-
PDF
- Split View
-
Views
-
Cite
Cite
E. E. Nokhrina, V. S. Beskin, Y. Y. Kovalev, A. A. Zheltoukhov, Intrinsic physical conditions and structure of relativistic jets in active galactic nuclei, Monthly Notices of the Royal Astronomical Society, Volume 447, Issue 3, 1 March 2015, Pages 2726–2737, https://doi.org/10.1093/mnras/stu2587
- Share Icon Share
Abstract
The analysis of the frequency dependence of the observed shift of the cores of relativistic jets in active galactic nuclei (AGNs) allows us to evaluate the number density of the outflowing plasma ne and, hence, the multiplicity parameter λ = ne/nGJ, where nGJ is the Goldreich–Julian number density. We have obtained the median value for λmed = 3 × 1013 and the median value for the Michel magnetization parameter σM, med = 8 from an analysis of 97 sources. Since the magnetization parameter can be interpreted as the maximum possible Lorentz factor Γ of the bulk motion which can be obtained for relativistic magnetohydrodynamic (MHD) flow, this estimate is in agreement with the observed superluminal motion of bright features in AGN jets. Moreover, knowing these key parameters, one can determine the transverse structure of the flow. We show that the poloidal magnetic field and particle number density are much larger in the centre of the jet than near the jet boundary. The MHD model can also explain the typical observed level of jet acceleration. Finally, casual connectivity of strongly collimated jets is discussed.
1 INTRODUCTION
Strongly collimated jets represent one of the most visible signs of the activity of compact astrophysical sources. They are observed both in relativistic objects such as active galactic nuclei (AGNs) and microquasars, and in young stars where the motion of matter is definitely non-relativistic. This implies that we are dealing with some universal and extremely efficient mechanism of energy release.
At present the magnetohydrodynamic (MHD) model of activity of compact objects is accepted by most astrophysicists (Mestel 1999; Krolik 1999). At the heart of the MHD approach lies the model of the unipolar inductor, i.e. a rotating source of direct current. It is believed that the electromagnetic energy flux – the Poynting flux – plays the main role in the energy transfer from the ‘central engine’ to active regions. The conditions for the existence of such a ‘central engine’ are satisfied in all the compact sources mentioned above. Indeed, all compact sources are assumed to harbour a rapidly spinning central body (black hole, neutron star or young star) and some regular magnetic field, which leads to the emergence of strong induction electric fields. The electric fields, in turn, lead to the appearance of longitudinal electric currents resulting in effective energy losses and particle acceleration.
The first studies of the electromagnetic model of compact sources (namely radio pulsars) were carried out as early as the end of the 1960s (Goldreich & Julian 1969; Michel 1969). It was evidenced that there are objects in the Universe in which electrodynamical processes can play the decisive role in the energy release. Then, Blandford (1976) and Lovelace (1976) independently suggested that the same mechanism can also operate in AGNs, and for nearly 40 years this model has remained the leading one.
As a result, the MHD model was successfully used to describe a lot of processes in active nuclei including the problem of the stability of jets (Benford 1981; Hardee & Norman 1988; Appl & Camenzind 1992; Istomin & Pariev 1994; Bisnovatyi-Kogan 2007; Lyubarsky 2009) and their synchrotron radiation (Blandford & Königl 1979; Pariev, Istomin & Beresnyak 2003; Lyutikov, Pariev & Gabuzda 2005). In particular, it was shown both analytically (Bogovalov 1995; Heyvaerts & Norman 2003; Beskin & Nokhrina 2009) and numerically (Komissarov et al. 2006; Tchekhovskoy, McKinney & Narayan 2009; Porth et al. 2011; McKinney, Tchekhovskoy & Blanford 2012) that for sufficiently small ambient pressure the dense core can be formed. This is related both to advances in the theory which have at last formulated sufficiently simple analytical relations (Blandford & Znajek 1977; Beskin 2010), and to the breakthrough in numerical simulations (Komissarov et al. 2006; Tchekhovskoy et al. 2009; Porth et al. 2011; McKinney et al. 2012) which confirmed theoretical predictions.
Unfortunately, up to now neither the magnetization nor the multiplicity parameters were actually known as the observations could not give us the direct information about the number density and bulk energy of particles. The core-shift method has been applied to obtain the concentration ne, magnetic field B (Lobanov 1998; O'Sullivan & Gabuzda 2009; Pushkarev et al. 2012; Zdziarski et al. 2014) and the jet composition (Hirotani 2005) in AGN jets. However, evaluation of multiplicity and Michel magnetization parameters, which needs to estimate the total jet power, has not been done. From a theoretical point of view if the inner parts of the accretion disc are hot enough, then electron–positron pairs can be produced by two-photon collisions, where photons with sufficient energy originate from the inner parts of the accretion disc (Blandford & Znajek 1977; Moscibrodzka et al. 2011). In this case λ ∼ 1010–1013, and the Michel magnetization parameter σM ∼ 10–103. The second model takes into account the appearance of the region where the GJ plasma density is equal to zero due to general relativity effects that corresponds to the outer gap in the pulsar magnetosphere (Beskin, Istomin & Pariev 1992; Hirotani & Okamoto 1998). This model gives λ ∼ 102–103, and σM ∼ 1010–1013.
This large difference in the estimates for the magnetization parameter σM leads to two completely different pictures of the flow structure in jets. In particular, it determines whether the flow is magnetically or particle dominated. The point is that for ordinary jets r⊥/RL ∼ 104–105. As a result, using the universal asymptotic solution Γ ≈ r⊥/RL (4), one can obtain that the values σM ∼ 10–103 correspond to the saturation regime when almost all the Poynting flux Pem is transmitted to the particle kinetic energy flux Ppart. On the other hand, for σM ∼ 1012 the jet remains magnetically dominated (Ppart ≪ Pem). Thus, the determination of the Michel magnetization parameter σM is the key point in the analysis of the internal structure of relativistic jets.
The paper is organized as follows. In Section 2, it is shown that VLBI (very long baseline interferometry) observations of synchrotron self-absorption in AGN jets allow us to evaluate the number density of the outflowing plasma ne and, hence, the multiplicity parameter λ. We discuss the source sample and present the result for multiplicity and Michel magnetization parameters in Section 3. The values λ ∼ 1013 obtained from the analysis of 97 sources shows that for most jets the magnetization parameter σM ≲ 30. Since the magnetization parameter is the maximum possible value of the Lorentz factor of the relativistic bulk flow, this estimate is consistent with observed superluminal motion. In Section 4, it is shown that for physical parameters determined above, the poloidal magnetic field and particle number density are much larger in the centre of the jet than near its boundary. Finally, in Section 5 the casual connectivity of strongly collimated supersonic jets is discussed. Throughout the paper, we use the Λ cold dark matter cosmological model with H0 = 71 km s−1 Mpc−1, Ωm = 0.27 and |$\Omega _\Lambda =0.73$| (Komatsu et al. 2009).
2 THE METHOD
2.1 General relations
To determine the multiplicity parameter λ and the Michel magnetization parameter σM one can use the dependence on the visible position of the core of the jet from the observation frequency (Blandford & Königl 1979; Gould 1979; Marscher 1983; Lobanov 1998; Hirotani 2005; Kovalev et al. 2008; O'Sullivan & Gabuzda 2009; Sokolovsky et al. 2011; Pushkarev et al. 2012). This effect is associated with the absorption of the synchrotron photon gas by relativistic electrons (positrons) in a jet.
Typically, the parsec-scale radio morphology of a bright AGN manifests a one-sided jet structure due to Doppler boosting that enhances the emission of the approaching jet. The apparent base of the jet is commonly called the ‘core’, and it is often the brightest and most compact feature in VLBI images of AGN. The VLBI core is thought to represent the jet region where the optical depth is equal to unity.
We will employ the following model to connect the physical parameters at the jet launching region with the observable core-shift. There is a MHD relativistic outflow of non-emitting plasma moving with bulk Lorentz factor Γ and number density ne in the observer rest frame. On the latter we superimpose the flow of emitting particles with distribution |${\rm d}n_{{\rm syn}*} = k_{{\rm e}*}\gamma _{*}^{-1+2\alpha }{\rm d}\gamma _{*}$|, γ* ∈ [γmin*; γmax*]. Here, nsyn* is number density of emitting plasma, ke* is number density amplitude and γ* is the emitting particles’ Lorentz factor. All the parameters with subscript ‘*’ are taken in the non-emitting plasma rest frame, i.e. in the frame which locally moves with the bulk Lorentz factor Γ.
2.2 The saturation regime
To determine the intrinsic parameters of relativistic jets, let us consider two cases for the different magnetization at 1 pc. In what follows, we assume that the flow at its base is highly, or at least mildly, magnetized, i.e. σM > 1.
2.3 Highly magnetized outflow
3 THE STATISTICS FOR MULTIPLICITY PARAMETER
Several methods can be applied to measure the apparent shift of the core position as discussed by Kovalev et al. (2008). As a result, a magnitude of the shift, designated by η, can be measured and presented in units [mas GHz] or [pc GHz]. Knowing this quantity, one can use the expressions (31)–(35) to estimate the multiplicity and magnetization parameters.
3.1 The sample of objects
In our analysis, we use the results of two surveys of the apparent core shift in AGN jets: Sokolovsky et al. (2011) show results for 20 objects obtained from nine frequencies between 1.4 and 15.3 GHz (S-sample) and Pushkarev et al. (2012) have results for 163 AGN from four frequencies covering 8.1–15.3 GHz (P-sample). Of these we use only those sources for which the apparent opening angle is known from Pushkarev et al. (2009). As a result, 97 sources are left from the P-sample and 5 from the S-sample. Although all of S-sample sources are in P-sample, we have included them as an independent measurement of core shift. Moreover, for objects 0215+015 and 1219+285, the two measurements of core shift have been made for two different epochs, and we included them too. This leaves us with 97 sources and 104 measurements of core shift.
The distance to the objects is determined from the redshift and accepted cosmology model. For a Doppler factor we use the estimate δ ≈ βapp, where measured apparent velocity βapp is a ratio of apparent speed of a bright feature in a jet to the speed of light. We believe this to be a good estimate because Cohen et al. (2007) have showed using Monte Carlo simulations that the probability density p(δ| βapp) to observe a Doppler factor for a given apparent velocity is peaked around unity. This is done under an assumption that the measured βapp does represent the underlying jet flow. The redshifts z and the apparent velocities βapp are taken from Lister et al. (2013).
The typical error for core-shift measurements in Pushkarev et al. (2012) and Sokolovsky et al. (2011) is 0.05 mas. There are 23 objects in our sample that have the core-shift values less than 0.05 mas. For them we have replaced the core-shift values by 0.05 mas for our calculations for convenience of the λ and σM analysis.
3.2 Results and discussion
Using the formula (31), we obtain the following result for the equipartition regime. The obtained values for the multiplication parameter λ and magnetization parameter σM are presented in Table 1. Their distributions are shown in Fig. 1 and Fig. 2, respectively. In cases when more than one estimate is determined per source (e.g. for 0215+015), an average value is used in the histograms. The resultant median value for the multiplicity parameter λmed = 3 × 1013, and median value for magnetization parameter σM, med = 8. The multiplicity parameter for our sample lies in the interval (3 × 1012; 4 × 1014), and the Michel magnetization parameter σM lies correspondingly in the (0.4; 61) interval.

Distributions of the multiplicity parameter λ for the sample of 97 sources. Two objects with λ = 2.8 × 1014 and 3.6 × 1014 lie out of the shown range of values.

Distributions of the Michel magnetization parameter σM for the sample of 97 sources.
