 −46.9715 0.0302 37.0594 0.0909 0.5892 −0.1492
HIP 61727
55605.5848 −12.6740 0.0136 15.9258 0.1301 −0.0215 −0.3118
55693.3588 6.5327 0.0074 −13.5889 0.0846 −0.0088 0.3627
55933.6598 −18.4952 0.0158 25.9363 0.2306 −0.0041 0.5154
55965.6569 10.2366 0.0092 −19.6786 0.1063 0.0244 0.0466
56034.4583 −36.6083 0.0087 53.6952 0.1865 −0.0076 −0.2096
56323.6069 3.8442 0.0121 −10.5547 0.1624 0.0030 −0.8501
56413.4059 −12.8533 0.0134 16.2369 0.1274 −0.0334 −0.2641
BJD RV1 σRV1 RV2 σRV2 O1−C1 O2−C2
−2400000 (km s−1(km s−1(km s−1(km s−1(km s−1(km s−1)
HIP 12081
55440.6175 −19.3006 0.0348 4.5327 0.0179 0.0498 0.0052
55532.3450 5.2930 0.0401 −22.3033 0.0200 −0.0023 −0.0206
55605.3276 −3.1655 0.0775 −13.1499 0.0355 −0.0492 −0.0175
55784.5923 −16.8235 0.0334 2.0058 0.0190 0.2120 −0.0034
55864.4742 −22.3574 0.0424 7.7735 0.0166 −0.0294 0.0069
55933.2302 11.2363 0.0450 −28.6746 0.0186 0.0576 0.0081
55966.2854 6.7183 0.0361 −23.8320 0.0214 0.0144 −0.0170
56148.6082 −11.1919 0.1043 −4.4740 0.0530 −0.0939 −0.0243
56243.3824 −18.1414 0.0393 3.3409 0.0191 0.1222 −0.0043
56323.3304 −20.6003 0.0384 5.8376 0.0160 −0.0433 −0.0025
56889.6346 1.3632 0.0490 −18.2750 0.0237 −0.2906 0.0463
HIP 13791
55605.3577 −21.0198 0.0155 12.5004 0.2343 −0.0602 −0.3409
55784.6009 −8.0152* 0.0119* 0.2619* 0.2294* −0.1650* 9.5587*
55864.4964 −0.6383 0.0104 −21.6297 0.1661 0.0092 −0.1697
55965.3042 4.6405 0.0114 −30.1618 0.1654 0.0038 0.2217
56148.6243 −13.0655 0.0099 −0.6196 0.1373 0.0105 −0.1477
56243.4109 −16.3507 0.0099 5.5330 0.1533 0.0154 0.4489
56323.3367 −15.3310 0.0114 3.6038 0.1777 −0.0089 0.2826
56525.5659 −22.8333 0.0117 15.9524 0.1816 0.0041 −0.0597
56526.6076 −22.7883 0.0113 15.7956 0.1800 0.0231 −0.1728
56618.4809 −20.1445 0.0113 11.3540 0.1775 −0.0036 −0.1047
56701.3400 9.2144 0.0116 −36.7152* 0.2370* 0.0088 1.3839*
56890.6072 4.3730 0.0110 −30.1670 0.1576 −0.0229 −0.1901
57009.3890 −21.3907 0.0112 13.7637 0.1722 0.0158 0.1678
HIP 17732
55532.4636 −22.8766 0.0095 21.9980 0.0170 0.0019 −0.0197
55784.6076 −22.5330 0.0105 21.6484 0.0215 0.0016 0.0584
55933.2851 12.7972 0.0135 −22.2329 0.0328 0.0123 0.0946
55965.3166 12.1605 0.0099 −21.5826 0.0163 0.0003 −0.0318
56243.4535 12.1444 0.0089 −21.5210 0.0189 0.0060 0.0026
56323.3438 −16.6398 0.0178 14.2097 0.0550 0.0020 −0.0529
56525.5908 11.5734 0.0103 −20.8293 0.0201 −0.0154 0.0110
56618.4465 −22.5381 0.0096 21.6251 0.0163 −0.0060 0.0382
56890.6164 −20.9656 0.0110 19.5609 0.0322 0.0023 −0.0809
57009.3996 7.0245 0.0163 −15.2479 0.0403 −0.0123 −0.0676
57073.3157 12.5569 0.0093 −22.0421 0.0166 0.0009 0.0008
HIP 56275
55692.3811 7.9257 0.0226 −64.5112 0.1000 0.3626 0.0800
55863.6796 −46.4777 0.0309 35.6378 0.1108 0.2361 −0.0068
55933.6492 6.6220 0.0266 −63.0758 0.0791 0.0026 −0.2274
55966.5170 −36.2910 0.0297 17.1534 0.1229 0.5121 −0.1887
56243.6608 −41.0739 0.0280 24.3508 0.1038 −0.4721 −0.0067
56323.5683 −2.5587 0.0224 −44.7952 0.1061 0.4674 0.2403
56413.3606 6.2006 0.0221 −61.4924 0.0961 0.2601 0.1022
56414.3535 4.4350 0.0239 −59.8103 0.0548 −0.4309 −0.2002
56700.5640 5.7582 0.0178 −61.8093 0.1047 −0.3363 0.0697
57009.6387 −39.1607 0.0248 22.8202 0.0789 0.6746 −0.1217
57073.4672 −7.8378 0.0291 −37.3543 0.1066 −0.6925 0.0742
57159.4023 −49.4717 0.0484 39.0880 0.1873 −1.1735 0.5173
57160.3715 −46.9715 0.0302 37.0594 0.0909 0.5892 −0.1492
HIP 61727
55605.5848 −12.6740 0.0136 15.9258 0.1301 −0.0215 −0.3118
55693.3588 6.5327 0.0074 −13.5889 0.0846 −0.0088 0.3627
55933.6598 −18.4952 0.0158 25.9363 0.2306 −0.0041 0.5154
55965.6569 10.2366 0.0092 −19.6786 0.1063 0.0244 0.0466
56034.4583 −36.6083 0.0087 53.6952 0.1865 −0.0076 −0.2096
56323.6069 3.8442 0.0121 −10.5547 0.1624 0.0030 −0.8501
56413.4059 −12.8533 0.0134 16.2369 0.1274 −0.0334 −0.2641
Table 3

