Abstract

We identify 51 blue horizontal branch (BHB) stars, 12 possible BHB stars and 58 RR Lyrae stars in Anticentre fields. Their selection does not depend on their kinematics. Light curves and ephemerides are given for seven previously unknown RR Lyrae stars. All but four of the RR Lyrae stars are of Oosterhoff type I.

Our selection criteria for BHB stars give results that agree with those used by Smith et al. and Ruhland et al. We use five methods to determine distances for the BHB stars and three methods for the RR Lyrae stars to get distances on a uniform scale. Absolute proper motions [largely derived from the Second Guide Star Catalogue (GSCII) and Sloan Digital Sky Survey (Seventh Data Release) data bases] are given for these stars; radial velocities are given for 31 of the BHB stars and 37 of the RR Lyrae stars.

Combining these data for BHB and RR Lyrae stars with those previously found in fields at the North Galactic Pole, we find that retrograde orbits dominate for galactocentric distances greater than 12.5 kpc. The majority of metal-poor stars in the solar neighbourhood are known to be concentrated in a L versus Lz angular momentum plot. We show that the ratio of the number of outliers to the number in the main concentration increases with galactocentric distance. The location of these outliers with L and Lz shows that the halo BHB and RR Lyrae stars have more retrograde orbits and a more spherical distribution with increasing galactocentric distance. Six RR Lyrae stars are identified in the H99 group of outliers; the small spread in their [Fe/H] suggests that they could have come from a single globular cluster. Another group of outliers contains two pairs of RR Lyrae stars; the stars in each pair have similar properties.

1 INTRODUCTION

The blue horizontal branch (BHB) and RR Lyrae stars are well-established tracers of the oldest stars in the Galactic halo although their galactic distribution may not coincide with other halo tracers such as the turn-off stars (Bell et al. 2010). This paper continues those on other surveys for BHB and RR Lyrae stars (Kinman et al. 2007b; Kinman & Brown 2011) and extends previous work in the Anticentre direction (Kinman, Suntzeff & Kraft 1994). Our BHB and RR Lyrae stars are in the range 10 < V < 17 and so range in distance from those in the solar neighbourhood to those distant enough to be included in the Sloan Digital Sky Survey (SDSS) DR7 survey (Abazajian et al. 2009). This allows our selection methods for BHB stars to be compared with other methods for identifying halo SDSS stars (Smith et al. 2010; Ruhland et al. 2011).

The globular-cluster halo is thought to consist of an old halo and a young halo in which the clusters have different horizontal branch (HB) morphologies that can be interpreted as an age difference (Zinn 1993). The shape of the field star halo changes with galactocentric distance (Schmidt 1956; Kinman, Wirtanen & Janes 1966) which suggests that it may not be homogeneous. It is now usual to postulate that the field stars belong to an ‘inner halo’ that was formed in situ and an ‘outer halo’ that has largely been accreted. Earlier work on the field star halo has been summarized by Helmi (2008). Since then, there have been several more investigations of halo structure using various tracers. Surveys using BHB stars have been made by Smith et al. (2010), Xue et al. (2011), Ruhland et al. (2011) and Deason, Belokurov & Evans (2011). Surveys using RR Lyrae stars have been made by Watkins et al. (2009) and Sesar et al. (2010). The stars in these surveys are mostly too distant to have good proper motions from which space motions could be derived. They do, however, allow space densities to be determined as a function of galactocentric distance. The surveys of Deason et al. (2011) for BHB stars and of Sesar, Jurić & Ivezić (2011) for turn-off stars both show breaks in the slopes of their density distributions at 28 kpc from the galactic centre; this suggests that the halo may have two components.

Recent surveys for stars that are close enough for existing proper motions to allow a kinematic analysis include the survey for subdwarfs by Smith et al. (2009), but this survey does not extend far enough in galactocentric distance to sample the outer halo. Carollo et al. (2007, 2010) have analysed the space motions of a large number of stars within 4 kpc and find that a two-component halo is needed to account for the galactic rotation of these stars. They find that there is an outer halo that is more metal-poor and that has a more retrograde rotation than the inner halo. It should be noted that two haloes overlap spatially and the outer halo is less centrally concentrated than the inner. The difference in metallicity between the two haloes has been confirmed by De Jong et al. (2010). Recently, Carollo et al. (2012) have shown that the fraction of carbon-enhanced metal-poor stars is twice as great in the outer halo as in the inner halo. Schönrich, Asplund & Casagrande (2011) re-analysed the Carollo et al. (2010) data and failed to find any reliable evidence for an outer counter-rotating halo. Inter alia, they criticized the luminosity classification of the turn-off stars. In a rebuttal, Beers et al. (2012) re-analysed their data (re-classifying the turn-off stars and criticizing the main-sequence luminosity relation used by Schönrich et al.); they substantiate their original conclusion that the inner halo is nearly non-rotating while the outer halo has ‘a retrograde signature’ with a transition at 15 to 20 kpc from the Sun.

Recent simulations of galaxy formation support the idea that the haloes of galaxies like the Milky Way have a dual origin and have been formed both in situ and by accretion (Zolotov et al. 2009, 2010, 2011; Oser et al. 2010; Font et al. 2011; McCarthy et al. 2012). Zolotov (2011) discusses a dual halo in which the role of accretion increases outwards from the Galactic Centre and the halo is formed solely by accretion if Rgal > 20 kpc. In these simulations, the fraction of the halo that is accreted depends upon the mass of the galaxy. The average of the 400 simulations given by Font et al. has the inner ‘in situ’ component dropping to 20 per cent and the accreted component rising to 80 per cent at a galactocentric distance of 20 kpc. McCarthy et al. (2012) find that the ‘in situ’ component has a flattened distribution and a rotation that is intermediate between that of the disc and the ‘outer halo’.