Source . | z . | βapp . | χapp . | S0.3 . | Pjet . | Reference . | Δrcore . | Epoch . | λ . | σ . |
---|---|---|---|---|---|---|---|---|---|---|
. | . | (c) . | (°) . | (Jy) . | (1045 erg s−1) . | for S0.3 . | (mas) . | for Δrcore . | (1013) . | . |
(1) . | (2) . | (3) . | (4) . | (5) . | (6) . | (7) . | (8) . | (9) . | (10) . | (11) . |
0003−066 | 0.347 | 8.40 | 16.3 | 2.17 | 1.07 | 2 | 0.035 | 2006-07-07 | 1.21 | 9.69 |
0106+013 | 2.099 | 24.37 | 23.6 | 2.85 | 10.50 | 6 | 0.005 | 2006-07-07 | 2.02 | 23.67 |
0119+115 | 0.570 | 18.57 | 15.6 | 2.24 | 1.86 | 6 | 0.347 | 2006-06-15 | 3.84 | 4.27 |
0133+476 | 0.859 | 15.36 | 21.7 | 1.63 | 2.54 | 8 | 0.131 | 2006-08-09 | 3.52 | 5.80 |
0202+149 | 0.405 | 15.89 | 16.4 | 6.25 | 2.39 | 3 | 0.122 | 2006-09-06 | 1.63 | 10.90 |
0202+319 | 1.466 | 10.15 | 13.4 | 0.76 | 2.99 | 8 | 0.013 | 2006-08-09 | 2.17 | 11.13 |
0212+735 | 2.367 | 6.55 | 16.4 | 1.54 | 5.17 | 8 | 0.149 | 2006-07-07 | 9.82 | 4.41 |
0215+015 | 1.715 | 25.06 | 36.7 | 0.88 | 3.90 | 5 | 0.088 | 2006-04-28 | 3.75 | 7.54 |
0.241 | 2006-12-01 | 7.97 | 3.54 | |||||||
0234+285 | 1.206 | 21.99 | 19.8 | 1.45 | 3.52 | 5 | 0.275 | 2006-09-06 | 5.29 | 4.79 |
0333+321 | 1.259 | 13.07 | 8.0 | 3.68 | 6.72 | 7 | 0.279 | 2006-07-07 | 4.10 | 8.62 |
0336−019 | 0.852 | 24.45 | 26.8 | 2.49 | 3.26 | 6 | 0.117 | 2006-08-09 | 2.66 | 8.68 |
0403−132 | 0.571 | 20.80 | 16.4 | 7.62 | 4.45 | 2 | 0.346 | 2006-05-24 | 3.66 | 6.95 |
0420−014 | 0.916 | 5.74 | 22.7 | 0.87 | 1.84 | 3 | 0.267 | 2006-10-06 | 13.49 | 1.30 |
0458−020 | 2.286 | 13.57 | 23.1 | 3.54 | 11.20 | 3 | 0.006 | 2006-11-10 | 3.20 | 17.26 |
0528+134 | 2.070 | 17.34 | 16.1 | 1.02 | 5.85 | 2 | 0.167 | 2006-10-06 | 4.81 | 7.40 |
0529+075 | 1.254 | 18.03 | 56.4 | 1.75 | 4.54 | 2 | 0.110 | 2006-08-09 | 3.83 | 7.58 |
0605−085 | 0.870 | 19.19 | 14.0 | 1.43 | 2.39 | 3 | 0.096 | 2006-11-10 | 1.66 | 11.95 |
0607−157 | 0.323 | 1.918 | 35.1 | 2.31 | 0.96 | 3 | 0.240 | 2006-09-06 | 28.46 | 0.38 |
0642+449 | 3.396 | 8.53 | 23.4 | 0.70 | 7.68 | 8 | 0.110 | 2006-10-06 | 5.27 | 8.29 |
0730+504 | 0.720 | 14.07 | 14.8 | 0.71 | 1.20 | 8 | 0.262 | 2006-05-24 | 4.27 | 3.21 |
0735+178 | 0.450 | 5.04 | 21.0 | 1.81 | 1.23 | 8 | 0.039 | 2006-04-28 | 2.56 | 5.07 |
0736+017 | 0.189 | 13.79 | 17.9 | 1.79 | 0.42 | 3 | 0.079 | 2006-06-15 | 0.82 | 8.38 |
0738+313 | 0.631 | 10.72 | 10.5 | 1.26 | 1.48 | 3 | 0.183 | 2006-09-06 | 2.85 | 5.23 |
0748+126 | 0.889 | 14.58 | 16.2 | 1.45 | 2.65 | 2 | 0.098 | 2006-08-09 | 2.41 | 8.69 |
0754+100 | 0.266 | 14.40 | 13.7 | 0.74 | 0.39 | 2 | 0.266 | 2006-04-28 | 2.06 | 3.32 |
0804+499 | 1.436 | 1.15 | 35.3 | 0.60 | 2.49 | 8 | 0.094 | 2006-10-06 | 35.88 | 0.61 |
0805−077 | 1.837 | 41.76 | 18.8 | 2.60 | 9.26 | 2 | 0.207 | 2006-05-24 | 3.12 | 14.09 |
0823+033 | 0.505 | 12.88 | 13.4 | 0.63 | 0.71 | 5 | 0.141 | 2006-06-15 | 2.12 | 4.71 |
0827+243 | 0.942 | 19.81 | 14.6 | 0.71 | 1.80 | 2 | 0.150 | 2006-05-24 | 2.52 | 6.92 |
0829+046 | 0.174 | 10.13 | 18.7 | 0.67 | 0.21 | 2 | 0.109 | 2006-07-07 | 1.28 | 3.82 |
0836+710 | 2.218 | 21.08 | 12.4 | 5.06 | 17.75 | 2 | 0.186 | 2006-09-06 | 3.81 | 16.43 |
0851+202 | 0.306 | 15.14 | 28.5 | 1.11 | 0.56 | 3 | 0.028 | 2006-04-28 | 1.08 | 7.69 |
0906+015 | 1.026 | 22.08 | 17.5 | 1.54 | 3.05 | 3 | 0.168 | 2006-10-06 | 3.04 | 7.56 |
0917+624 | 1.453 | 12.07 | 15.9 | 1.27 | 4.07 | 8 | 0.112 | 2006-08-09 | 3.95 | 7.14 |
0923+392 | 0.695 | 2.76 | 10.8 | 3.28 | 3.03 | 5 | 0.042 | 2006-07-07 | 3.23 | 6.69 |
0945+408 | 1.249 | 20.20 | 14.0 | 2.94 | 6.30 | 2 | 0.083 | 2006-06-15 | 1.80 | 18.92 |
1036+054 | 0.473 | 5.72 | 6.5 | 0.75 | 0.80 | 2 | 0.195 | 2006-05-24 | 2.77 | 3.80 |
1038+064 | 1.265 | 10.69 | 6.7 | 1.59 | 4.32 | 2 | 0.106 | 2006-10-06 | 2.02 | 14.01 |
1045−188 | 0.595 | 10.51 | 8.0 | 2.79 | 2.46 | 2 | 0.156 | 2006-09-06 | 2.01 | 9.45 |
1127−145 | 1.184 | 14.89 | 16.1 | 5.63 | 8.94 | 6 | 0.096 | 2006-08-09 | 2.73 | 14.77 |
1150+812 | 1.250 | 10.11 | 15.0 | 1.39 | 3.81 | 8 | 0.087 | 2006-06-15 | 3.31 | 8.03 |
1156+295 | 0.725 | 24.59 | 16.7 | 4.33 | 3.89 | 8 | 0.162 | 2006-09-06 | 2.15 | 11.40 |
1219+044 | 0.966 | 0.82 | 13.0 | 1.14 | 2.52 | 4 | 0.133 | 2006-05-24 | 22.11 | 0.94 |
1219+285 | 0.103 | 9.12 | 13.9 | 1.77 | 0.19 | 3 | 0.182 | 2006-02-12 | 1.11 | 4.04 |
0.142 | 2007-04-30 | 0.93 | 4.87 | |||||||
0.199 | 2006-11-10 | 1.19 | 3.78 | |||||||
1222+216 | 0.434 | 26.60 | 10.8 | 3.98 | 1.90 | 5 | 0.180 | 2006-04-28 | 1.14 | 14.13 |
1226+023 | 0.158 | 14.86 | 10 | 63.72 | 3.25 | 3 | 0.020 | 2006-03-09 | 0.31 | 60.77 |
1253−055 | 0.536 | 20.58 | 14.4 | 16.56 | 6.31 | 3 | 0.048 | 2006-04-05 | 0.75 | 39.84 |
1308+326 | 0.997 | 27.48 | 18.5 | 1.42 | 2.79 | 8 | 0.143 | 2006-07-07 | 2.35 | 9.33 |
1334−127 | 0.539 | 16.33 | 12.6 | 1.91 | 1.71 | 2 | 0.237 | 2006-10-06 | 2.61 | 5.98 |
1413+135 | 0.247 | 1.78 | 8.8 | 2.74 | 0.81 | 2 | 0.230 | 2006-08-09 | 6.02 | 1.64 |
1458+718 | 0.904 | 6.61 | 4.5 | 19.64 | 13.30 | 8 | 0.081 | 2006-09-06 | 1.46 | 32.22 |
0.136 | 2007-03-01 | 2.16 | 21.84 | |||||||
1502+106 | 1.839 | 17.53 | 37.9 | 1.08 | 4.92 | 3 | 0.052 | 2006-07-07 | 3.59 | 8.92 |
1504−166 | 0.876 | 3.94 | 18.4 | 1.80 | 2.79 | 3 | 0.148 | 2006-12-01 | 9.56 | 2.05 |
1510−089 | 0.360 | 28.00 | 15.2 | 2.75 | 1.22 | 3 | 0.122 | 2006-04-28 | 0.93 | 13.47 |
1514−241 | 0.049 | 6.39 | 7.8 | 2.06 | 0.08 | 3 | 0.188 | 2006-04-28 | 0.56 | 5.15 |
1538+149 | 0.606 | 8.74 | 16.1 | 2.82 | 2.36 | 3 | 0.032 | 2006-06-15 | 1.68 | 11.09 |
1546+027 | 0.414 | 12.08 | 12.9 | 0.70 | 0.61 | 3 | 0.010 | 2006-08-09 | 0.87 | 10.32 |
1606+106 | 1.232 | 19.09 | 24.0 | 2.67 | 5.30 | 7 | 0.057 | 2006-07-07 | 2.11 | 14.84 |
1611+343 | 1.400 | 29.15 | 26.9 | 4.20 | 8.44 | 3 | 0.057 | 2006-06-15 | 1.79 | 22.54 |
1633+382 | 1.813 | 29.22 | 22.6 | 2.51 | 8.28 | 8 | 0.119 | 2006-09-06 | 3.07 | 13.50 |
1637+574 | 0.751 | 13.59 | 10.7 | 1.32 | 1.88 | 8 | 0.117 | 2006-05-24 | 1.92 | 8.94 |
1638+398 | 1.666 | 15.85 | 53.8 | 0.64 | 3.11 | 8 | 0.007 | 2006-08-09 | 4.68 | 5.36 |
1641+399 | 0.593 | 19.27 | 12.9 | 9.93 | 5.13 | 8 | 0.211 | 2006-06-15 | 2.29 | 11.99 |
1655+077 | 0.621 | 14.77 | 5.5 | 2.36 | 2.33 | 6 | 0.080 | 2006-11-10 | 0.73 | 25.39 |
0.086 | 2007-06-01 | 0.77 | 24.05 | |||||||
1726+455 | 0.717 | 2.30 | 16.5 | 0.49 | 0.95 | 8 | 0.009 | 2006-09-06 | 5.18 | 2.34 |
1730−130 | 0.902 | 27.35 | 10.4 | 6.46 | 6.54 | 3 | 0.174 | 2006-07-07 | 1.67 | 19.72 |
1749+096 | 0.322 | 7.90 | 16.8 | 1.20 | 0.61 | 6 | 0.061 | 2006-06-15 | 1.43 | 6.15 |