continued

BJD RV1 σRV1 RV2 σRV2 O1−C1 O2−C2
−2400000 (km s−1(km s−1(km s−1(km s−1(km s−1(km s−1)
56700.6043 −25.6469 0.0089 36.5198 0.1158 0.0088 −0.1701
56764.3934 7.9839 0.0082 −15.9285 0.1737 0.0235 0.2550
57009.6713 8.0070 0.0086 −15.9493 0.1395 0.0020 0.3044
57073.5033 −19.5056 0.0071 27.7723 0.2897 0.0283 0.7111
57159.4393 18.4660 0.0089 −32.9927 0.2474 −0.0225 −0.2502
HIP 62935
55605.6068 −12.3906 0.0106 19.1954 0.1083 −0.0079 0.5511
55933.7034 12.2587 0.0212 −16.6646 0.2002 −0.0453 1.0353
55965.6957 10.9649 0.0108 −15.5176 0.1105 −0.0205 0.2413
56034.4799 −9.0670 0.0119 14.7234 0.1188 0.0067 0.9506
56323.6219 −4.1875 0.0106 6.9054 0.1110 −0.0224 0.3592
56413.4178 −10.6338 0.0108 16.6760 0.1052 0.0037 0.6010
56414.3653 −10.9714 0.0109 17.2867 0.1098 −0.0001 0.7203
56619.6800 6.6032 0.0110 −8.7968 0.1128 0.0060 0.5014
56700.6311 −12.9241 0.0105 19.9558 0.1044 0.0065 0.5048
56763.4730 9.7161 0.0103 −13.3344 0.1035 0.0370 0.5012
57073.5373 14.0341 0.0094 −19.3651 0.0930 0.0212 0.8509
HIP 67195
55693.4447 −25.3810 0.0201 17.8880 0.1602 −0.0487 0.0120
55965.7213 −24.1047 0.0187 15.6821 0.1456 −0.0092 −0.0474
56033.4718 −16.6905 0.0198 2.8186 0.1299 −0.0100 −0.0424
56323.6540 −25.6179 0.0185 18.4821 0.1453 0.0131 0.0876
56323.7172 −25.6252 0.0185 18.4805 0.1502 0.0034 0.0902
56324.4871 −25.4322 0.0209 18.0313 0.1648 0.0304 −0.0709
56324.5606 −25.4128 0.0196 18.0605 0.1480 0.0177 0.0141
56413.4778 3.2056 0.0197 −31.8507 0.1488 0.0263 −0.2456
56414.4222 0.2645 0.0192 −26.3836 0.1566 0.0138 0.1391
56526.3286 55.7540 0.0209 −122.9667 0.1516 −0.0025 −0.1150
56763.4478 26.5703 0.0184 −71.9675 0.1492 0.0100 0.2148
57073.5916 −18.4045 0.0182 5.7351 0.1389 −0.0178 −0.0869
57159.4122 4.9344 0.0192 −34.5608 0.1357 0.0026 0.0858
57160.4048 1.4943 0.0193 −28.7538 0.1452 −0.0216 −0.0354
HIP 87895
55306.5401 −25.5851 0.0102 −42.7398 0.1192 −0.0824 −0.2769
55440.3398 −24.3803 0.0107 −44.3309 0.1369 0.0012 −0.1582
55692.5686 −47.1465 0.0103 −9.8598 0.1237 −0.0269 −0.3621
55783.4403 −41.7373 0.0102 −17.4182 0.1176 −0.0231 0.3225
56034.6403 −29.2514 0.0104 −37.8613* 0.1264* −0.0441 −1.0478*
56148.4136 −26.2422 0.0103 −41.3782 0.1288 0.0258 −0.0824
56243.2450 −24.6700 0.0105 −43.8842 0.1276 0.0358 −0.2061
56324.6564 −24.3659 0.0121 −44.1758 0.1547 0.0306 −0.0261
56413.6297 −26.9424 0.0104 −40.1199 0.1358 0.0005 0.1468
56414.5000 −26.9901 0.0104 −39.9479 0.1370 0.0080 0.2346
56414.5337 −26.9911 0.0104 −40.0227 0.1364 0.0091 0.1564
56525.3681 −42.7839 0.0103 −16.1425 0.1206 −0.0066 −0.0228
56763.6370 −35.3359 0.0103 −27.2716 0.1088 0.0394 0.1357
57159.5261 −24.3802 0.0103 −43.9809 0.1341 0.0306 0.1471
HIP 95575
55306.6052 −78.1722* 0.0068* −50.6807* 0.0274* −0.9557* −0.9533*
55440.3855 −69.9864 0.0107 −57.8756 0.0514 −0.0113 −0.0413
55693.5658 −60.6375 0.0103 −68.3909 0.0740 −0.0148 −0.0863
55784.4181 −74.6558 0.0069 −52.5504 0.0199 0.0121 0.0302
56034.5983 −57.5141 0.0103 −71.8023 0.0453 0.0156 −0.0350
56147.4329 −76.3749 0.0070 −50.6872 0.0298 0.0013 −0.0191
56243.2640 −51.3445 0.0075 −78.6904 0.0286 −0.0033 0.0051
56414.5737 −53.1692 0.0091 −76.6845 0.0299 −0.0014 −0.0339
56619.2736 −74.8908 0.0075 −52.3081 0.0177 0.0033 0.0192
56890.4483 −50.3115 0.0067 −79.8551 0.0221 −0.0060 −0.0002
57073.6986 −50.2649 0.0077 −79.8382 0.0248 0.0093 0.0518
57159.5432 −73.8810 0.0079 −53.3993 0.0257 0.0044 0.0573
57295.3098 −76.9201 0.0069 −50.1277 0.0290 −0.0122 −0.0548
BJD RV1 σRV1 RV2 σRV2 O1−C1 O2−C2
−2400000 (km s−1(km s−1(km s−1(km s−1(km s−1(km s−1)
56700.6043 −25.6469 0.0089 36.5198 0.1158 0.0088 −0.1701
56764.3934 7.9839 0.0082 −15.9285 0.1737 0.0235 0.2550
57009.6713 8.0070 0.0086 −15.9493 0.1395 0.0020 0.3044
57073.5033 −19.5056 0.0071 27.7723 0.2897 0.0283 0.7111
57159.4393 18.4660 0.0089 −32.9927 0.2474 −0.0225 −0.2502
HIP 62935
55605.6068 −12.3906 0.0106 19.1954 0.1083 −0.0079 0.5511
55933.7034 12.2587 0.0212 −16.6646 0.2002 −0.0453 1.0353
55965.6957 10.9649 0.0108 −15.5176 0.1105 −0.0205 0.2413
56034.4799 −9.0670 0.0119 14.7234 0.1188 0.0067 0.9506
56323.6219 −4.1875 0.0106 6.9054 0.1110 −0.0224 0.3592
56413.4178 −10.6338 0.0108 16.6760 0.1052 0.0037 0.6010
56414.3653 −10.9714 0.0109 17.2867 0.1098 −0.0001 0.7203
56619.6800 6.6032 0.0110 −8.7968 0.1128 0.0060 0.5014
56700.6311 −12.9241 0.0105 19.9558 0.1044 0.0065 0.5048
56763.4730 9.7161 0.0103 −13.3344 0.1035 0.0370 0.5012
57073.5373 14.0341 0.0094 −19.3651 0.0930 0.0212 0.8509
HIP 67195
55693.4447 −25.3810 0.0201 17.8880 0.1602 −0.0487 0.0120
55965.7213 −24.1047 0.0187 15.6821 0.1456 −0.0092 −0.0474
56033.4718 −16.6905 0.0198 2.8186 0.1299 −0.0100 −0.0424
56323.6540 −25.6179 0.0185 18.4821 0.1453 0.0131 0.0876
56323.7172 −25.6252 0.0185 18.4805 0.1502 0.0034 0.0902
56324.4871 −25.4322 0.0209 18.0313 0.1648 0.0304 −0.0709
56324.5606 −25.4128 0.0196 18.0605 0.1480 0.0177 0.0141
56413.4778 3.2056 0.0197 −31.8507 0.1488 0.0263 −0.2456
56414.4222 0.2645 0.0192 −26.3836 0.1566 0.0138 0.1391
56526.3286 55.7540 0.0209 −122.9667 0.1516 −0.0025 −0.1150
56763.4478 26.5703 0.0184 −71.9675 0.1492 0.0100 0.2148
57073.5916 −18.4045 0.0182 5.7351 0.1389 −0.0178 −0.0869
57159.4122 4.9344 0.0192 −34.5608 0.1357 0.0026 0.0858
57160.4048 1.4943 0.0193 −28.7538 0.1452 −0.0216 −0.0354
HIP 87895
55306.5401 −25.5851 0.0102 −42.7398 0.1192 −0.0824 −0.2769
55440.3398 −24.3803 0.0107 −44.3309 0.1369 0.0012 −0.1582
55692.5686 −47.1465 0.0103 −9.8598 0.1237 −0.0269 −0.3621
55783.4403 −41.7373 0.0102 −17.4182 0.1176 −0.0231 0.3225
56034.6403 −29.2514 0.0104 −37.8613* 0.1264* −0.0441 −1.0478*
56148.4136 −26.2422 0.0103 −41.3782 0.1288 0.0258 −0.0824
56243.2450 −24.6700 0.0105 −43.8842 0.1276 0.0358 −0.2061
56324.6564 −24.3659 0.0121 −44.1758 0.1547 0.0306 −0.0261
56413.6297 −26.9424 0.0104 −40.1199 0.1358 0.0005 0.1468
56414.5000 −26.9901 0.0104 −39.9479 0.1370 0.0080 0.2346
56414.5337 −26.9911 0.0104 −40.0227 0.1364 0.0091 0.1564
56525.3681 −42.7839 0.0103 −16.1425 0.1206 −0.0066 −0.0228
56763.6370 −35.3359 0.0103 −27.2716 0.1088 0.0394 0.1357
57159.5261 −24.3802 0.0103 −43.9809 0.1341 0.0306 0.1471
HIP 95575
55306.6052 −78.1722* 0.0068* −50.6807* 0.0274* −0.9557* −0.9533*
55440.3855 −69.9864 0.0107 −57.8756 0.0514 −0.0113 −0.0413
55693.5658 −60.6375 0.0103 −68.3909 0.0740 −0.0148 −0.0863
55784.4181 −74.6558 0.0069 −52.5504 0.0199 0.0121 0.0302
56034.5983 −57.5141 0.0103 −71.8023 0.0453 0.0156 −0.0350
56147.4329 −76.3749 0.0070 −50.6872 0.0298 0.0013 −0.0191
56243.2640 −51.3445 0.0075 −78.6904 0.0286 −0.0033 0.0051
56414.5737 −53.1692 0.0091 −76.6845 0.0299 −0.0014 −0.0339
56619.2736 −74.8908 0.0075 −52.3081 0.0177 0.0033 0.0192
56890.4483 −50.3115 0.0067 −79.8551 0.0221 −0.0060 −0.0002
57073.6986 −50.2649 0.0077 −79.8382 0.0248 0.0093 0.0518
57159.5432 −73.8810 0.0079 −53.3993 0.0257 0.0044 0.0573
57295.3098 −76.9201 0.0069 −50.1277 0.0290 −0.0122 −0.0548
Table 3

continued

BJD RV1 σRV1 RV2 σRV2 O1−C1 O2−C2
−2400000 (km s−1(km s−1(km s−1(km s−1(km s−1(km s−1)
56700.6043 −25.6469 0.0089 36.5198 0.1158 0.0088 −0.1701
56764.3934 7.9839 0.0082 −15.9285 0.1737 0.0235 0.2550
57009.6713 8.0070 0.0086 −15.9493 0.1395 0.0020 0.3044
57073.5033 −19.5056 0.0071 27.7723 0.2897 0.0283 0.7111
57159.4393 18.4660 0.0089 −32.9927 0.2474 −0.0225 −0.2502
HIP 62935
55605.6068 −12.3906 0.0106 19.1954 0.1083 −0.0079 0.5511
55933.7034 12.2587 0.0212 −16.6646 0.2002 −0.0453 1.0353
55965.6957 10.9649 0.0108 −15.5176 0.1105 −0.0205 0.2413
56034.4799 −9.0670 0.0119 14.7234 0.1188 0.0067 0.9506
56323.6219 −4.1875 0.0106 6.9054 0.1110 −0.0224 0.3592
56413.4178 −10.6338 0.0108 16.6760 0.1052 0.0037 0.6010
56414.3653 −10.9714 0.0109 17.2867 0.1098 −0.0001 0.7203
56619.6800 6.6032 0.0110 −8.7968 0.1128 0.0060 0.5014
56700.6311 −12.9241 0.0105 19.9558 0.1044 0.0065 0.5048
56763.4730 9.7161 0.0103 −13.3344 0.1035 0.0370 0.5012
57073.5373 14.0341 0.0094 −19.3651 0.0930 0.0212 0.8509
HIP 67195
55693.4447 −25.3810 0.0201 17.8880 0.1602 −0.0487 0.0120
55965.7213 −24.1047 0.0187 15.6821 0.1456 −0.0092 −0.0474
56033.4718 −16.6905 0.0198 2.8186 0.1299 −0.0100 −0.0424
56323.6540 −25.6179 0.0185 18.4821 0.1453 0.0131 0.0876
56323.7172 −25.6252 0.0185 18.4805 0.1502 0.0034 0.0902
56324.4871 −25.4322 0.0209 18.0313 0.1648 0.0304 −0.0709
56324.5606 −25.4128 0.0196 18.0605 0.1480 0.0177 0.0141
56413.4778 3.2056 0.0197 −31.8507 0.1488 0.0263 −0.2456
56414.4222 0.2645 0.0192 −26.3836 0.1566 0.0138 0.1391
56526.3286 55.7540 0.0209 −122.9667 0.1516 −0.0025 −0.1150
56763.4478 26.5703 0.0184 −71.9675 0.1492 0.0100 0.2148
57073.5916 −18.4045 0.0182 5.7351 0.1389 −0.0178 −0.0869
57159.4122 4.9344 0.0192 −34.5608 0.1357 0.0026 0.0858
57160.4048 1.4943 0.0193 −28.7538 0.1452 −0.0216 −0.0354
HIP 87895
55306.5401 −25.5851 0.0102 −42.7398 0.1192 −0.0824 −0.2769
55440.3398 −24.3803 0.0107 −44.3309 0.1369 0.0012 −0.1582
55692.5686 −47.1465 0.0103 −9.8598 0.1237 −0.0269 −0.3621
55783.4403 −41.7373 0.0102 −17.4182 0.1176 −0.0231 0.3225
56034.6403 −29.2514 0.0104 −37.8613* 0.1264* −0.0441 −1.0478*
56148.4136 −26.2422 0.0103 −41.3782 0.1288 0.0258 −0.0824
56243.2450 −24.6700 0.0105 −43.8842 0.1276 0.0358 −0.2061
56324.6564 −24.3659 0.0121 −44.1758 0.1547 0.0306 −0.0261
56413.6297 −26.9424 0.0104 −40.1199 0.1358 0.0005 0.1468
56414.5000 −26.9901 0.0104 −39.9479 0.1370 0.0080 0.2346
56414.5337 −26.9911 0.0104 −40.0227 0.1364 0.0091 0.1564
56525.3681 −42.7839 0.0103 −16.1425 0.1206 −0.0066 −0.0228
56763.6370 −35.3359 0.0103 −27.2716 0.1088 0.0394 0.1357
57159.5261 −24.3802 0.0103 −43.9809 0.1341 0.0306 0.1471
HIP 95575
55306.6052 −78.1722* 0.0068* −50.6807* 0.0274* −0.9557* −0.9533*
55440.3855 −69.9864 0.0107 −57.8756 0.0514 −0.0113 −0.0413
55693.5658 −60.6375 0.0103 −68.3909 0.0740 −0.0148 −0.0863
55784.4181 −74.6558 0.0069 −52.5504 0.0199 0.0121 0.0302
56034.5983 −57.5141 0.0103 −71.8023 0.0453 0.0156 −0.0350
56147.4329 −76.3749 0.0070 −50.6872 0.0298 0.0013 −0.0191
56243.2640 −51.3445 0.0075 −78.6904 0.0286 −0.0033 0.0051
56414.5737 −53.1692 0.0091 −76.6845 0.0299 −0.0014 −0.0339
56619.2736 −74.8908 0.0075 −52.3081 0.0177 0.0033 0.0192
56890.4483 −50.3115 0.0067 −79.8551 0.0221 −0.0060 −0.0002
57073.6986 −50.2649 0.0077 −79.8382 0.0248 0.0093 0.0518
57159.5432 −73.8810 0.0079 −53.3993 0.0257 0.0044 0.0573
57295.3098 −76.9201 0.0069 −50.1277 0.0290 −0.0122 −0.0548
BJD RV1 σRV1 RV2 σRV2 O1−C1 O2−C2
−2400000 (km s−1(km s−1(km s−1(km s−1(km s−1(km s−1)
56700.6043 −25.6469 0.0089 36.5198 0.1158 0.0088 −0.1701
56764.3934 7.9839 0.0082 −15.9285 0.1737 0.0235 0.2550
57009.6713 8.0070 0.0086 −15.9493 0.1395 0.0020 0.3044
57073.5033 −19.5056 0.0071 27.7723 0.2897 0.0283 0.7111
57159.4393 18.4660 0.0089 −32.9927 0.2474 −0.0225 −0.2502
HIP 62935
55605.6068 −12.3906 0.0106 19.1954 0.1083 −0.0079 0.5511
55933.7034 12.2587 0.0212 −16.6646 0.2002 −0.0453 1.0353
55965.6957 10.9649 0.0108 −15.5176 0.1105 −0.0205 0.2413
56034.4799 −9.0670 0.0119 14.7234 0.1188 0.0067 0.9506
56323.6219 −4.1875 0.0106 6.9054 0.1110 −0.0224 0.3592
56413.4178 −10.6338 0.0108 16.6760 0.1052 0.0037 0.6010
56414.3653 −10.9714 0.0109 17.2867 0.1098 −0.0001 0.7203
56619.6800 6.6032 0.0110 −8.7968 0.1128 0.0060 0.5014
56700.6311 −12.9241 0.0105 19.9558 0.1044 0.0065 0.5048
56763.4730 9.7161 0.0103 −13.3344 0.1035 0.0370 0.5012
57073.5373 14.0341 0.0094 −19.3651 0.0930 0.0212 0.8509
HIP 67195
55693.4447 −25.3810 0.0201 17.8880 0.1602 −0.0487 0.0120
55965.7213 −24.1047 0.0187 15.6821 0.1456 −0.0092 −0.0474
56033.4718 −16.6905 0.0198 2.8186 0.1299 −0.0100 −0.0424
56323.6540 −25.6179 0.0185 18.4821 0.1453 0.0131 0.0876
56323.7172 −25.6252 0.0185 18.4805 0.1502 0.0034 0.0902
56324.4871 −25.4322 0.0209 18.0313 0.1648 0.0304 −0.0709
56324.5606 −25.4128 0.0196 18.0605 0.1480 0.0177 0.0141
56413.4778 3.2056 0.0197 −31.8507 0.1488 0.0263 −0.2456
56414.4222 0.2645 0.0192 −26.3836 0.1566 0.0138 0.1391
56526.3286 55.7540 0.0209 −122.9667 0.1516 −0.0025 −0.1150
56763.4478 26.5703 0.0184 −71.9675 0.1492 0.0100 0.2148
57073.5916 −18.4045 0.0182 5.7351 0.1389 −0.0178 −0.0869
57159.4122 4.9344 0.0192 −34.5608 0.1357 0.0026 0.0858
57160.4048 1.4943 0.0193 −28.7538 0.1452 −0.0216 −0.0354
HIP 87895
55306.5401 −25.5851 0.0102 −42.7398 0.1192 −0.0824 −0.2769
55440.3398 −24.3803 0.0107 −44.3309 0.1369 0.0012 −0.1582
55692.5686 −47.1465 0.0103 −9.8598 0.1237 −0.0269 −0.3621
55783.4403 −41.7373 0.0102 −17.4182 0.1176 −0.0231 0.3225
56034.6403 −29.2514 0.0104 −37.8613* 0.1264* −0.0441 −1.0478*
56148.4136 −26.2422 0.0103 −41.3782 0.1288 0.0258 −0.0824
56243.2450 −24.6700 0.0105 −43.8842 0.1276 0.0358 −0.2061
56324.6564 −24.3659 0.0121 −44.1758 0.1547 0.0306 −0.0261
56413.6297 −26.9424 0.0104 −40.1199 0.1358 0.0005 0.1468
56414.5000 −26.9901 0.0104 −39.9479 0.1370 0.0080 0.2346
56414.5337 −26.9911 0.0104 −40.0227 0.1364 0.0091 0.1564
56525.3681 −42.7839 0.0103 −16.1425 0.1206 −0.0066 −0.0228
56763.6370 −35.3359 0.0103 −27.2716 0.1088 0.0394 0.1357
57159.5261 −24.3802 0.0103 −43.9809 0.1341 0.0306 0.1471
HIP 95575
55306.6052 −78.1722* 0.0068* −50.6807* 0.0274* −0.9557* −0.9533*
55440.3855 −69.9864 0.0107 −57.8756 0.0514 −0.0113 −0.0413
55693.5658 −60.6375 0.0103 −68.3909 0.0740 −0.0148 −0.0863
55784.4181 −74.6558 0.0069 −52.5504 0.0199 0.0121 0.0302
56034.5983 −57.5141 0.0103 −71.8023 0.0453 0.0156 −0.0350
56147.4329 −76.3749 0.0070 −50.6872 0.0298 0.0013 −0.0191
56243.2640 −51.3445 0.0075 −78.6904 0.0286 −0.0033 0.0051
56414.5737 −53.1692 0.0091 −76.6845 0.0299 −0.0014 −0.0339
56619.2736 −74.8908 0.0075 −52.3081 0.0177 0.0033 0.0192
56890.4483 −50.3115 0.0067 −79.8551 0.0221 −0.0060 −0.0002
57073.6986 −50.2649 0.0077 −79.8382 0.0248 0.0093 0.0518
57159.5432 −73.8810 0.0079 −53.3993 0.0257 0.0044 0.0573
57295.3098 −76.9201 0.0069 −50.1277 0.0290 −0.0122 −0.0548
Table 3