1751+288 | 1.118 | 3.87 | 12.1 | 0.40 | 1.55 | 2 | 0.007 | 2006-10-06 | 3.60 | 4.62 |
1758+388 | 2.092 | 2.21 | 17.9 | 0.18 | 1.82 | 8 | 0.079 | 2006-11-10 | 13.98 | 1.42 |
1803+784 | 0.680 | 10.79 | 18.4 | 1.92 | 2.23 | 8 | 0.029 | 2006-09-06 | 1.71 | 10.80 |
0.061 | 2007-05-03 | 1.98 | 9.31 | |||||||
1823+568 | 0.664 | 26.17 | 6.8 | 2.63 | 2.52 | 8 | 0.052 | 2006-07-07 | 0.42 | 46.21 |
1828+487 | 0.692 | 13.07 | 7.1 | 47.78 | 15.60 | 3 | 0.117 | 2006-08-09 | 1.39 | 35.35 |
1849+670 | 0.657 | 23.08 | 16.6 | 0.86 | 1.22 | 8 | 0.024 | 2006-05-24 | 0.88 | 15.50 |
1908−201 | 1.119 | 4.39 | 23.9 | 2.70 | 5.21 | 2 | 0.246 | 2006-03-09 | 18.03 | 1.69 |
1928+738 | 0.302 | 8.17 | 9.8 | 4.81 | 1.40 | 8 | 0.147 | 2006-04-28 | 1.72 | 7.66 |
1936−155 | 1.657 | 5.34 | 35.2 | 0.67 | 3.45 | 2 | 0.215 | 2006-07-07 | 22.92 | 1.15 |
2008−159 | 1.180 | 4.85 | 9.7 | 0.73 | 2.41 | 2 | 0.008 | 2006-11-10 | 2.65 | 7.89 |
2022−077 | 1.388 | 23.23 | 19.6 | 2.63 | 6.67 | 2 | 0.006 | 2006-04-05 | 1.51 | 23.67 |
2121+053 | 1.941 | 11.66 | 34.0 | 0.63 | 3.99 | 2 | 0.152 | 2006-06-15 | 10.29 | 2.83 |
2128−123 | 0.501 | 5.99 | 5.0 | 1.47 | 1.23 | 3 | 0.223 | 2006-10-06 | 2.52 | 5.20 |
2131−021 | 1.284 | 19.96 | 18.4 | 2.66 | 6.11 | 6 | 0.089 | 2006-08-09 | 2.39 | 14.14 |
2134+004 | 1.932 | 5.04 | 15.2 | 0.99 | 4.85 | 6 | 0.188 | 2006-07-07 | 12.35 | 2.60 |
2136+141 | 2.427 | 4.15 | 32.5 | 0.94 | 6.16 | 6 | 0.008 | 2006-09-06 | 10.28 | 3.64 |
2145+067 | 0.999 | 2.83 | 23.2 | 3.76 | 5.18 | 3 | 0.008 | 2006-10-06 | 6.97 | 4.31 |
2155−152 | 0.672 | 18.12 | 17.6 | 2.41 | 2.43 | 3 | 0.405 | 2006-12-01 | 5.34 | 3.60 |
2200+420 | 0.069 | 9.95 | 26.2 | 1.82 | 0.12 | 8 | 0.032 | 2006-04-05 | 0.47 | 7.30 |
2201+171 | 1.076 | 17.66 | 13.6 | 1.00 | 2.63 | 2 | 0.380 | 2006-05-24 | 5.64 | 3.82 |
2201+315 | 0.295 | 8.27 | 12.8 | 1.82 | 0.88 | 3 | 0.347 | 2006-10-06 | 3.90 | 2.67 |
0.192 | 2007-04-30 | 2.50 | 3.80 | |||||||
2209+236 | 1.125 | 2.29 | 14.2 | 0.39 | 1.51 | 2 | 0.038 | 2006-12-01 | 6.03 | 2.73 |
2216−038 | 0.901 | 6.73 | 15.6 | 2.25 | 3.57 | 6 | 0.011 | 2006-08-09 | 2.55 | 9.57 |
2223−052 | 1.404 | 20.34 | 11.7 | 13.59 | 18.00 | 3 | 0.199 | 2006-10-06 | 3.21 | 18.33 |
2227−088 | 1.560 | 2.00 | 15.8 | 1.41 | 5.14 | 2 | 0.186 | 2006-07-07 | 22.85 | 1.40 |
2230+114 | 1.037 | 8.62 | 13.3 | 8.51 | 9.25 | 3 | 0.278 | 2006-02-12 | 7.36 | 5.45 |
2243−123 | 0.632 | 5.24 | 14.8 | 1.45 | 1.71 | 1 | 0.161 | 2006-09-06 | 5.73 | 2.79 |
2251+158 | 0.859 | 13.77 | 40.9 | 12.47 | 9.39 | 3 | 0.124 | 2006-06-15 | 8.31 | 4.72 |
2345−167 | 0.576 | 11.47 | 15.8 | 2.81 | 2.21 | 3 | 0.167 | 2006-11-10 | 3.24 | 5.54 |
2351+456 | 1.986 | 21.56 | 20.1 | 2.23 | 8.54 | 8 | 0.196 | 2006-05-24 | 5.35 | 7.99 |
Source . | z . | βapp . | χapp . | S0.3 . | Pjet . | Reference . | Δrcore . | Epoch . | λ . | σ . |
---|---|---|---|---|---|---|---|---|---|---|
. | . | (c) . | (°) . | (Jy) . | (1045 erg s−1) . | for S0.3 . | (mas) . | for Δrcore . | (1013) . | . |
(1) . | (2) . | (3) . | (4) . | (5) . | (6) . | (7) . | (8) . | (9) . | (10) . | (11) . |
0003−066 | 0.347 | 8.40 | 16.3 | 2.17 | 1.07 | 2 | 0.035 | 2006-07-07 | 1.21 | 9.69 |
0106+013 | 2.099 | 24.37 | 23.6 | 2.85 | 10.50 | 6 | 0.005 | 2006-07-07 | 2.02 | 23.67 |
0119+115 | 0.570 | 18.57 | 15.6 | 2.24 | 1.86 | 6 | 0.347 | 2006-06-15 | 3.84 | 4.27 |
0133+476 | 0.859 | 15.36 | 21.7 | 1.63 | 2.54 | 8 | 0.131 | 2006-08-09 | 3.52 | 5.80 |
0202+149 | 0.405 | 15.89 | 16.4 | 6.25 | 2.39 | 3 | 0.122 | 2006-09-06 | 1.63 | 10.90 |
0202+319 | 1.466 | 10.15 | 13.4 | 0.76 | 2.99 | 8 | 0.013 | 2006-08-09 | 2.17 | 11.13 |
0212+735 | 2.367 | 6.55 | 16.4 | 1.54 | 5.17 | 8 | 0.149 | 2006-07-07 | 9.82 | 4.41 |
0215+015 | 1.715 | 25.06 | 36.7 | 0.88 | 3.90 | 5 | 0.088 | 2006-04-28 | 3.75 | 7.54 |
0.241 | 2006-12-01 | 7.97 | 3.54 | |||||||
0234+285 | 1.206 | 21.99 | 19.8 | 1.45 | 3.52 | 5 | 0.275 | 2006-09-06 | 5.29 | 4.79 |
0333+321 | 1.259 | 13.07 | 8.0 | 3.68 | 6.72 | 7 | 0.279 | 2006-07-07 | 4.10 | 8.62 |
0336−019 | 0.852 | 24.45 | 26.8 | 2.49 | 3.26 | 6 | 0.117 | 2006-08-09 | 2.66 | 8.68 |
0403−132 | 0.571 | 20.80 | 16.4 | 7.62 | 4.45 | 2 | 0.346 | 2006-05-24 | 3.66 | 6.95 |
0420−014 | 0.916 | 5.74 | 22.7 | 0.87 | 1.84 | 3 | 0.267 | 2006-10-06 | 13.49 | 1.30 |
0458−020 | 2.286 | 13.57 | 23.1 | 3.54 | 11.20 | 3 | 0.006 | 2006-11-10 | 3.20 | 17.26 |
0528+134 | 2.070 | 17.34 | 16.1 | 1.02 | 5.85 | 2 | 0.167 | 2006-10-06 | 4.81 | 7.40 |
0529+075 | 1.254 | 18.03 | 56.4 | 1.75 | 4.54 | 2 | 0.110 | 2006-08-09 | 3.83 | 7.58 |
0605−085 | 0.870 | 19.19 | 14.0 | 1.43 | 2.39 | 3 | 0.096 | 2006-11-10 | 1.66 | 11.95 |
0607−157 | 0.323 | 1.918 | 35.1 | 2.31 | 0.96 | 3 | 0.240 | 2006-09-06 | 28.46 | 0.38 |
0642+449 | 3.396 | 8.53 | 23.4 | 0.70 | 7.68 | 8 | 0.110 | 2006-10-06 | 5.27 | 8.29 |
0730+504 | 0.720 | 14.07 | 14.8 | 0.71 | 1.20 | 8 | 0.262 | 2006-05-24 | 4.27 | 3.21 |
0735+178 | 0.450 | 5.04 | 21.0 | 1.81 | 1.23 | 8 | 0.039 | 2006-04-28 | 2.56 | 5.07 |
0736+017 | 0.189 | 13.79 | 17.9 | 1.79 | 0.42 | 3 | 0.079 | 2006-06-15 | 0.82 | 8.38 |
0738+313 | 0.631 | 10.72 | 10.5 | 1.26 | 1.48 | 3 | 0.183 | 2006-09-06 | 2.85 | 5.23 |
0748+126 | 0.889 | 14.58 | 16.2 | 1.45 | 2.65 | 2 | 0.098 | 2006-08-09 | 2.41 | 8.69 |
0754+100 | 0.266 | 14.40 | 13.7 | 0.74 | 0.39 | 2 | 0.266 | 2006-04-28 | 2.06 | 3.32 |
0804+499 | 1.436 | 1.15 | 35.3 | 0.60 | 2.49 | 8 | 0.094 | 2006-10-06 | 35.88 | 0.61 |
0805−077 | 1.837 | 41.76 | 18.8 | 2.60 | 9.26 | 2 | 0.207 | 2006-05-24 | 3.12 | 14.09 |
0823+033 | 0.505 | 12.88 | 13.4 | 0.63 | 0.71 | 5 | 0.141 | 2006-06-15 | 2.12 | 4.71 |
0827+243 | 0.942 | 19.81 | 14.6 | 0.71 | 1.80 | 2 | 0.150 | 2006-05-24 | 2.52 | 6.92 |
0829+046 | 0.174 | 10.13 | 18.7 | 0.67 | 0.21 | 2 | 0.109 | 2006-07-07 | 1.28 | 3.82 |
0836+710 | 2.218 | 21.08 | 12.4 | 5.06 | 17.75 | 2 | 0.186 | 2006-09-06 | 3.81 | 16.43 |
0851+202 | 0.306 | 15.14 | 28.5 | 1.11 | 0.56 | 3 | 0.028 | 2006-04-28 | 1.08 | 7.69 |
0906+015 | 1.026 | 22.08 | 17.5 | 1.54 | 3.05 | 3 | 0.168 | 2006-10-06 | 3.04 | 7.56 |
0917+624 | 1.453 | 12.07 | 15.9 | 1.27 | 4.07 | 8 | 0.112 | 2006-08-09 | 3.95 | 7.14 |
0923+392 | 0.695 | 2.76 | 10.8 | 3.28 | 3.03 | 5 | 0.042 | 2006-07-07 | 3.23 | 6.69 |
0945+408 | 1.249 | 20.20 | 14.0 | 2.94 | 6.30 | 2 | 0.083 | 2006-06-15 | 1.80 | 18.92 |
1036+054 | 0.473 | 5.72 | 6.5 | 0.75 | 0.80 | 2 | 0.195 | 2006-05-24 | 2.77 | 3.80 |