continued

BJD RV1 σRV1 RV2 σRV2 O1−C1 O2−C2
−2400000 (km s−1(km s−1(km s−1(km s−1(km s−1(km s−1)
HIP 100321
55440.4025 17.4467 0.0262 −20.6978 0.0354 −0.0453 −0.0053
55693.6211 −30.5121 0.0269 42.2770 0.0338 −0.1057 0.0121
56147.4444 −33.9387 0.0172 46.9496 0.0192 0.0303 0.0021
56243.2764 32.2481 0.0242 −40.0539 0.0329 0.0321 −0.0083
56414.6090 −30.0393 0.0214 41.7375 0.0272 −0.0196 −0.0191
56525.4060 −35.5108 0.0223 49.0625 0.0234 0.0698 −0.0032
56526.4184 −34.6986 0.0204 47.8903 0.0271 −0.0222 0.0130
56619.4231 26.0449 0.0204 −32.0577 0.0268 −0.0975 0.0049
56890.5147 32.8145 0.0242 −40.7347 0.0288 0.0780 −0.0049
57159.5852 23.8836 0.0215 −29.1134 0.0249 −0.0255 0.0137
57160.5816 18.7741 0.0229 −22.2593 0.0302 0.0997 −0.0127
BJD RV1 σRV1 RV2 σRV2 O1−C1 O2−C2
−2400000 (km s−1(km s−1(km s−1(km s−1(km s−1(km s−1)
HIP 100321
55440.4025 17.4467 0.0262 −20.6978 0.0354 −0.0453 −0.0053
55693.6211 −30.5121 0.0269 42.2770 0.0338 −0.1057 0.0121
56147.4444 −33.9387 0.0172 46.9496 0.0192 0.0303 0.0021
56243.2764 32.2481 0.0242 −40.0539 0.0329 0.0321 −0.0083
56414.6090 −30.0393 0.0214 41.7375 0.0272 −0.0196 −0.0191
56525.4060 −35.5108 0.0223 49.0625 0.0234 0.0698 −0.0032
56526.4184 −34.6986 0.0204 47.8903 0.0271 −0.0222 0.0130
56619.4231 26.0449 0.0204 −32.0577 0.0268 −0.0975 0.0049
56890.5147 32.8145 0.0242 −40.7347 0.0288 0.0780 −0.0049
57159.5852 23.8836 0.0215 −29.1134 0.0249 −0.0255 0.0137
57160.5816 18.7741 0.0229 −22.2593 0.0302 0.0997 −0.0127
Table 3

continued

BJD RV1 σRV1 RV2 σRV2 O1−C1 O2−C2
−2400000 (km s−1(km s−1(km s−1(km s−1(km s−1(km s−1)
HIP 100321
55440.4025 17.4467 0.0262 −20.6978 0.0354 −0.0453 −0.0053
55693.6211 −30.5121 0.0269 42.2770 0.0338 −0.1057 0.0121
56147.4444 −33.9387 0.0172 46.9496 0.0192 0.0303 0.0021
56243.2764 32.2481 0.0242 −40.0539 0.0329 0.0321 −0.0083
56414.6090 −30.0393 0.0214 41.7375 0.0272 −0.0196 −0.0191
56525.4060 −35.5108 0.0223 49.0625 0.0234 0.0698 −0.0032
56526.4184 −34.6986 0.0204 47.8903 0.0271 −0.0222 0.0130
56619.4231 26.0449 0.0204 −32.0577 0.0268 −0.0975 0.0049
56890.5147 32.8145 0.0242 −40.7347 0.0288 0.0780 −0.0049
57159.5852 23.8836 0.0215 −29.1134 0.0249 −0.0255 0.0137
57160.5816 18.7741 0.0229 −22.2593 0.0302 0.0997 −0.0127
BJD RV1 σRV1 RV2 σRV2 O1−C1 O2−C2
−2400000 (km s−1(km s−1(km s−1(km s−1(km s−1(km s−1)
HIP 100321
55440.4025 17.4467 0.0262 −20.6978 0.0354 −0.0453 −0.0053
55693.6211 −30.5121 0.0269 42.2770 0.0338 −0.1057 0.0121
56147.4444 −33.9387 0.0172 46.9496 0.0192 0.0303 0.0021
56243.2764 32.2481 0.0242 −40.0539 0.0329 0.0321 −0.0083
56414.6090 −30.0393 0.0214 41.7375 0.0272 −0.0196 −0.0191
56525.4060 −35.5108 0.0223 49.0625 0.0234 0.0698 −0.0032
56526.4184 −34.6986 0.0204 47.8903 0.0271 −0.0222 0.0130
56619.4231 26.0449 0.0204 −32.0577 0.0268 −0.0975 0.0049
56890.5147 32.8145 0.0242 −40.7347 0.0288 0.0780 −0.0049
57159.5852 23.8836 0.0215 −29.1134 0.0249 −0.0255 0.0137
57160.5816 18.7741 0.0229 −22.2593 0.0302 0.0997 −0.0127

4 DERIVATION OF THE ORBITS

The orbital solutions for the 10 SB2 are derived by combining the new measurements presented in this paper with previously published RVs (references in Table 4).

Table 4.

Correction terms applied to the uncertainties of the previous and of the new RV measurements. The composition of these terms into an uncertainty correction is explained in Section 4.1, equations (1) and (2).

HIPReference of previous RVCorrection terms for previous measurementsCorrection terms for new measurements
ε1,pφ1,pε2,pφ2,pε1,nφ1,nε2,nφ2,n
(km s−1)(km s−1)(km s−1)(km s−1)
12081Griffin (2005)00.61500.5650.142810.00611
13791Imbert (2006)0.2410.02870.8850.26890.885
17732Griffin & Suchkov (2003)00.27200.75901.1010.03801.101
56275Griffin (2006)01.20801.2080.69090.9050.23150.905
61727Halbwachs, Mayor & Udry (2012)0.321210.02610.9110.49140.911
62935Griffin (2004)00.5940.02941.1010.17741.101
67195Shajn (1939)05.2430.01751.04600.8170
87895McAlister et al. (1995)00.34200.3420.03551.3290.06621.329
95575Tokovinin (1991)1.0221110.01080.8970.03990.897
100321Carquillat & Ginestet (2000)00.54101.0970.06651.01700.572
HIPReference of previous RVCorrection terms for previous measurementsCorrection terms for new measurements
ε1,pφ1,pε2,pφ2,pε1,nφ1,nε2,nφ2,n
(km s−1)(km s−1)(km s−1)(km s−1)
12081Griffin (2005)00.61500.5650.142810.00611
13791Imbert (2006)0.2410.02870.8850.26890.885
17732Griffin & Suchkov (2003)00.27200.75901.1010.03801.101
56275Griffin (2006)01.20801.2080.69090.9050.23150.905
61727Halbwachs, Mayor & Udry (2012)0.321210.02610.9110.49140.911
62935Griffin (2004)00.5940.02941.1010.17741.101
67195Shajn (1939)05.2430.01751.04600.8170
87895McAlister et al. (1995)00.34200.3420.03551.3290.06621.329
95575Tokovinin (1991)1.0221110.01080.8970.03990.897
100321Carquillat & Ginestet (2000)00.54101.0970.06651.01700.572
Table 4.