1038+064 | 1.265 | 10.69 | 6.7 | 1.59 | 4.32 | 2 | 0.106 | 2006-10-06 | 2.02 | 14.01 |
1045−188 | 0.595 | 10.51 | 8.0 | 2.79 | 2.46 | 2 | 0.156 | 2006-09-06 | 2.01 | 9.45 |
1127−145 | 1.184 | 14.89 | 16.1 | 5.63 | 8.94 | 6 | 0.096 | 2006-08-09 | 2.73 | 14.77 |
1150+812 | 1.250 | 10.11 | 15.0 | 1.39 | 3.81 | 8 | 0.087 | 2006-06-15 | 3.31 | 8.03 |
1156+295 | 0.725 | 24.59 | 16.7 | 4.33 | 3.89 | 8 | 0.162 | 2006-09-06 | 2.15 | 11.40 |
1219+044 | 0.966 | 0.82 | 13.0 | 1.14 | 2.52 | 4 | 0.133 | 2006-05-24 | 22.11 | 0.94 |
1219+285 | 0.103 | 9.12 | 13.9 | 1.77 | 0.19 | 3 | 0.182 | 2006-02-12 | 1.11 | 4.04 |
0.142 | 2007-04-30 | 0.93 | 4.87 | |||||||
0.199 | 2006-11-10 | 1.19 | 3.78 | |||||||
1222+216 | 0.434 | 26.60 | 10.8 | 3.98 | 1.90 | 5 | 0.180 | 2006-04-28 | 1.14 | 14.13 |
1226+023 | 0.158 | 14.86 | 10 | 63.72 | 3.25 | 3 | 0.020 | 2006-03-09 | 0.31 | 60.77 |
1253−055 | 0.536 | 20.58 | 14.4 | 16.56 | 6.31 | 3 | 0.048 | 2006-04-05 | 0.75 | 39.84 |
1308+326 | 0.997 | 27.48 | 18.5 | 1.42 | 2.79 | 8 | 0.143 | 2006-07-07 | 2.35 | 9.33 |
1334−127 | 0.539 | 16.33 | 12.6 | 1.91 | 1.71 | 2 | 0.237 | 2006-10-06 | 2.61 | 5.98 |
1413+135 | 0.247 | 1.78 | 8.8 | 2.74 | 0.81 | 2 | 0.230 | 2006-08-09 | 6.02 | 1.64 |
1458+718 | 0.904 | 6.61 | 4.5 | 19.64 | 13.30 | 8 | 0.081 | 2006-09-06 | 1.46 | 32.22 |
0.136 | 2007-03-01 | 2.16 | 21.84 | |||||||
1502+106 | 1.839 | 17.53 | 37.9 | 1.08 | 4.92 | 3 | 0.052 | 2006-07-07 | 3.59 | 8.92 |
1504−166 | 0.876 | 3.94 | 18.4 | 1.80 | 2.79 | 3 | 0.148 | 2006-12-01 | 9.56 | 2.05 |
1510−089 | 0.360 | 28.00 | 15.2 | 2.75 | 1.22 | 3 | 0.122 | 2006-04-28 | 0.93 | 13.47 |
1514−241 | 0.049 | 6.39 | 7.8 | 2.06 | 0.08 | 3 | 0.188 | 2006-04-28 | 0.56 | 5.15 |
1538+149 | 0.606 | 8.74 | 16.1 | 2.82 | 2.36 | 3 | 0.032 | 2006-06-15 | 1.68 | 11.09 |
1546+027 | 0.414 | 12.08 | 12.9 | 0.70 | 0.61 | 3 | 0.010 | 2006-08-09 | 0.87 | 10.32 |
1606+106 | 1.232 | 19.09 | 24.0 | 2.67 | 5.30 | 7 | 0.057 | 2006-07-07 | 2.11 | 14.84 |
1611+343 | 1.400 | 29.15 | 26.9 | 4.20 | 8.44 | 3 | 0.057 | 2006-06-15 | 1.79 | 22.54 |
1633+382 | 1.813 | 29.22 | 22.6 | 2.51 | 8.28 | 8 | 0.119 | 2006-09-06 | 3.07 | 13.50 |
1637+574 | 0.751 | 13.59 | 10.7 | 1.32 | 1.88 | 8 | 0.117 | 2006-05-24 | 1.92 | 8.94 |
1638+398 | 1.666 | 15.85 | 53.8 | 0.64 | 3.11 | 8 | 0.007 | 2006-08-09 | 4.68 | 5.36 |
1641+399 | 0.593 | 19.27 | 12.9 | 9.93 | 5.13 | 8 | 0.211 | 2006-06-15 | 2.29 | 11.99 |
1655+077 | 0.621 | 14.77 | 5.5 | 2.36 | 2.33 | 6 | 0.080 | 2006-11-10 | 0.73 | 25.39 |
0.086 | 2007-06-01 | 0.77 | 24.05 | |||||||
1726+455 | 0.717 | 2.30 | 16.5 | 0.49 | 0.95 | 8 | 0.009 | 2006-09-06 | 5.18 | 2.34 |
1730−130 | 0.902 | 27.35 | 10.4 | 6.46 | 6.54 | 3 | 0.174 | 2006-07-07 | 1.67 | 19.72 |
1749+096 | 0.322 | 7.90 | 16.8 | 1.20 | 0.61 | 6 | 0.061 | 2006-06-15 | 1.43 | 6.15 |
1751+288 | 1.118 | 3.87 | 12.1 | 0.40 | 1.55 | 2 | 0.007 | 2006-10-06 | 3.60 | 4.62 |
1758+388 | 2.092 | 2.21 | 17.9 | 0.18 | 1.82 | 8 | 0.079 | 2006-11-10 | 13.98 | 1.42 |
1803+784 | 0.680 | 10.79 | 18.4 | 1.92 | 2.23 | 8 | 0.029 | 2006-09-06 | 1.71 | 10.80 |
0.061 | 2007-05-03 | 1.98 | 9.31 | |||||||
1823+568 | 0.664 | 26.17 | 6.8 | 2.63 | 2.52 | 8 | 0.052 | 2006-07-07 | 0.42 | 46.21 |
1828+487 | 0.692 | 13.07 | 7.1 | 47.78 | 15.60 | 3 | 0.117 | 2006-08-09 | 1.39 | 35.35 |
1849+670 | 0.657 | 23.08 | 16.6 | 0.86 | 1.22 | 8 | 0.024 | 2006-05-24 | 0.88 | 15.50 |
1908−201 | 1.119 | 4.39 | 23.9 | 2.70 | 5.21 | 2 | 0.246 | 2006-03-09 | 18.03 | 1.69 |
1928+738 | 0.302 | 8.17 | 9.8 | 4.81 | 1.40 | 8 | 0.147 | 2006-04-28 | 1.72 | 7.66 |
1936−155 | 1.657 | 5.34 | 35.2 | 0.67 | 3.45 | 2 | 0.215 | 2006-07-07 | 22.92 | 1.15 |
2008−159 | 1.180 | 4.85 | 9.7 | 0.73 | 2.41 | 2 | 0.008 | 2006-11-10 | 2.65 | 7.89 |
2022−077 | 1.388 | 23.23 | 19.6 | 2.63 | 6.67 | 2 | 0.006 | 2006-04-05 | 1.51 | 23.67 |
2121+053 | 1.941 | 11.66 | 34.0 | 0.63 | 3.99 | 2 | 0.152 | 2006-06-15 | 10.29 | 2.83 |
2128−123 | 0.501 | 5.99 | 5.0 | 1.47 | 1.23 | 3 | 0.223 | 2006-10-06 | 2.52 | 5.20 |
2131−021 | 1.284 | 19.96 | 18.4 | 2.66 | 6.11 | 6 | 0.089 | 2006-08-09 | 2.39 | 14.14 |
2134+004 | 1.932 | 5.04 | 15.2 | 0.99 | 4.85 | 6 | 0.188 | 2006-07-07 | 12.35 | 2.60 |
2136+141 | 2.427 | 4.15 | 32.5 | 0.94 | 6.16 | 6 | 0.008 | 2006-09-06 | 10.28 | 3.64 |
2145+067 | 0.999 | 2.83 | 23.2 | 3.76 | 5.18 | 3 | 0.008 | 2006-10-06 | 6.97 | 4.31 |
2155−152 | 0.672 | 18.12 | 17.6 | 2.41 | 2.43 | 3 | 0.405 | 2006-12-01 | 5.34 | 3.60 |
2200+420 | 0.069 | 9.95 | 26.2 | 1.82 | 0.12 | 8 | 0.032 | 2006-04-05 | 0.47 | 7.30 |
2201+171 | 1.076 | 17.66 | 13.6 | 1.00 | 2.63 | 2 | 0.380 | 2006-05-24 | 5.64 | 3.82 |
2201+315 | 0.295 | 8.27 | 12.8 | 1.82 | 0.88 | 3 | 0.347 | 2006-10-06 | 3.90 | 2.67 |
0.192 | 2007-04-30 | 2.50 | 3.80 | |||||||
2209+236 | 1.125 | 2.29 | 14.2 | 0.39 | 1.51 | 2 | 0.038 | 2006-12-01 | 6.03 | 2.73 |
2216−038 | 0.901 | 6.73 | 15.6 | 2.25 | 3.57 | 6 | 0.011 | 2006-08-09 | 2.55 | 9.57 |
2223−052 | 1.404 | 20.34 | 11.7 | 13.59 | 18.00 | 3 | 0.199 | 2006-10-06 | 3.21 | 18.33 |
2227−088 | 1.560 | 2.00 | 15.8 | 1.41 | 5.14 | 2 | 0.186 | 2006-07-07 | 22.85 | 1.40 |
2230+114 | 1.037 | 8.62 | 13.3 | 8.51 | 9.25 | 3 | 0.278 | 2006-02-12 | 7.36 | 5.45 |
2243−123 | 0.632 | 5.24 | 14.8 | 1.45 | 1.71 | 1 | 0.161 | 2006-09-06 | 5.73 | 2.79 |
2251+158 | 0.859 | 13.77 | 40.9 | 12.47 | 9.39 | 3 | 0.124 | 2006-06-15 | 8.31 | 4.72 |
2345−167 | 0.576 | 11.47 | 15.8 | 2.81 | 2.21 | 3 | 0.167 | 2006-11-10 | 3.24 | 5.54 |
2351+456 | 1.986 | 21.56 | 20.1 | 2.23 | 8.54 | 8 | 0.196 | 2006-05-24 | 5.35 | 7.99 |
Notes. Columns are as follows: (1) source name (B1950); (2) redshift z as collected by (Lister et al. 2013); (3) apparent velocity measured by (Lister et al. 2013); (4) apparent opening angle measured by Pushkarev et al. (2009); (5) flux density at the 92 cm band; (6) derived total jet power; (7) 92 cm flux density reference: 1 – De Breuck et al. (2002), 2 – Douglas et al. (1996), 3 – Ghosh et al. (1994), 4 – Gregory & Condon (1991), 5 – Kühr et al. (1979), 6 – Kühr et al. (1981), 7 – Mitchell et al. (1994), 8 – Rengelink et al. (1997); (8) core shift for frequencies 8.1 − 15.3 GHz, measured in mas (Sokolovsky et al. 2011; Pushkarev et al. 2012); (9) an epoch of the core-shift measurements by Pushkarev et al. (2012) for the year 2006 and by Sokolovsky et al. (2011) for the year 2007; (10) derived multiplicity parameter; (11) derived the Michel magnetization parameter.