Correction terms applied to the uncertainties of the previous and of the new RV measurements. The composition of these terms into an uncertainty correction is explained in Section 4.1, equations (1) and (2).

HIPReference of previous RVCorrection terms for previous measurementsCorrection terms for new measurements
ε1,pφ1,pε2,pφ2,pε1,nφ1,nε2,nφ2,n
(km s−1)(km s−1)(km s−1)(km s−1)
12081Griffin (2005)00.61500.5650.142810.00611
13791Imbert (2006)0.2410.02870.8850.26890.885
17732Griffin & Suchkov (2003)00.27200.75901.1010.03801.101
56275Griffin (2006)01.20801.2080.69090.9050.23150.905
61727Halbwachs, Mayor & Udry (2012)0.321210.02610.9110.49140.911
62935Griffin (2004)00.5940.02941.1010.17741.101
67195Shajn (1939)05.2430.01751.04600.8170
87895McAlister et al. (1995)00.34200.3420.03551.3290.06621.329
95575Tokovinin (1991)1.0221110.01080.8970.03990.897
100321Carquillat & Ginestet (2000)00.54101.0970.06651.01700.572
HIPReference of previous RVCorrection terms for previous measurementsCorrection terms for new measurements
ε1,pφ1,pε2,pφ2,pε1,nφ1,nε2,nφ2,n
(km s−1)(km s−1)(km s−1)(km s−1)
12081Griffin (2005)00.61500.5650.142810.00611
13791Imbert (2006)0.2410.02870.8850.26890.885
17732Griffin & Suchkov (2003)00.27200.75901.1010.03801.101
56275Griffin (2006)01.20801.2080.69090.9050.23150.905
61727Halbwachs, Mayor & Udry (2012)0.321210.02610.9110.49140.911
62935Griffin (2004)00.5940.02941.1010.17741.101
67195Shajn (1939)05.2430.01751.04600.8170
87895McAlister et al. (1995)00.34200.3420.03551.3290.06621.329
95575Tokovinin (1991)1.0221110.01080.8970.03990.897
100321Carquillat & Ginestet (2000)00.54101.0970.06651.01700.572

Since several data sets coming from different instruments are used together to derive a common orbital solution, realistic errors should be attributed to each data set properly. It is explained in the following section. This process guarantees that each data set receives the proper weight with respect to all others, including the new SOPHIE measurements presented here.

4.1 Correction of uncertainties

Uncertainties of previously published measurements, when provided, are usually underestimated. On the other hand, many lists of RV measurements do not include uncertainties, but only weights (W). Therefore, two different procedures are applied to attribute correct uncertainties to these retrieved measurements. They are both based on the calculation of the F2 estimator of the goodness-of-fit (see paper II, equation 1, or Stuart & Ord 1994):

  • When the uncertainties are provided, a noise is quadratically added to the original uncertainties, in order to get exactly F2 = 0 for the SB1 orbit of each component. Since the original uncertainties are underestimated, this results in decreasing the variations of the relative weights of the measurements of a given component.

  • When only weights are given, they are first converted to uncertainties (⁠|$\sigma =\sqrt{1/W}$|⁠). Then they are scaled in order to get F2 = 0 for the SB1 orbit of each component.

After this transformation, the SB2 orbit is derived, and F2 is considered again. The final uncertainties are obtained by multiplying the ones derived above with a factor chosen in order to get F2 = 0. All these operations result in applying the following formulae:
(1)
(2)

Table 4 lists the derived values of the correction terms φ1, φ2, ε1 and ε2 for all stars of our sample.

The same procedure is applied to the uncertainties derived by todmor for the new measurements. For two binaries (HIP 67195 and HIP 100321), the SB1 orbit of the secondary component leads to a negative value of F2, implying that the uncertainties are slightly overestimated. In order to get F2 = 0, we preferred to keep the relative weights fixed, and simply multiply the uncertainties by a coefficient φ2 lower than 1.

All the RV measurements and the uncertainties used in the derivation of the orbits will be available through the SB9 catalogue (Pourbaix et al. 2004), which is accessible online.1

4.2 Derivation of the orbital elements

For each binary, we fitted an SB2 orbital model to the previously published data sets combined with the new SOPHIE observations. The parameters were optimized using a Levenberg–Marquard method.

The final orbital solution consists in the following orbital elements: the period, P, the eccentricity, e, the epoch of the periastron, T0, the longitude of the periastron for the primary component, ω1, the RV semi-amplitudes of each component, K1 and K2, and the RV of the barycentre, V0.

We also added three supplementary parameters, which are a systematic offset between the measurements previously published and the new ones, dnp, and the offsets between the RVs of the primary and of the secondary component, |$d_{2-1}^p$| and |$d_{2-1}^n$|⁠. The offset |$d_{2-1}^p$| is usually due to the fact that the published RVs were obtained from templates which are not specifically adapted to each component. For instance, a spectrovelocimeter like CORrelation – Radial – Velocities (Baranne, Mayor & Poncet 1979) was working by projecting any spectrum on a mask representing the spectrum of Arcturus. The offset between the primary and secondary RVs derived with todmor, |$d_{2-1}^n$| is expected to be null, but it is significant for some stars, since the spectra of the phoenix library do not perfectly represent the actual ones.

4.3 Results

Even with a correction, the uncertainties of the measurements from SOPHIE remain small and have weights much larger than the others. Therefore, incorporating the published data sets in the calculation essentially improved the accuracy of the period determined. Conversely, the significant precision of the new SOPHIE measurements allowed us to reach a very good accuracy on all other orbital parameters, especially the minimum masses.

The derived orbital elements for the 10 SB2 are given in Table 5. Among the 20 component stars, 15 of them have M sin 3i determined with an accuracy better than 0.7 per cent, while only 5 stars have minimum mass accuracies between 1 and 1.2 per cent.

Table 5.

The orbital elements derived from the previously published RV measurements and from the new ones. The radial velocity of the barycentre, V0, is in the reference system of the new measurements of the primary component. The minimum masses and minimum semimajor axes are derived from the true period (Ptrue = P × (1 − V0/c)).