Source . | z . | βapp . | χapp . | S0.3 . | Pjet . | Reference . | Δrcore . | Epoch . | λ . | σ . |
---|---|---|---|---|---|---|---|---|---|---|
. | . | (c) . | (°) . | (Jy) . | (1045 erg s−1) . | for S0.3 . | (mas) . | for Δrcore . | (1013) . | . |
(1) . | (2) . | (3) . | (4) . | (5) . | (6) . | (7) . | (8) . | (9) . | (10) . | (11) . |
0003−066 | 0.347 | 8.40 | 16.3 | 2.17 | 1.07 | 2 | 0.035 | 2006-07-07 | 1.21 | 9.69 |
0106+013 | 2.099 | 24.37 | 23.6 | 2.85 | 10.50 | 6 | 0.005 | 2006-07-07 | 2.02 | 23.67 |
0119+115 | 0.570 | 18.57 | 15.6 | 2.24 | 1.86 | 6 | 0.347 | 2006-06-15 | 3.84 | 4.27 |
0133+476 | 0.859 | 15.36 | 21.7 | 1.63 | 2.54 | 8 | 0.131 | 2006-08-09 | 3.52 | 5.80 |
0202+149 | 0.405 | 15.89 | 16.4 | 6.25 | 2.39 | 3 | 0.122 | 2006-09-06 | 1.63 | 10.90 |
0202+319 | 1.466 | 10.15 | 13.4 | 0.76 | 2.99 | 8 | 0.013 | 2006-08-09 | 2.17 | 11.13 |
0212+735 | 2.367 | 6.55 | 16.4 | 1.54 | 5.17 | 8 | 0.149 | 2006-07-07 | 9.82 | 4.41 |
0215+015 | 1.715 | 25.06 | 36.7 | 0.88 | 3.90 | 5 | 0.088 | 2006-04-28 | 3.75 | 7.54 |
0.241 | 2006-12-01 | 7.97 | 3.54 | |||||||
0234+285 | 1.206 | 21.99 | 19.8 | 1.45 | 3.52 | 5 | 0.275 | 2006-09-06 | 5.29 | 4.79 |
0333+321 | 1.259 | 13.07 | 8.0 | 3.68 | 6.72 | 7 | 0.279 | 2006-07-07 | 4.10 | 8.62 |
0336−019 | 0.852 | 24.45 | 26.8 | 2.49 | 3.26 | 6 | 0.117 | 2006-08-09 | 2.66 | 8.68 |
0403−132 | 0.571 | 20.80 | 16.4 | 7.62 | 4.45 | 2 | 0.346 | 2006-05-24 | 3.66 | 6.95 |
0420−014 | 0.916 | 5.74 | 22.7 | 0.87 | 1.84 | 3 | 0.267 | 2006-10-06 | 13.49 | 1.30 |
0458−020 | 2.286 | 13.57 | 23.1 | 3.54 | 11.20 | 3 | 0.006 | 2006-11-10 | 3.20 | 17.26 |
0528+134 | 2.070 | 17.34 | 16.1 | 1.02 | 5.85 | 2 | 0.167 | 2006-10-06 | 4.81 | 7.40 |
0529+075 | 1.254 | 18.03 | 56.4 | 1.75 | 4.54 | 2 | 0.110 | 2006-08-09 | 3.83 | 7.58 |
0605−085 | 0.870 | 19.19 | 14.0 | 1.43 | 2.39 | 3 | 0.096 | 2006-11-10 | 1.66 | 11.95 |
0607−157 | 0.323 | 1.918 | 35.1 | 2.31 | 0.96 | 3 | 0.240 | 2006-09-06 | 28.46 | 0.38 |
0642+449 | 3.396 | 8.53 | 23.4 | 0.70 | 7.68 | 8 | 0.110 | 2006-10-06 | 5.27 | 8.29 |
0730+504 | 0.720 | 14.07 | 14.8 | 0.71 | 1.20 | 8 | 0.262 | 2006-05-24 | 4.27 | 3.21 |
0735+178 | 0.450 | 5.04 | 21.0 | 1.81 | 1.23 | 8 | 0.039 | 2006-04-28 | 2.56 | 5.07 |
0736+017 | 0.189 | 13.79 | 17.9 | 1.79 | 0.42 | 3 | 0.079 | 2006-06-15 | 0.82 | 8.38 |
0738+313 | 0.631 | 10.72 | 10.5 | 1.26 | 1.48 | 3 | 0.183 | 2006-09-06 | 2.85 | 5.23 |
0748+126 | 0.889 | 14.58 | 16.2 | 1.45 | 2.65 | 2 | 0.098 | 2006-08-09 | 2.41 | 8.69 |
0754+100 | 0.266 | 14.40 | 13.7 | 0.74 | 0.39 | 2 | 0.266 | 2006-04-28 | 2.06 | 3.32 |
0804+499 | 1.436 | 1.15 | 35.3 | 0.60 | 2.49 | 8 | 0.094 | 2006-10-06 | 35.88 | 0.61 |
0805−077 | 1.837 | 41.76 | 18.8 | 2.60 | 9.26 | 2 | 0.207 | 2006-05-24 | 3.12 | 14.09 |
0823+033 | 0.505 | 12.88 | 13.4 | 0.63 | 0.71 | 5 | 0.141 | 2006-06-15 | 2.12 | 4.71 |
0827+243 | 0.942 | 19.81 | 14.6 | 0.71 | 1.80 | 2 | 0.150 | 2006-05-24 | 2.52 | 6.92 |
0829+046 | 0.174 | 10.13 | 18.7 | 0.67 | 0.21 | 2 | 0.109 | 2006-07-07 | 1.28 | 3.82 |
0836+710 | 2.218 | 21.08 | 12.4 | 5.06 | 17.75 | 2 | 0.186 | 2006-09-06 | 3.81 | 16.43 |
0851+202 | 0.306 | 15.14 | 28.5 | 1.11 | 0.56 | 3 | 0.028 | 2006-04-28 | 1.08 | 7.69 |
0906+015 | 1.026 | 22.08 | 17.5 | 1.54 | 3.05 | 3 | 0.168 | 2006-10-06 | 3.04 | 7.56 |
0917+624 | 1.453 | 12.07 | 15.9 | 1.27 | 4.07 | 8 | 0.112 | 2006-08-09 | 3.95 | 7.14 |
0923+392 | 0.695 | 2.76 | 10.8 | 3.28 | 3.03 | 5 | 0.042 | 2006-07-07 | 3.23 | 6.69 |
0945+408 | 1.249 | 20.20 | 14.0 | 2.94 | 6.30 | 2 | 0.083 | 2006-06-15 | 1.80 | 18.92 |
1036+054 | 0.473 | 5.72 | 6.5 | 0.75 | 0.80 | 2 | 0.195 | 2006-05-24 | 2.77 | 3.80 |
1038+064 | 1.265 | 10.69 | 6.7 | 1.59 | 4.32 | 2 | 0.106 | 2006-10-06 | 2.02 | 14.01 |
1045−188 | 0.595 | 10.51 | 8.0 | 2.79 | 2.46 | 2 | 0.156 | 2006-09-06 | 2.01 | 9.45 |
1127−145 | 1.184 | 14.89 | 16.1 | 5.63 | 8.94 | 6 | 0.096 | 2006-08-09 | 2.73 | 14.77 |
1150+812 | 1.250 | 10.11 | 15.0 | 1.39 | 3.81 | 8 | 0.087 | 2006-06-15 | 3.31 | 8.03 |
1156+295 | 0.725 | 24.59 | 16.7 | 4.33 | 3.89 | 8 | 0.162 | 2006-09-06 | 2.15 | 11.40 |
1219+044 | 0.966 | 0.82 | 13.0 | 1.14 | 2.52 | 4 | 0.133 | 2006-05-24 | 22.11 | 0.94 |
1219+285 | 0.103 | 9.12 | 13.9 | 1.77 | 0.19 | 3 | 0.182 | 2006-02-12 | 1.11 | 4.04 |
0.142 | 2007-04-30 | 0.93 | 4.87 | |||||||
0.199 | 2006-11-10 | 1.19 | 3.78 | |||||||
1222+216 | 0.434 | 26.60 | 10.8 | 3.98 | 1.90 | 5 | 0.180 | 2006-04-28 | 1.14 | 14.13 |
1226+023 | 0.158 | 14.86 | 10 | 63.72 | 3.25 | 3 | 0.020 | 2006-03-09 | 0.31 | 60.77 |
1253−055 | 0.536 | 20.58 | 14.4 | 16.56 | 6.31 | 3 | 0.048 | 2006-04-05 | 0.75 | 39.84 |
1308+326 | 0.997 | 27.48 | 18.5 | 1.42 | 2.79 | 8 | 0.143 | 2006-07-07 | 2.35 | 9.33 |
1334−127 | 0.539 | 16.33 | 12.6 | 1.91 | 1.71 | 2 | 0.237 | 2006-10-06 | 2.61 | 5.98 |
1413+135 | 0.247 | 1.78 | 8.8 | 2.74 | 0.81 | 2 | 0.230 | 2006-08-09 | 6.02 | 1.64 |
1458+718 | 0.904 | 6.61 | 4.5 | 19.64 | 13.30 | 8 | 0.081 | 2006-09-06 | 1.46 | 32.22 |
0.136 | 2007-03-01 | 2.16 | 21.84 | |||||||
1502+106 | 1.839 | 17.53 | 37.9 | 1.08 | 4.92 | 3 | 0.052 | 2006-07-07 | 3.59 | 8.92 |
1504−166 | 0.876 | 3.94 | 18.4 | 1.80 | 2.79 | 3 | 0.148 | 2006-12-01 | 9.56 | 2.05 |
1510−089 | 0.360 | 28.00 | 15.2 | 2.75 | 1.22 | 3 | 0.122 | 2006-04-28 | 0.93 | 13.47 |
1514−241 | 0.049 | 6.39 | 7.8 | 2.06 | 0.08 | 3 | 0.188 | 2006-04-28 | 0.56 | 5.15 |
1538+149 | 0.606 | 8.74 | 16.1 | 2.82 | 2.36 | 3 | 0.032 | 2006-06-15 | 1.68 | 11.09 |
1546+027 | 0.414 | 12.08 | 12.9 | 0.70 | 0.61 | 3 | 0.010 | 2006-08-09 | 0.87 | 10.32 |
1606+106 | 1.232 | 19.09 | 24.0 | 2.67 | 5.30 | 7 | 0.057 | 2006-07-07 | 2.11 | 14.84 |
1611+343 | 1.400 | 29.15 | 26.9 | 4.20 | 8.44 | 3 | 0.057 | 2006-06-15 | 1.79 | 22.54 |
1633+382 | 1.813 | 29.22 | 22.6 | 2.51 | 8.28 | 8 | 0.119 | 2006-09-06 | 3.07 | 13.50 |
1637+574 | 0.751 | 13.59 | 10.7 | 1.32 | 1.88 | 8 | 0.117 | 2006-05-24 | 1.92 | 8.94 |
1638+398 | 1.666 | 15.85 | 53.8 | 0.64 | 3.11 | 8 | 0.007 | 2006-08-09 | 4.68 | 5.36 |
1641+399 | 0.593 | 19.27 | 12.9 | 9.93 | 5.13 | 8 | 0.211 | 2006-06-15 | 2.29 | 11.99 |
1655+077 | 0.621 | 14.77 | 5.5 | 2.36 | 2.33 | 6 | 0.080 | 2006-11-10 | 0.73 | 25.39 |
0.086 | 2007-06-01 | 0.77 | 24.05 | |||||||
1726+455 | 0.717 | 2.30 | 16.5 | 0.49 | 0.95 | 8 | 0.009 | 2006-09-06 | 5.18 | 2.34 |
1730−130 | 0.902 | 27.35 | 10.4 | 6.46 | 6.54 | 3 | 0.174 | 2006-07-07 | 1.67 | 19.72 |
1749+096 | 0.322 | 7.90 | 16.8 | 1.20 | 0.61 | 6 | 0.061 | 2006-06-15 | 1.43 | 6.15 |
1751+288 | 1.118 | 3.87 | 12.1 | 0.40 | 1.55 | 2 | 0.007 | 2006-10-06 | 3.60 | 4.62 |
1758+388 | 2.092 | 2.21 | 17.9 | 0.18 | 1.82 | 8 | 0.079 | 2006-11-10 | 13.98 | 1.42 |
1803+784 | 0.680 | 10.79 | 18.4 | 1.92 | 2.23 | 8 | 0.029 | 2006-09-06 | 1.71 | 10.80 |
0.061 | 2007-05-03 | 1.98 | 9.31 | |||||||
1823+568 | 0.664 | 26.17 | 6.8 | 2.63 | 2.52 | 8 | 0.052 | 2006-07-07 | 0.42 | 46.21 |
1828+487 | 0.692 | 13.07 | 7.1 | 47.78 | 15.60 | 3 | 0.117 | 2006-08-09 | 1.39 | 35.35 |
1849+670 | 0.657 | 23.08 | 16.6 | 0.86 | 1.22 | 8 | 0.024 | 2006-05-24 | 0.88 | 15.50 |
1908−201 | 1.119 | 4.39 | 23.9 | 2.70 | 5.21 | 2 | 0.246 | 2006-03-09 | 18.03 | 1.69 |
1928+738 | 0.302 | 8.17 | 9.8 | 4.81 | 1.40 | 8 | 0.147 | 2006-04-28 | 1.72 | 7.66 |
1936−155 | 1.657 | 5.34 | 35.2 | 0.67 | 3.45 | 2 | 0.215 | 2006-07-07 | 22.92 | 1.15 |
2008−159 | 1.180 | 4.85 | 9.7 | 0.73 | 2.41 | 2 | 0.008 | 2006-11-10 | 2.65 | 7.89 |
2022−077 | 1.388 | 23.23 | 19.6 | 2.63 | 6.67 | 2 | 0.006 | 2006-04-05 | 1.51 | 23.67 |
2121+053 | 1.941 | 11.66 | 34.0 | 0.63 | 3.99 | 2 | 0.152 | 2006-06-15 | 10.29 | 2.83 |
2128−123 | 0.501 | 5.99 | 5.0 | 1.47 | 1.23 | 3 | 0.223 | 2006-10-06 | 2.52 | 5.20 |
2131−021 | 1.284 | 19.96 | 18.4 | 2.66 | 6.11 | 6 | 0.089 | 2006-08-09 | 2.39 | 14.14 |
2134+004 | 1.932 | 5.04 | 15.2 | 0.99 | 4.85 | 6 | 0.188 | 2006-07-07 | 12.35 | 2.60 |
2136+141 | 2.427 | 4.15 | 32.5 | 0.94 | 6.16 | 6 | 0.008 | 2006-09-06 | 10.28 | 3.64 |
2145+067 | 0.999 | 2.83 | 23.2 | 3.76 | 5.18 | 3 | 0.008 | 2006-10-06 | 6.97 | 4.31 |
2155−152 | 0.672 | 18.12 | 17.6 | 2.41 | 2.43 | 3 | 0.405 | 2006-12-01 | 5.34 | 3.60 |
2200+420 | 0.069 | 9.95 | 26.2 | 1.82 | 0.12 | 8 | 0.032 | 2006-04-05 | 0.47 | 7.30 |
2201+171 | 1.076 | 17.66 | 13.6 | 1.00 | 2.63 | 2 | 0.380 | 2006-05-24 | 5.64 | 3.82 |
2201+315 | 0.295 | 8.27 | 12.8 | 1.82 | 0.88 | 3 | 0.347 | 2006-10-06 | 3.90 | 2.67 |
0.192 | 2007-04-30 | 2.50 | 3.80 | |||||||
2209+236 | 1.125 | 2.29 | 14.2 | 0.39 | 1.51 | 2 | 0.038 | 2006-12-01 | 6.03 | 2.73 |
2216−038 | 0.901 | 6.73 | 15.6 | 2.25 | 3.57 | 6 | 0.011 | 2006-08-09 | 2.55 | 9.57 |
2223−052 | 1.404 | 20.34 | 11.7 | 13.59 | 18.00 | 3 | 0.199 | 2006-10-06 | 3.21 | 18.33 |
2227−088 | 1.560 | 2.00 | 15.8 | 1.41 | 5.14 | 2 | 0.186 | 2006-07-07 | 22.85 | 1.40 |
2230+114 | 1.037 | 8.62 | 13.3 | 8.51 | 9.25 | 3 | 0.278 | 2006-02-12 | 7.36 | 5.45 |
2243−123 | 0.632 | 5.24 | 14.8 | 1.45 | 1.71 | 1 | 0.161 | 2006-09-06 | 5.73 | 2.79 |
2251+158 | 0.859 | 13.77 | 40.9 | 12.47 | 9.39 | 3 | 0.124 | 2006-06-15 | 8.31 | 4.72 |
2345−167 | 0.576 | 11.47 | 15.8 | 2.81 | 2.21 | 3 | 0.167 | 2006-11-10 | 3.24 | 5.54 |
2351+456 | 1.986 | 21.56 | 20.1 | 2.23 | 8.54 | 8 | 0.196 | 2006-05-24 | 5.35 | 7.99 |
Source . | z . | βapp . | χapp . | S0.3 . | Pjet . | Reference . | Δrcore . | Epoch . | λ . | σ . |
---|---|---|---|---|---|---|---|---|---|---|
. | . | (c) . | (°) . | (Jy) . | (1045 erg s−1) . | for S0.3 . | (mas) . | for Δrcore . | (1013) . | . |
(1) . | (2) . | (3) . | (4) . | (5) . | (6) . | (7) . | (8) . | (9) . | (10) . | (11) . |
0003−066 | 0.347 | 8.40 | 16.3 | 2.17 | 1.07 | 2 | 0.035 | 2006-07-07 | 1.21 | 9.69 |
0106+013 | 2.099 | 24.37 | 23.6 | 2.85 | 10.50 | 6 | 0.005 | 2006-07-07 | 2.02 | 23.67 |
0119+115 | 0.570 | 18.57 | 15.6 | 2.24 | 1.86 | 6 | 0.347 | 2006-06-15 | 3.84 | 4.27 |
0133+476 | 0.859 | 15.36 | 21.7 | 1.63 | 2.54 | 8 | 0.131 | 2006-08-09 | 3.52 | 5.80 |
0202+149 | 0.405 | 15.89 | 16.4 | 6.25 | 2.39 | 3 | 0.122 | 2006-09-06 | 1.63 | 10.90 |
0202+319 | 1.466 | 10.15 | 13.4 | 0.76 | 2.99 | 8 | 0.013 | 2006-08-09 | 2.17 | 11.13 |
0212+735 | 2.367 | 6.55 | 16.4 | 1.54 | 5.17 | 8 | 0.149 | 2006-07-07 | 9.82 | 4.41 |
0215+015 | 1.715 | 25.06 | 36.7 | 0.88 | 3.90 | 5 | 0.088 | 2006-04-28 | 3.75 | 7.54 |
0.241 | 2006-12-01 | 7.97 | 3.54 | |||||||
0234+285 | 1.206 | 21.99 | 19.8 | 1.45 | 3.52 | 5 | 0.275 | 2006-09-06 | 5.29 | 4.79 |
0333+321 | 1.259 | 13.07 | 8.0 | 3.68 | 6.72 | 7 | 0.279 | 2006-07-07 | 4.10 | 8.62 |
0336−019 | 0.852 | 24.45 | 26.8 | 2.49 | 3.26 | 6 | 0.117 | 2006-08-09 | 2.66 | 8.68 |
0403−132 | 0.571 | 20.80 | 16.4 | 7.62 | 4.45 | 2 | 0.346 | 2006-05-24 | 3.66 | 6.95 |
0420−014 | 0.916 | 5.74 | 22.7 | 0.87 | 1.84 | 3 | 0.267 | 2006-10-06 | 13.49 | 1.30 |
0458−020 | 2.286 | 13.57 | 23.1 | 3.54 | 11.20 | 3 | 0.006 | 2006-11-10 | 3.20 | 17.26 |
0528+134 | 2.070 | 17.34 | 16.1 | 1.02 | 5.85 | 2 | 0.167 | 2006-10-06 | 4.81 | 7.40 |
0529+075 | 1.254 | 18.03 | 56.4 | 1.75 | 4.54 | 2 | 0.110 | 2006-08-09 | 3.83 | 7.58 |
0605−085 | 0.870 | 19.19 | 14.0 | 1.43 | 2.39 | 3 | 0.096 | 2006-11-10 | 1.66 | 11.95 |
0607−157 | 0.323 | 1.918 | 35.1 | 2.31 | 0.96 | 3 | 0.240 | 2006-09-06 | 28.46 | 0.38 |
0642+449 | 3.396 | 8.53 | 23.4 | 0.70 | 7.68 | 8 | 0.110 | 2006-10-06 | 5.27 | 8.29 |
0730+504 | 0.720 | 14.07 | 14.8 | 0.71 | 1.20 | 8 | 0.262 | 2006-05-24 | 4.27 | 3.21 |
0735+178 | 0.450 | 5.04 | 21.0 | 1.81 | 1.23 | 8 | 0.039 | 2006-04-28 | 2.56 | 5.07 |
0736+017 | 0.189 | 13.79 | 17.9 | 1.79 | 0.42 | 3 | 0.079 | 2006-06-15 | 0.82 | 8.38 |
0738+313 | 0.631 | 10.72 | 10.5 | 1.26 | 1.48 | 3 | 0.183 | 2006-09-06 | 2.85 | 5.23 |
0748+126 | 0.889 | 14.58 | 16.2 | 1.45 | 2.65 | 2 | 0.098 | 2006-08-09 | 2.41 | 8.69 |
0754+100 | 0.266 | 14.40 | 13.7 | 0.74 | 0.39 | 2 | 0.266 | 2006-04-28 | 2.06 | 3.32 |
0804+499 | 1.436 | 1.15 | 35.3 | 0.60 | 2.49 | 8 | 0.094 | 2006-10-06 | 35.88 | 0.61 |
0805−077 | 1.837 | 41.76 | 18.8 | 2.60 | 9.26 | 2 | 0.207 | 2006-05-24 | 3.12 | 14.09 |
0823+033 | 0.505 | 12.88 | 13.4 | 0.63 | 0.71 | 5 | 0.141 | 2006-06-15 | 2.12 | 4.71 |
0827+243 | 0.942 | 19.81 | 14.6 | 0.71 | 1.80 | 2 | 0.150 | 2006-05-24 | 2.52 | 6.92 |
0829+046 | 0.174 | 10.13 | 18.7 | 0.67 | 0.21 | 2 | 0.109 | 2006-07-07 | 1.28 | 3.82 |
0836+710 | 2.218 | 21.08 | 12.4 | 5.06 | 17.75 | 2 | 0.186 | 2006-09-06 | 3.81 | 16.43 |
0851+202 | 0.306 | 15.14 | 28.5 | 1.11 | 0.56 | 3 | 0.028 | 2006-04-28 | 1.08 | 7.69 |
0906+015 | 1.026 | 22.08 | 17.5 | 1.54 | 3.05 | 3 | 0.168 | 2006-10-06 | 3.04 | 7.56 |
0917+624 | 1.453 | 12.07 | 15.9 | 1.27 | 4.07 | 8 | 0.112 | 2006-08-09 | 3.95 | 7.14 |
0923+392 | 0.695 | 2.76 | 10.8 | 3.28 | 3.03 | 5 | 0.042 | 2006-07-07 | 3.23 | 6.69 |
0945+408 | 1.249 | 20.20 | 14.0 | 2.94 | 6.30 | 2 | 0.083 | 2006-06-15 | 1.80 | 18.92 |
1036+054 | 0.473 | 5.72 | 6.5 | 0.75 | 0.80 | 2 | 0.195 | 2006-05-24 | 2.77 | 3.80 |