HIPPT0 (BJD)eV0ω1K1|${\cal M}_1 \sin ^3 i$|a1sin iN1dnpσ(O1C1)p, n
HDK2|${\cal M}_2 \sin ^3 i$|a2sin iN2|$d^p_{2-1},d^n_{2-1}$|σ(O2C2)p, n
(d)2400000+(km s−1)(o)(km s−1)(⁠|${\cal M}_{\odot }$|⁠)(Gm)(km s−1)(km s−1)
12081443.28855905.740.584 94−7.883283.6616.7840.549382.9847+11−1.1410.634, 0.128
15850±0.023±0.12±0.000 54±0.046±0.10±0.057±0.0019±0.28±0.101
18.2580.505090.26147+11−0.208, −0.0640.548, 0.020
±0.015±0.0034±0.052±0.124, ±0.050
1379148.708 9555050.3920.187 81−8.53755.2616.0300.240510.545633+120.6860.431, 0.022
18328±0.000 23±0.043±0.000 78±0.012±0.29±0.015±0.0027±0.0090±0.078
27.070.142 4117.8090+11⋅⋅⋅, 0.400⋅⋅⋅, 0.246
±0.14±0.000 94±0.089⋅⋅⋅, ±0.096
17732277.950055230.2070.143 19−2.918159.1418.66441.135970.59841+11−1.0960.505, 0.0080
23626±0.0074±0.095±0.000 83±0.011±0.14±0.0051±0.0019±0.022±0.058
23.2080.913587.78441+110.279, 0.1161.670, 0.054
±0.017±0.0010±0.067±0.169, ±0.027
5627547.894 1056781.8090.2317−17.879247.5228.001.500717.9431a+13−1.2731.299, 0.571
100215±0.000 89±0.080±0.0018±0.18±0.71±0.18±0.0086±0.11±0.294
51.7090.812633.12810+130.963, 0.2733.786, 0.207
±0.087±0.0090±0.051±1.247, ±0.202
6172754.878 6456476.65090.347 44−1.5628185.67930.8421.43221.82343+120.1680.639, 0.020
110025±0.000 18±0.0072±0.000 51±0.0093±0.057±0.019±0.017±0.011±0.097
48.510.910434.330+12⋅⋅⋅, 0.358⋅⋅⋅, 0.435
±0.26±0.0060±0.18⋅⋅⋅, ±0.142
62935139.008155680.660.15080.24431.3715.6430.479129.55789+11−0.1890.680, 0.022
112138±0.0027±0.17±0.0018±0.011±0.44±0.023±0.0049±0.038±0.065
23.030.325443.510+11⋅⋅⋅, 0.416⋅⋅⋅, 0.245
±0.11±0.0020±0.20⋅⋅⋅, ±0.071
6719539.284 97456211.28410.785 84−9.532325.25045.441.173115.18137+14−1.1135.027, 0.021
120005±0.000 091±0.0045±0.000 50±0.016±0.031±0.12±0.0062±0.026±0.864
78.860.676026.3460+14⋅⋅⋅, −0.013⋅⋅⋅, 0.118
±0.22±0.0034±0.048⋅⋅⋅, ±0.050
87895881.62955650.400.4165−32.346135.4711.3930.9869125.57106+140.4560.842, 0.035
163840±0.065±0.49±0.0014±0.015±0.26±0.021±0.0097±0.22±0.047
17.3740.6471191.5016+13−0.754, 0.3191.210, 0.210
±0.077±0.0041±0.84±0.608, ±0.058
95575166.835156087.9930.13698−64.292863.2114.02020.2329131.86623+120.3941.225, 0.0098
183255±0.0031±0.094±0.00031±0.0040±0.20±0.0048±0.00051±0.011±0.233
15.6960.2080435.6759+120.356, 0.0971.981, 0.044
±0.016±0.00028±0.037±0.592, ±0.014
10032137.93992056254.2910.182420.941111.04334.3061.0619917.59652+110.3240.530, 0.068
195850±0.000081±0.010±0.00025±0.023±0.096±0.025±0.00081±0.013±0.079
45.09160.808023.128449+110.493, 0.1211.160, 0.011
±0.0089±0.0011±0.0041±0.174, ± 0.028
HIPPT0 (BJD)eV0ω1K1|${\cal M}_1 \sin ^3 i$|a1sin iN1dnpσ(O1C1)p, n
HDK2|${\cal M}_2 \sin ^3 i$|a2sin iN2|$d^p_{2-1},d^n_{2-1}$|σ(O2C2)p, n
(d)2400000+(km s−1)(o)(km s−1)(⁠|${\cal M}_{\odot }$|⁠)(Gm)(km s−1)(km s−1)
12081443.28855905.740.584 94−7.883283.6616.7840.549382.9847+11−1.1410.634, 0.128
15850±0.023±0.12±0.000 54±0.046±0.10±0.057±0.0019±0.28±0.101
18.2580.505090.26147+11−0.208, −0.0640.548, 0.020
±0.015±0.0034±0.052±0.124, ±0.050
1379148.708 9555050.3920.187 81−8.53755.2616.0300.240510.545633+120.6860.431, 0.022
18328±0.000 23±0.043±0.000 78±0.012±0.29±0.015±0.0027±0.0090±0.078
27.070.142 4117.8090+11⋅⋅⋅, 0.400⋅⋅⋅, 0.246
±0.14±0.000 94±0.089⋅⋅⋅, ±0.096
17732277.950055230.2070.143 19−2.918159.1418.66441.135970.59841+11−1.0960.505, 0.0080
23626±0.0074±0.095±0.000 83±0.011±0.14±0.0051±0.0019±0.022±0.058
23.2080.913587.78441+110.279, 0.1161.670, 0.054
±0.017±0.0010±0.067±0.169, ±0.027
5627547.894 1056781.8090.2317−17.879247.5228.001.500717.9431a+13−1.2731.299, 0.571
100215±0.000 89±0.080±0.0018±0.18±0.71±0.18±0.0086±0.11±0.294
51.7090.812633.12810+130.963, 0.2733.786, 0.207
±0.087±0.0090±0.051±1.247, ±0.202
6172754.878 6456476.65090.347 44−1.5628185.67930.8421.43221.82343+120.1680.639, 0.020
110025±0.000 18±0.0072±0.000 51±0.0093±0.057±0.019±0.017±0.011±0.097
48.510.910434.330+12⋅⋅⋅, 0.358⋅⋅⋅, 0.435
±0.26±0.0060±0.18⋅⋅⋅, ±0.142
62935139.008155680.660.15080.24431.3715.6430.479129.55789+11−0.1890.680, 0.022
112138±0.0027±0.17±0.0018±0.011±0.44±0.023±0.0049±0.038±0.065
23.030.325443.510+11⋅⋅⋅, 0.416⋅⋅⋅, 0.245
±0.11±0.0020±0.20⋅⋅⋅, ±0.071
6719539.284 97456211.28410.785 84−9.532325.25045.441.173115.18137+14−1.1135.027, 0.021
120005±0.000 091±0.0045±0.000 50±0.016±0.031±0.12±0.0062±0.026±0.864
78.860.676026.3460+14⋅⋅⋅, −0.013⋅⋅⋅, 0.118
±0.22±0.0034±0.048⋅⋅⋅, ±0.050
87895881.62955650.400.4165−32.346135.4711.3930.9869125.57106+140.4560.842, 0.035
163840±0.065±0.49±0.0014±0.015±0.26±0.021±0.0097±0.22±0.047
17.3740.6471191.5016+13−0.754, 0.3191.210, 0.210
±0.077±0.0041±0.84±0.608, ±0.058
95575166.835156087.9930.13698−64.292863.2114.02020.2329131.86623+120.3941.225, 0.0098
183255±0.0031±0.094±0.00031±0.0040±0.20±0.0048±0.00051±0.011±0.233
15.6960.2080435.6759+120.356, 0.0971.981, 0.044
±0.016±0.00028±0.037±0.592, ±0.014
10032137.93992056254.2910.182420.941111.04334.3061.0619917.59652+110.3240.530, 0.068
195850±0.000081±0.010±0.00025±0.023±0.096±0.025±0.00081±0.013±0.079
45.09160.808023.128449+110.493, 0.1211.160, 0.011
±0.0089±0.0011±0.0041±0.174, ± 0.028

aThe three first measurements in Griffin (2006) were discarded.

Table 5.

The orbital elements derived from the previously published RV measurements and from the new ones. The radial velocity of the barycentre, V0, is in the reference system of the new measurements of the primary component. The minimum masses and minimum semimajor axes are derived from the true period (Ptrue = P × (1 − V0/c)).