1038+064 | 1.265 | 10.69 | 6.7 | 1.59 | 4.32 | 2 | 0.106 | 2006-10-06 | 2.02 | 14.01 |
1045−188 | 0.595 | 10.51 | 8.0 | 2.79 | 2.46 | 2 | 0.156 | 2006-09-06 | 2.01 | 9.45 |
1127−145 | 1.184 | 14.89 | 16.1 | 5.63 | 8.94 | 6 | 0.096 | 2006-08-09 | 2.73 | 14.77 |
1150+812 | 1.250 | 10.11 | 15.0 | 1.39 | 3.81 | 8 | 0.087 | 2006-06-15 | 3.31 | 8.03 |
1156+295 | 0.725 | 24.59 | 16.7 | 4.33 | 3.89 | 8 | 0.162 | 2006-09-06 | 2.15 | 11.40 |
1219+044 | 0.966 | 0.82 | 13.0 | 1.14 | 2.52 | 4 | 0.133 | 2006-05-24 | 22.11 | 0.94 |
1219+285 | 0.103 | 9.12 | 13.9 | 1.77 | 0.19 | 3 | 0.182 | 2006-02-12 | 1.11 | 4.04 |
0.142 | 2007-04-30 | 0.93 | 4.87 | |||||||
0.199 | 2006-11-10 | 1.19 | 3.78 | |||||||
1222+216 | 0.434 | 26.60 | 10.8 | 3.98 | 1.90 | 5 | 0.180 | 2006-04-28 | 1.14 | 14.13 |
1226+023 | 0.158 | 14.86 | 10 | 63.72 | 3.25 | 3 | 0.020 | 2006-03-09 | 0.31 | 60.77 |
1253−055 | 0.536 | 20.58 | 14.4 | 16.56 | 6.31 | 3 | 0.048 | 2006-04-05 | 0.75 | 39.84 |
1308+326 | 0.997 | 27.48 | 18.5 | 1.42 | 2.79 | 8 | 0.143 | 2006-07-07 | 2.35 | 9.33 |
1334−127 | 0.539 | 16.33 | 12.6 | 1.91 | 1.71 | 2 | 0.237 | 2006-10-06 | 2.61 | 5.98 |
1413+135 | 0.247 | 1.78 | 8.8 | 2.74 | 0.81 | 2 | 0.230 | 2006-08-09 | 6.02 | 1.64 |
1458+718 | 0.904 | 6.61 | 4.5 | 19.64 | 13.30 | 8 | 0.081 | 2006-09-06 | 1.46 | 32.22 |
0.136 | 2007-03-01 | 2.16 | 21.84 | |||||||
1502+106 | 1.839 | 17.53 | 37.9 | 1.08 | 4.92 | 3 | 0.052 | 2006-07-07 | 3.59 | 8.92 |
1504−166 | 0.876 | 3.94 | 18.4 | 1.80 | 2.79 | 3 | 0.148 | 2006-12-01 | 9.56 | 2.05 |
1510−089 | 0.360 | 28.00 | 15.2 | 2.75 | 1.22 | 3 | 0.122 | 2006-04-28 | 0.93 | 13.47 |
1514−241 | 0.049 | 6.39 | 7.8 | 2.06 | 0.08 | 3 | 0.188 | 2006-04-28 | 0.56 | 5.15 |
1538+149 | 0.606 | 8.74 | 16.1 | 2.82 | 2.36 | 3 | 0.032 | 2006-06-15 | 1.68 | 11.09 |
1546+027 | 0.414 | 12.08 | 12.9 | 0.70 | 0.61 | 3 | 0.010 | 2006-08-09 | 0.87 | 10.32 |
1606+106 | 1.232 | 19.09 | 24.0 | 2.67 | 5.30 | 7 | 0.057 | 2006-07-07 | 2.11 | 14.84 |
1611+343 | 1.400 | 29.15 | 26.9 | 4.20 | 8.44 | 3 | 0.057 | 2006-06-15 | 1.79 | 22.54 |
1633+382 | 1.813 | 29.22 | 22.6 | 2.51 | 8.28 | 8 | 0.119 | 2006-09-06 | 3.07 | 13.50 |
1637+574 | 0.751 | 13.59 | 10.7 | 1.32 | 1.88 | 8 | 0.117 | 2006-05-24 | 1.92 | 8.94 |
1638+398 | 1.666 | 15.85 | 53.8 | 0.64 | 3.11 | 8 | 0.007 | 2006-08-09 | 4.68 | 5.36 |
1641+399 | 0.593 | 19.27 | 12.9 | 9.93 | 5.13 | 8 | 0.211 | 2006-06-15 | 2.29 | 11.99 |
1655+077 | 0.621 | 14.77 | 5.5 | 2.36 | 2.33 | 6 | 0.080 | 2006-11-10 | 0.73 | 25.39 |
0.086 | 2007-06-01 | 0.77 | 24.05 | |||||||
1726+455 | 0.717 | 2.30 | 16.5 | 0.49 | 0.95 | 8 | 0.009 | 2006-09-06 | 5.18 | 2.34 |
1730−130 | 0.902 | 27.35 | 10.4 | 6.46 | 6.54 | 3 | 0.174 | 2006-07-07 | 1.67 | 19.72 |
1749+096 | 0.322 | 7.90 | 16.8 | 1.20 | 0.61 | 6 | 0.061 | 2006-06-15 | 1.43 | 6.15 |
1751+288 | 1.118 | 3.87 | 12.1 | 0.40 | 1.55 | 2 | 0.007 | 2006-10-06 | 3.60 | 4.62 |
1758+388 | 2.092 | 2.21 | 17.9 | 0.18 | 1.82 | 8 | 0.079 | 2006-11-10 | 13.98 | 1.42 |
1803+784 | 0.680 | 10.79 | 18.4 | 1.92 | 2.23 | 8 | 0.029 | 2006-09-06 | 1.71 | 10.80 |
0.061 | 2007-05-03 | 1.98 | 9.31 | |||||||
1823+568 | 0.664 | 26.17 | 6.8 | 2.63 | 2.52 | 8 | 0.052 | 2006-07-07 | 0.42 | 46.21 |
1828+487 | 0.692 | 13.07 | 7.1 | 47.78 | 15.60 | 3 | 0.117 | 2006-08-09 | 1.39 | 35.35 |
1849+670 | 0.657 | 23.08 | 16.6 | 0.86 | 1.22 | 8 | 0.024 | 2006-05-24 | 0.88 | 15.50 |
1908−201 | 1.119 | 4.39 | 23.9 | 2.70 | 5.21 | 2 | 0.246 | 2006-03-09 | 18.03 | 1.69 |
1928+738 | 0.302 | 8.17 | 9.8 | 4.81 | 1.40 | 8 | 0.147 | 2006-04-28 | 1.72 | 7.66 |
1936−155 | 1.657 | 5.34 | 35.2 | 0.67 | 3.45 | 2 | 0.215 | 2006-07-07 | 22.92 | 1.15 |
2008−159 | 1.180 | 4.85 | 9.7 | 0.73 | 2.41 | 2 | 0.008 | 2006-11-10 | 2.65 | 7.89 |
2022−077 | 1.388 | 23.23 | 19.6 | 2.63 | 6.67 | 2 | 0.006 | 2006-04-05 | 1.51 | 23.67 |
2121+053 | 1.941 | 11.66 | 34.0 | 0.63 | 3.99 | 2 | 0.152 | 2006-06-15 | 10.29 | 2.83 |
2128−123 | 0.501 | 5.99 | 5.0 | 1.47 | 1.23 | 3 | 0.223 | 2006-10-06 | 2.52 | 5.20 |
2131−021 | 1.284 | 19.96 | 18.4 | 2.66 | 6.11 | 6 | 0.089 | 2006-08-09 | 2.39 | 14.14 |
2134+004 | 1.932 | 5.04 | 15.2 | 0.99 | 4.85 | 6 | 0.188 | 2006-07-07 | 12.35 | 2.60 |
2136+141 | 2.427 | 4.15 | 32.5 | 0.94 | 6.16 | 6 | 0.008 | 2006-09-06 | 10.28 | 3.64 |
2145+067 | 0.999 | 2.83 | 23.2 | 3.76 | 5.18 | 3 | 0.008 | 2006-10-06 | 6.97 | 4.31 |
2155−152 | 0.672 | 18.12 | 17.6 | 2.41 | 2.43 | 3 | 0.405 | 2006-12-01 | 5.34 | 3.60 |
2200+420 | 0.069 | 9.95 | 26.2 | 1.82 | 0.12 | 8 | 0.032 | 2006-04-05 | 0.47 | 7.30 |
2201+171 | 1.076 | 17.66 | 13.6 | 1.00 | 2.63 | 2 | 0.380 | 2006-05-24 | 5.64 | 3.82 |
2201+315 | 0.295 | 8.27 | 12.8 | 1.82 | 0.88 | 3 | 0.347 | 2006-10-06 | 3.90 | 2.67 |
0.192 | 2007-04-30 | 2.50 | 3.80 | |||||||
2209+236 | 1.125 | 2.29 | 14.2 | 0.39 | 1.51 | 2 | 0.038 | 2006-12-01 | 6.03 | 2.73 |
2216−038 | 0.901 | 6.73 | 15.6 | 2.25 | 3.57 | 6 | 0.011 | 2006-08-09 | 2.55 | 9.57 |
2223−052 | 1.404 | 20.34 | 11.7 | 13.59 | 18.00 | 3 | 0.199 | 2006-10-06 | 3.21 | 18.33 |
2227−088 | 1.560 | 2.00 | 15.8 | 1.41 | 5.14 | 2 | 0.186 | 2006-07-07 | 22.85 | 1.40 |
2230+114 | 1.037 | 8.62 | 13.3 | 8.51 | 9.25 | 3 | 0.278 | 2006-02-12 | 7.36 | 5.45 |
2243−123 | 0.632 | 5.24 | 14.8 | 1.45 | 1.71 | 1 | 0.161 | 2006-09-06 | 5.73 | 2.79 |
2251+158 | 0.859 | 13.77 | 40.9 | 12.47 | 9.39 | 3 | 0.124 | 2006-06-15 | 8.31 | 4.72 |
2345−167 | 0.576 | 11.47 | 15.8 | 2.81 | 2.21 | 3 | 0.167 | 2006-11-10 | 3.24 | 5.54 |
2351+456 | 1.986 | 21.56 | 20.1 | 2.23 | 8.54 | 8 | 0.196 | 2006-05-24 | 5.35 | 7.99 |
Notes. Columns are as follows: (1) source name (B1950); (2) redshift z as collected by (Lister et al. 2013); (3) apparent velocity measured by (Lister et al. 2013); (4) apparent opening angle measured by Pushkarev et al. (2009); (5) flux density at the 92 cm band; (6) derived total jet power; (7) 92 cm flux density reference: 1 – De Breuck et al. (2002), 2 – Douglas et al. (1996), 3 – Ghosh et al. (1994), 4 – Gregory & Condon (1991), 5 – Kühr et al. (1979), 6 – Kühr et al. (1981), 7 – Mitchell et al. (1994), 8 – Rengelink et al. (1997); (8) core shift for frequencies 8.1 − 15.3 GHz, measured in mas (Sokolovsky et al. 2011; Pushkarev et al. 2012); (9) an epoch of the core-shift measurements by Pushkarev et al. (2012) for the year 2006 and by Sokolovsky et al. (2011) for the year 2007; (10) derived multiplicity parameter; (11) derived the Michel magnetization parameter.