HIPPT0 (BJD)eV0ω1K1|${\cal M}_1 \sin ^3 i$|a1sin iN1dnpσ(O1C1)p, n
HDK2|${\cal M}_2 \sin ^3 i$|a2sin iN2|$d^p_{2-1},d^n_{2-1}$|σ(O2C2)p, n
(d)2400000+(km s−1)(o)(km s−1)(⁠|${\cal M}_{\odot }$|⁠)(Gm)(km s−1)(km s−1)
12081443.28855905.740.584 94−7.883283.6616.7840.549382.9847+11−1.1410.634, 0.128
15850±0.023±0.12±0.000 54±0.046±0.10±0.057±0.0019±0.28±0.101
18.2580.505090.26147+11−0.208, −0.0640.548, 0.020
±0.015±0.0034±0.052±0.124, ±0.050
1379148.708 9555050.3920.187 81−8.53755.2616.0300.240510.545633+120.6860.431, 0.022
18328±0.000 23±0.043±0.000 78±0.012±0.29±0.015±0.0027±0.0090±0.078
27.070.142 4117.8090+11⋅⋅⋅, 0.400⋅⋅⋅, 0.246
±0.14±0.000 94±0.089⋅⋅⋅, ±0.096
17732277.950055230.2070.143 19−2.918159.1418.66441.135970.59841+11−1.0960.505, 0.0080
23626±0.0074±0.095±0.000 83±0.011±0.14±0.0051±0.0019±0.022±0.058
23.2080.913587.78441+110.279, 0.1161.670, 0.054
±0.017±0.0010±0.067±0.169, ±0.027
5627547.894 1056781.8090.2317−17.879247.5228.001.500717.9431a+13−1.2731.299, 0.571
100215±0.000 89±0.080±0.0018±0.18±0.71±0.18±0.0086±0.11±0.294
51.7090.812633.12810+130.963, 0.2733.786, 0.207
±0.087±0.0090±0.051±1.247, ±0.202
6172754.878 6456476.65090.347 44−1.5628185.67930.8421.43221.82343+120.1680.639, 0.020
110025±0.000 18±0.0072±0.000 51±0.0093±0.057±0.019±0.017±0.011±0.097
48.510.910434.330+12⋅⋅⋅, 0.358⋅⋅⋅, 0.435
±0.26±0.0060±0.18⋅⋅⋅, ±0.142
62935139.008155680.660.15080.24431.3715.6430.479129.55789+11−0.1890.680, 0.022
112138±0.0027±0.17±0.0018±0.011±0.44±0.023±0.0049±0.038±0.065
23.030.325443.510+11⋅⋅⋅, 0.416⋅⋅⋅, 0.245
±0.11±0.0020±0.20⋅⋅⋅, ±0.071
6719539.284 97456211.28410.785 84−9.532325.25045.441.173115.18137+14−1.1135.027, 0.021
120005±0.000 091±0.0045±0.000 50±0.016±0.031±0.12±0.0062±0.026±0.864
78.860.676026.3460+14⋅⋅⋅, −0.013⋅⋅⋅, 0.118
±0.22±0.0034±0.048⋅⋅⋅, ±0.050
87895881.62955650.400.4165−32.346135.4711.3930.9869125.57106+140.4560.842, 0.035
163840±0.065±0.49±0.0014±0.015±0.26±0.021±0.0097±0.22±0.047
17.3740.6471191.5016+13−0.754, 0.3191.210, 0.210
±0.077±0.0041±0.84±0.608, ±0.058
95575166.835156087.9930.13698−64.292863.2114.02020.2329131.86623+120.3941.225, 0.0098
183255±0.0031±0.094±0.00031±0.0040±0.20±0.0048±0.00051±0.011±0.233
15.6960.2080435.6759+120.356, 0.0971.981, 0.044
±0.016±0.00028±0.037±0.592, ±0.014
10032137.93992056254.2910.182420.941111.04334.3061.0619917.59652+110.3240.530, 0.068
195850±0.000081±0.010±0.00025±0.023±0.096±0.025±0.00081±0.013±0.079
45.09160.808023.128449+110.493, 0.1211.160, 0.011
±0.0089±0.0011±0.0041±0.174, ± 0.028
HIPPT0 (BJD)eV0ω1K1|${\cal M}_1 \sin ^3 i$|a1sin iN1dnpσ(O1C1)p, n
HDK2|${\cal M}_2 \sin ^3 i$|a2sin iN2|$d^p_{2-1},d^n_{2-1}$|σ(O2C2)p, n
(d)2400000+(km s−1)(o)(km s−1)(⁠|${\cal M}_{\odot }$|⁠)(Gm)(km s−1)(km s−1)
12081443.28855905.740.584 94−7.883283.6616.7840.549382.9847+11−1.1410.634, 0.128
15850±0.023±0.12±0.000 54±0.046±0.10±0.057±0.0019±0.28±0.101
18.2580.505090.26147+11−0.208, −0.0640.548, 0.020
±0.015±0.0034±0.052±0.124, ±0.050
1379148.708 9555050.3920.187 81−8.53755.2616.0300.240510.545633+120.6860.431, 0.022
18328±0.000 23±0.043±0.000 78±0.012±0.29±0.015±0.0027±0.0090±0.078
27.070.142 4117.8090+11⋅⋅⋅, 0.400⋅⋅⋅, 0.246
±0.14±0.000 94±0.089⋅⋅⋅, ±0.096
17732277.950055230.2070.143 19−2.918159.1418.66441.135970.59841+11−1.0960.505, 0.0080
23626±0.0074±0.095±0.000 83±0.011±0.14±0.0051±0.0019±0.022±0.058
23.2080.913587.78441+110.279, 0.1161.670, 0.054
±0.017±0.0010±0.067±0.169, ±0.027
5627547.894 1056781.8090.2317−17.879247.5228.001.500717.9431a+13−1.2731.299, 0.571
100215±0.000 89±0.080±0.0018±0.18±0.71±0.18±0.0086±0.11±0.294
51.7090.812633.12810+130.963, 0.2733.786, 0.207
±0.087±0.0090±0.051±1.247, ±0.202
6172754.878 6456476.65090.347 44−1.5628185.67930.8421.43221.82343+120.1680.639, 0.020
110025±0.000 18±0.0072±0.000 51±0.0093±0.057±0.019±0.017±0.011±0.097
48.510.910434.330+12⋅⋅⋅, 0.358⋅⋅⋅, 0.435
±0.26±0.0060±0.18⋅⋅⋅, ±0.142
62935139.008155680.660.15080.24431.3715.6430.479129.55789+11−0.1890.680, 0.022
112138±0.0027±0.17±0.0018±0.011±0.44±0.023±0.0049±0.038±0.065
23.030.325443.510+11⋅⋅⋅, 0.416⋅⋅⋅, 0.245
±0.11±0.0020±0.20⋅⋅⋅, ±0.071
6719539.284 97456211.28410.785 84−9.532325.25045.441.173115.18137+14−1.1135.027, 0.021
120005±0.000 091±0.0045±0.000 50±0.016±0.031±0.12±0.0062±0.026±0.864
78.860.676026.3460+14⋅⋅⋅, −0.013⋅⋅⋅, 0.118
±0.22±0.0034±0.048⋅⋅⋅, ±0.050
87895881.62955650.400.4165−32.346135.4711.3930.9869125.57106+140.4560.842, 0.035
163840±0.065±0.49±0.0014±0.015±0.26±0.021±0.0097±0.22±0.047
17.3740.6471191.5016+13−0.754, 0.3191.210, 0.210
±0.077±0.0041±0.84±0.608, ±0.058
95575166.835156087.9930.13698−64.292863.2114.02020.2329131.86623+120.3941.225, 0.0098
183255±0.0031±0.094±0.00031±0.0040±0.20±0.0048±0.00051±0.011±0.233
15.6960.2080435.6759+120.356, 0.0971.981, 0.044
±0.016±0.00028±0.037±0.592, ±0.014
10032137.93992056254.2910.182420.941111.04334.3061.0619917.59652+110.3240.530, 0.068
195850±0.000081±0.010±0.00025±0.023±0.096±0.025±0.00081±0.013±0.079
45.09160.808023.128449+110.493, 0.1211.160, 0.011
±0.0089±0.0011±0.0041±0.174, ± 0.028

aThe three first measurements in Griffin (2006) were discarded.

A comparison between the standard deviation of the residuals of the previous measurements and of the new ones also illustrates the improvements due to SOPHIE. It results from the last column of Table 5 that σ(O−C)p is between 2.3 and 239 times larger than σ(O−C)p, with a median around 30.

The orbital solutions, including previously published measurements, are displayed in Fig. 1. The (O−C) residuals are included in Table 3 and are plotted in Fig. 2. We do not observe any drift for any of the 10 SB2.

The spectroscopic orbits of the 10 SB2; the circles refer to the primary component, and the triangle to the secondary; the large filled symbols refer to the new RV measurements obtained with SOPHIE. For each SB2, the RVs are shifted to the zero-point of the SOPHIE measurements of the primary component.
Figure 1.

The spectroscopic orbits of the 10 SB2; the circles refer to the primary component, and the triangle to the secondary; the large filled symbols refer to the new RV measurements obtained with SOPHIE. For each SB2, the RVs are shifted to the zero-point of the SOPHIE measurements of the primary component.

The residuals of the RVs obtained from todmor for the 10 SB2s. The circles refer to the primary component and the triangles to the secondary component. For readability, the residuals of the most accurate RV measurements are in filled symbols.
Figure 2.

The residuals of the RVs obtained from todmor for the 10 SB2s. The circles refer to the primary component and the triangles to the secondary component. For readability, the residuals of the most accurate RV measurements are in filled symbols.

5 COMBINED ORBITAL SOLUTION AND MASSES FOR HIP 87895

HIP 87895 is the close visual binary (VB) MCA 50. Among the many observations recorded in the online Fourth Catalogue of Interferometric Measurements of Binary Stars,2 (Third Catalog; Hartkopf, McAlister & Mason 2001) we found three very accurate long-base interferometric measurements performed with the Palomar Testbed Interferometer (PTI). Since the RV measurements are already providing parameters common to the spectroscopic and to the visual orbits, three two-dimensional measurements are quite sufficient to derive the remaining ones, which are the orbital inclination, i, the position angle of the nodal line, Ω, and the apparent semimajor axis or the trigonometric parallax (both may equally be used).

These measurements and the rescaled error ellipsoids provided by Muterspaugh et al. (2010) are taken into account simultaneously with our RV measurements, in order to directly derive the masses of the components and the trigonometric parallax of the system.

The results are given in Table 6 and in Fig. 3. We derived the two masses with accuracies of 1.2 and 0.98 per cent, respectively.

The visual part of the combined orbit of HIP 87895.Upper panel: the visual orbit; the circles are the three positions obtained from long-base interferometry; the node line is in dashes. Middle panel: the residuals along the semimajor axis of the error ellipsoid. Lower panel: the residuals along the semiminor axis of the error ellipsoid.
Figure 3.

The visual part of the combined orbit of HIP 87895.Upper panel: the visual orbit; the circles are the three positions obtained from long-base interferometry; the node line is in dashes. Middle panel: the residuals along the semimajor axis of the error ellipsoid. Lower panel: the residuals along the semiminor axis of the error ellipsoid.