The Doppler factor of a flow can be also obtained through the variability method by measuring the amplitude and duration of a flare (Hovatta et al. 2009). Making an assumption that the latter corresponds to the time needed for light to cross the emitting region, and assuming that the intrinsic brightness temperature is known (from the equipartition argument), one can derive the beaming Doppler factor. We have used the variability Doppler factors obtained by Hovatta et al. (2009) for 50 objects with measured core-shifts (Pushkarev et al. 2012) instead of our original assumption for Doppler factor δ = βapp and have found that our estimates for λ and σM stay the same within a factor of 2.
We estimate the total typical accuracy of λ and σM values in Table 1 to be of a factor of a few. It is mostly due to the assumptions and simplifications introduced and, to a less of an extent, due to accuracy of observational parameters of the jets. We note that while an estimate for every source is not highly accurate, the distributions in Figs 1 and 2 should represent the sample properties well.
There are three objects in our sample that have the Michel magnetization parameter σM < 1, which means that the flow is not magnetically dominated at its base. And we have overall nine sources with σM < 2, which is in contradiction with our assumption of at least a mildly magnetized flow. This is a small fraction (9 per cent) of all 97 sources, so we feel that for the majority sources there is no contradiction of our assumptions and the resultant value for the Michel magnetization parameter.
We see that the magnetization parameter λ obtained from the observed core-shift has the order of magnitude 1012–1014 which agrees with the two-photon conversion model of plasma production in a black hole magnetosphere (Blandford & Znajek 1977; Moscibrodzka et al. 2011). Thus, we obtain the key physical parameters of the jets being σM ∼ 10 and λ ∼ 1013. As a result, knowing these parameters and using a rather simple one-dimensional MHD approach, we can determine the internal structure of jets.
4 ON THE INTERNAL STRUCTURE OF JETS
As was shown by Beskin & Malyshkin (2000), Beskin & Nokhrina (2009) and Lyubarsky (2009), for well-collimated jets the one-dimensional cylindrical MHD approximation (when the problem is reduced to the system of two ordinary differential equations, see above mentioned papers for more detail) allows us to reproduce main results obtained later by two-dimensional numerical simulation (Komissarov et al. 2006; Tchekhovskoy et al. 2009; Porth et al. 2011; McKinney et al. 2012). In particular, both analytical and numerical consideration predict the existence of a dense core in the centre of a jet for low enough ambient pressure pext. Thus, knowing main parameters obtained above we can determine the transverse structure of jets using rather simple 1D analytical approximation. The only parameters we need are the Michel magnetization σM and the transverse dimension of a jet Rjet (or, the ambient pressure pext). In particular, transversal profiles of the Lorentz factor Γ, number density ne and magnetic field B can be well reproduced. In this section, we apply this approach to clarify the real structure of relativistic jets.
In Fig. 3, we present logarithmic plots of Lorentz factor and number density across the jet for λ = 1013, jet radius Rjet = 1 pc and σ = 5, 15 and 30. Fig. 4 shows logarithmic plots of poloidal and toroidal components of magnetic field across the jet with the same parameters as in Fig. 3. As we see, these results point to the existence of more dense central core in the centre of a jet. Indeed, for our parameters the number density in the centre of a jet is greater by a factor of a thousand than at the edge. However the Lorentz factor in the central core is small (see Fig. 3b). Thus, these results are in qualitative agreement with previous studies.

Transversal profile of the number density ne (a) and Lorentz factor Γ (b) in logarithmical scale for λ = 1013, jet radius Rjet = 1 pc and three different values of σ: 5 (solid line), 15 (dashed line) and 30 (dotted line).

Transversal profile of poloidal (a) and toroidal (b) components of magnetic field in logarithmical scale for the same parameters and line types as in Fig. 3.
Knowing how the Lorentz factor on the edge of jet depends on its radius and making a simple assumption about the form of the jet, we can calculate the dependence of the Lorentz factor on the coordinate along the jet. The result is presented in Fig. 5 for the cases of parabolic |$\zeta \propto r_{\perp }^2$| and |$\zeta \propto r_{\perp }^3$| form of the jet. Here, ζ is the distance along the axis. We also assume that the jet has a radius of about 10 pc at the distance 100 pc in both cases, which corresponds to a half-opening angle of the jet θjet ≈ 0.1. According to Fig. 5, particle acceleration in the frame of the AGN host galaxy on the scales 60–100 pc has values about |$\dot{\Gamma }/\Gamma =10^{-3}$| yr−1 with very little dependence of this value on the particular form of a jet boundary. This agrees nicely with results of the VLBI acceleration study in AGN jets by Homan et al. (2009, 2014).

Dependence of Lorentz factor on coordinate along the jet in assumption of |$\zeta \propto r_{\perp }^3$| (solid line) and |$\zeta \propto r_{\perp }^2$| (dashed line) form of the jet.
5 STUDYING THE CAUSAL CONNECTIVITY OF THE CYLINDRICAL JET MODEL
The calculated multiplication parameter λ with the Michel magnetization parameter σM as well as the observed half-opening angle of a jet χ allow us to test causal connectivity across a jet for the cylindrical model. Every spacial point of a supermagnetosonic outflow has its own ‘Mach cone’ of causal influence. In case of a uniform flow the cone originating at the given point with its surface formed by the characteristics of a flow is a domain, where any signal from the point is known. For a non-uniform flow the cone becomes some vortex-like shape, depending on the flow property, but sustaining the property of a causal domain for a given point.
In a jet, if the characteristic inlet from any point of a set of boundary points reaches the jet axis, we say that the axis is causally connected with the boundary. On the contrary, if there is a characteristic that does not reach the axis, we have a causally disconnected flow. In the latter case, a question arises about the self-consistency of an MHD solution of the flow, since the inner parts of such a flow do not have any information about the properties of the confining medium. The examples of importance of causal connectivity in a flow and its connection with the effective plasma acceleration has been pointed out by Komissarov et al. (2009) and Tchekhovskoy et al. (2009).
In the case of the cylindrical jet model, the question of causality is even more severe. For a cylindrical model we take into account the force balance across a jet only, so the trans-field equation governing the flow becomes one-dimensional. For every initial condition at the axis its solution gives the flow profile and the position of a boundary, defined so as to contain the whole magnetic flux. Any physical value at the boundary such as, for example, the pressure, may be calculated from this solution. Or, we in fact reverse the problem, and for a given outer pressure at the boundary we find the initial conditions at the jet axis. Thus, we use the dependence of the jet properties at the axis from the conditions at the boundary. In this case, the boundary and the axis must be causally connected. In other words, for a strictly cylindrical flow the conditions at the boundary at the distance ζ0 from the jet origin must be ‘known’ to the point at the axis at the same ζ0.
In the cylindrical model, the dynamics of a flow along the jet is achieved by ‘piling up’ the described above cross cuts so as to either make the needed boundary form, or to model the variable outer pressure. In this case, the jet boundaries should be constrained by the ‘Mach cone’ following causal connection for the model to be self-consistent. Thus, we come to the following criteria: we may assert that we can neglect the jet-long derivatives in a trans-field equation if any characteristic, outlet from a boundary at ζ0, not only reaches the axis, but does it at ζ: |ζ − ζ0| ≪ ζ0.

The causality function f for different magnetic surface shapes for Γ > Γmax/2, i.e. further the equipartition. Solid lines are shown for σM = 100 while dotted lines for σM = 10. The upper curves correspond to |$\zeta \propto r_{\perp }^{3}$|, the curves in the middle – to |$\zeta \propto r_{\perp }^{2}$|, and the lower curves – to |$\zeta \propto r_{\perp }^{3/2}$|.

The net of inbound characteristics for a power-law form of a jet boundary |$\zeta \propto r_{\perp }^{3}$| (left-hand panel), |$\zeta \propto r_{\perp }^{2}$| (centre panel), |$\zeta \propto r_{\perp }^{3/2}$| (right-hand panel).
6 DISCUSSION
We show that the multiplicity parameter λ, which is the ratio of number density ne of outflowing plasma to GJ number density nGJ, can be obtained from the direct observations of core shift, apparent opening angle and radio power of a jet. The formula (31) uses the following assumptions, taken from the theoretical model: (i) the acceleration process of plasma effectively stops (saturates) when there is an equipartition regime, i.e. the Poynting flux is equal to the plasma kinetic energy flux; (ii) we assume the certain power-law scalings for magnetic field B(r) and number density ne(r) as a functions of distance r (Lobanov 1998). These scalings are confirmed by Sokolovsky et al. (2011). We also see that these power laws are a good approximation from modelling the internal jet structure in Section 4.
In contrast with Lobanov (1998) and Hirotani (2005) we do not assume the equipartition regime of radiating particles with magnetic field, but the relation between the particles (radiating and non-radiating) kinetic energy and Poynting flux. We assume that only the small fraction of particles ∼1 per cent radiates (Sironi et al. 2013) and introduce the correlation between particle number density and magnetic field through the flow magnetization σ. Although for σ ∼ 1 both approaches give effectively the same relation between particle number density and magnetic field, for highly magnetized regime σ ≫ 1 our approach yields the different result. Probing both the equipartition regime σ ∼ 1 and highly magnetized regime σ ≫ 1 at parsec scales we conclude that the latter does not hold.
7 SUMMARY
The analysis of the frequency dependence of the observed shift of the core of relativistic AGN jets allows us to determine physical parameters of the jets such as the plasma number density and the magnetic field inside the flow. We have estimated the multiplicity parameter λ to be of the order of 1012–1015. It is consistent with the Blandford–Znajek model (Blandford & Znajek 1977) of the electron–positron generation in the magnetosphere of the black hole (see Moscibrodzka et al. 2011, as well). These values are in agreement with the particle number density ne which was found independently by Lobanov (1998).
As the transverse jet structure depends strongly on the flow regime, whether it is in equipartition or magnetically dominated, it is important to know the relation between the observed and maximum Lorentz factor. The Michel magnetization parameter σM is equal to the maximum Lorentz factor of plasma bulk motion. Typical derived values of σM ≲ 30, in agreement with the Lorentz factor estimated from VLBI jet kinematics (e.g. Cohen et al. 2007; Lister et al. 2009b, 2013) and radio variability (Jorstad et al. 2005; Hovatta et al. 2009; Savolainen et al. 2010). This implies that a flow is in the saturation regime. Since for strongly collimated flow the condition of causal connection is fulfilled (see e.g. Komissarov et al. 2009; Tchekhovskoy et al. 2009), the internal structure of an outflow can be modelled within the cylindrical approach (Beskin & Malyshkin 2000; Beskin & Nokhrina 2009). It has been shown that the results of the modelling, such as Lorentz factor dependence on the jet distance, are in good agreement with the observations. In particular, the relative growth of Lorentz factor |$\dot{\Gamma }/\Gamma$| with the distance along the axis is slow for the jets in saturation regime, having the magnitude ∼10−3 yr−1. This result may account for the recent measurements of acceleration in AGN jets (Homan et al. 2014).
We plan to address the following points in a separate paper: (i) the role of the inhomogeneity of the magnetic field and particle number density in a core, (ii) the action of the radiation drag force (Li, Begelman & Chiueh 1992; Beskin, Zakamska & Sol 2004; Russo & Thompson 2013), (iii) the possible influence of mass loading (Komissarov 1994; Derishev et al. 2003; Stern & Poutanen 2006) on the jet magnetization and dynamics.
We would like to acknowledge E. Clausen-Brown, D. Gabuzda, M. Sikora, A. Lobanov, T. Savolainen, M. Barkov and the anonymous referee for useful comments. We thank the anonymous referee for suggestions which helped to improve the paper. This work was supported in part by the Russian Foundation for Basic Research grant 13-02-12103. YYK was also supported in part by the Dynasty Foundation. This research has made use of data from the MOJAVE data base that is maintained by the MOJAVE team (Lister et al. 2009a), and data accumulated by the CATS data base (Verkhodanov et al. 1997). This research has made use of NASA's Astrophysics Data System.