Table 6.

The combined VB+SB2 solutions of HIP 87895. For consistency with the SB orbits and with the forthcoming astrometric orbit, ω refer to the motion of the primary component.

HIP 87895
P (d)881.628 ± 0.064
T0 (BJD-2400000)55650.39 ± 0.38
e0.4165 ± 0.0010
V0 (km s−1)−32.347 ± 0.014
ω1 (o)135.46 ± 0.16
Ω(o; eq. 2000)175.32 ± 0.44
i (o)72..83 ± 0.47
ex a (mas)80.64
|${\cal M}_1$| (⁠|${\cal M}_{\odot }$|⁠)1.132 ± 0.014
|${\cal M}_2$| (⁠|${\cal M}_{\odot }$|⁠)0.7421 ± 0.0073
ϖ (mas)36.35 ± 0.20
dnp (km s−1)0.456 ± 0.047
d2−1 p (km s−1)−0.754 ± 0.608
d2−1 n (km s−1)0.320 ± 0.056
σ(O–C) PTI (mas)0.086
σ(O–C) RV p (km s−1)0.841, 1.211
σ(O–C) RV n (km s−1)0.035, 0.209
HIP 87895
P (d)881.628 ± 0.064
T0 (BJD-2400000)55650.39 ± 0.38
e0.4165 ± 0.0010
V0 (km s−1)−32.347 ± 0.014
ω1 (o)135.46 ± 0.16
Ω(o; eq. 2000)175.32 ± 0.44
i (o)72..83 ± 0.47
ex a (mas)80.64
|${\cal M}_1$| (⁠|${\cal M}_{\odot }$|⁠)1.132 ± 0.014
|${\cal M}_2$| (⁠|${\cal M}_{\odot }$|⁠)0.7421 ± 0.0073
ϖ (mas)36.35 ± 0.20
dnp (km s−1)0.456 ± 0.047
d2−1 p (km s−1)−0.754 ± 0.608
d2−1 n (km s−1)0.320 ± 0.056
σ(O–C) PTI (mas)0.086
σ(O–C) RV p (km s−1)0.841, 1.211
σ(O–C) RV n (km s−1)0.035, 0.209
Table 6.

The combined VB+SB2 solutions of HIP 87895. For consistency with the SB orbits and with the forthcoming astrometric orbit, ω refer to the motion of the primary component.

HIP 87895
P (d)881.628 ± 0.064
T0 (BJD-2400000)55650.39 ± 0.38
e0.4165 ± 0.0010
V0 (km s−1)−32.347 ± 0.014
ω1 (o)135.46 ± 0.16
Ω(o; eq. 2000)175.32 ± 0.44
i (o)72..83 ± 0.47
ex a (mas)80.64
|${\cal M}_1$| (⁠|${\cal M}_{\odot }$|⁠)1.132 ± 0.014
|${\cal M}_2$| (⁠|${\cal M}_{\odot }$|⁠)0.7421 ± 0.0073
ϖ (mas)36.35 ± 0.20
dnp (km s−1)0.456 ± 0.047
d2−1 p (km s−1)−0.754 ± 0.608
d2−1 n (km s−1)0.320 ± 0.056
σ(O–C) PTI (mas)0.086
σ(O–C) RV p (km s−1)0.841, 1.211
σ(O–C) RV n (km s−1)0.035, 0.209
HIP 87895
P (d)881.628 ± 0.064
T0 (BJD-2400000)55650.39 ± 0.38
e0.4165 ± 0.0010
V0 (km s−1)−32.347 ± 0.014
ω1 (o)135.46 ± 0.16
Ω(o; eq. 2000)175.32 ± 0.44
i (o)72..83 ± 0.47
ex a (mas)80.64
|${\cal M}_1$| (⁠|${\cal M}_{\odot }$|⁠)1.132 ± 0.014
|${\cal M}_2$| (⁠|${\cal M}_{\odot }$|⁠)0.7421 ± 0.0073
ϖ (mas)36.35 ± 0.20
dnp (km s−1)0.456 ± 0.047
d2−1 p (km s−1)−0.754 ± 0.608
d2−1 n (km s−1)0.320 ± 0.056
σ(O–C) PTI (mas)0.086
σ(O–C) RV p (km s−1)0.841, 1.211
σ(O–C) RV n (km s−1)0.035, 0.209

6 SUMMARY AND CONCLUSION

We obtained for 10 SB2 new RV measurements from spectra taken with SOPHIE, among which 4 new SB2 are identified in paper I. The todmor algorithm was used to separate the two components in each spectrum. All 10 systems had previously published measurements in archive, which we added to our measurements to calculate the orbital solutions. We also derived estimations of stellar parameters obtained by optimizing the two-dimensional cross-correlation obtained with todmor.

We achieved the objective of deriving minimum mass with an accuracy better than 1 per cent for 15 of the 20 stars of our SB2 sample. Moreover, all 10 binaries have the minimum mass of both components estimated with relative uncertainties lower than 1.2 per cent. This is a great achievement of the combination of todmor and SOPHIE. Especially it did very well in extreme configurations such as with small SNR (∼40), and very small flux ratio (α < 0.05) between the two components.

We combined our RV measurements of HIP 87895 with three relative positions derived from long-based interferometric observations, and we obtained new mass estimate of the components, M1 = 1.132 ± 0.014 M and M2 = 0.7421 ± 0.0073 M. On the basis of speckle observations, McAlister et al. (1995) previously derived M1 = 1.16 ± 0.12 M and M2 = 0.77 ± 0.05 M, i.e. with relative errors of 10 and 6 per cent. Therefore, our measurements refine profitably to the 1 per cent level the confidence range on the masses of HIP 87895.

Added to the systems observed with pionier, we have now three binaries observed with SOPHIE which may be used to check the masses that will be derived from Gaia.

The project is based on observations performed at the Observatoire de Haute–Provence (CNRS), France and was supported by the French INSU-CNRS ‘Programme National de Physique Stellaire’ and ‘Action Spécifique Gaia’. We are grateful to the staff of the Haute–Provence Observatory, and especially to Dr F. Bouchy, Dr H. Le Coroller, Dr M. Véron, and the night assistants, for their kind assistance. We made use of the SIMBAD data base, operated at CDS, Strasbourg, France. This research has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant-agreement numbers 291352 (ERC). The authors are very thankful to the anonymous reviewer for his help to improve the quality of this paper.

REFERENCES

Baranne
A.
Mayor
M.
Poncet
J. L.
1979
Vistas Astron.
23
279

Carquillat
J.-M.
Ginestet
N.
2000
A&AS
144
317

Griffin
R. F.
2004
Observatory
124
371

Griffin
R. F.
2005
Observatory
125
367

Griffin
R. F.
2006
Observatory
126
19

Griffin
R. F.
Suchkov
A. A.
2003
ApJS
147
103

Halbwachs
J. L.
Mayor
M.
Udry
S.
2012
MNRAS
422
14

Halbwachs
J. L.
et al.
2014
MNRAS
445
2371

Halbwachs
J. L.
et al.
2016
MNRAS
455
3303

Hartkopf
W. I.
McAlister
H. A.
Mason
B. D.
2001
AJ
122
3480

Hodgson
R. M.
Bailey
D. G.
Naylor
M. J.
Ng
A. L. M.
McNeil
S. J.
1985
Image Vis. Comput.
3
4

Husser
T.-O.
Wende-von Berg
S.
Dreizler
S.
Homeier
D.
Reiners
A.
Barman
T.
Hauschildt
P. H.
2013
A&A
553
A6

Imbert
M.
2006
Rom. Astron. J.
16
3

Lebreton
Y.
2005
Turon
C.
O'Flaherty
K. S.
Perryman
M. A. C.
ESA SP-576: The Three-Dimensional Universe with Gaia
493

McAlister
H. A.
Hartkopf
W. I.
Mason
B. D.
Fekel
F. C.
Ianna
P. A.
Tokovinin
A. A.
Griffin
R. F.
Culver
R. B.
1995
AJ
110
366

Muterspaugh
M. W.
et al.
2010
AJ
140
1579

Pourbaix
D.
et al.
2004
A&A
424
727

Shajn
G. A.
1939
Pulkovo Circ.
25
26

Stuart
A.
Ord
K.
1994
Kendall's Advanced Theory of Statistics, Vol. 1
Edward Arnold
London

Tokovinin
A. A.
1991
A&AS
91
497

Torres
G.
Fischer
D. A.
Sozzetti
A.
Buchhave
L. A.
Winn
J. N.
Holman
M. J.
Carter
J. A.
2012
ApJ
757
161

Zucker
S.
Mazeh
T.
1994
ApJ
420
806

Zucker
S.
Mazeh
T.
Santos
N. C.
Udry
S.
Mayor
M.
2004
A&A
426
695