In this paper we examine halo stars in the Anticentre direction because this is the best direction in which to study the transition from the ‘in situ’ to the accreted halo and the kinematic properties of the outer halo. We do not have sufficient data to discuss the abundance differences between the two haloes. Section 2 identifies the sources and their galactic distributions from which our BHB candidates and our RR Lyrae stars are taken. In Section 3 we give the photometric data for the BHB stars, and in Appendix A we describe the techniques used to identify these stars and the methods used to estimate their distances. Section 4 gives the photometric data and periods for the RR Lyrae stars and shows that they mostly belong to Oosterhoff type 1; in Appendix B we give the ephemerides for the new RR Lyrae stars and the methods used to estimate their distances. Section 5 gives the adopted distances, proper motions and radial velocities of our programme stars together with their galactic space motions (Table 1). It is shown in Section 5 that the galactic rotation velocity (V) becomes more retrograde with increasing galactocentric distance. Appendix C gives details of the sources of the proper motions. Section 6 introduces the angular momenta Lz and L and their relation to the galactic rotation (V) and the maximum height above the plane of the star’s orbit (zmax). It is shown that the halo becomes more spherical with increasing galactocentric distance (Table 2). Appendix D discusses the location of thick disc in the Lz and L plot. Appendix E gives the angular momenta of the RR Lyrae and BHB stars near the North Galactic Pole (NGP), those of the local BHB stars and those of the galactic globular clusters within 10 kpc. Appendix F discusses the properties of the kinematic groups H99 and K07. The candidates for membership of the K07 group are given in Table 3 in the main part of the paper. The results of the paper are summarized in Section 7.

Table 1

Space motions U, V and W with respect to LSR and their dispersions σu, σv and σw in km s−1.

SampleNU (km s−1)σu (km s−1)V (km s−1)σv (km s−1)W (km s−1)σw (km s−1)Z〉 (kpc)D〉 (kpc)Rgal〉 (kpc)Notes
bhb8−73 ± 41115 ± 29−192 ± 45121 ± 30−55 ± 48134 ± 343.86.213.41
BHB (A)28+19 ± 26131 ± 18−329 ± 2199 ± 13−14 ± 2099 ± 133.76.113.22
RR (A)15+3 ± 40152 ± 28−228 ± 2695 ± 17+18 ± 28108 ± 202.84.511.73
BHB (B)3−177 ± 6989 ± 36−181 ± 95107 ± 44+86 ± 98118 ± 486.09.816.94
RR (B)16+31 ± 2997 ± 17−263 ± 40121 ± 21+6 ± 2878 ± 146.813.420.75
LOCAL BHB27+9 ± 25129 ± 18−205 ± 1579 ± 11−7 ± 20101 ± 148.06
LOCAL RR32−12 ± 29160 ± 20−204 ± 19107 ± 13+11 ± 20113 ± 148.07
SampleNU (km s−1)σu (km s−1)V (km s−1)σv (km s−1)W (km s−1)σw (km s−1)Z〉 (kpc)D〉 (kpc)Rgal〉 (kpc)Notes
bhb8−73 ± 41115 ± 29−192 ± 45121 ± 30−55 ± 48134 ± 343.86.213.41
BHB (A)28+19 ± 26131 ± 18−329 ± 2199 ± 13−14 ± 2099 ± 133.76.113.22
RR (A)15+3 ± 40152 ± 28−228 ± 2695 ± 17+18 ± 28108 ± 202.84.511.73
BHB (B)3−177 ± 6989 ± 36−181 ± 95107 ± 44+86 ± 98118 ± 486.09.816.94
RR (B)16+31 ± 2997 ± 17−263 ± 40121 ± 21+6 ± 2878 ± 146.813.420.75
LOCAL BHB27+9 ± 25129 ± 18−205 ± 1579 ± 11−7 ± 20101 ± 148.06
LOCAL RR32−12 ± 29160 ± 20−204 ± 19107 ± 13+11 ± 20113 ± 148.07

Notes. (1) Stars classified as bhb (possible BHB stars).    (2) Halo BHB stars with D < 8.5 kpc.    (3) Halo RR Lyrae stars with D < 8.5 kpc.    (4) Halo BHB stars with D > 8.5 kpc.    (5) Halo RR Lyrae stars with 8.5 < D < 17 kpc.    (6) Local sample of BHB stars (Kinman et al. (2007b).    (7) Local sample of Halo RR Lyrae stars within 1 kpc from Maintz & de Boer (2005). Velocity dispersions are upper limits. For further details see text.

Table 1

Space motions U, V and W with respect to LSR and their dispersions σu, σv and σw in km s−1.

SampleNU (km s−1)σu (km s−1)V (km s−1)σv (km s−1)W (km s−1)σw (km s−1)Z〉 (kpc)D〉 (kpc)Rgal〉 (kpc)Notes
bhb8−73 ± 41115 ± 29−192 ± 45121 ± 30−55 ± 48134 ± 343.86.213.41
BHB (A)28+19 ± 26131 ± 18−329 ± 2199 ± 13−14 ± 2099 ± 133.76.113.22
RR (A)15+3 ± 40152 ± 28−228 ± 2695 ± 17+18 ± 28108 ± 202.84.511.73
BHB (B)3−177 ± 6989 ± 36−181 ± 95107 ± 44+86 ± 98118 ± 486.09.816.94
RR (B)16+31 ± 2997 ± 17−263 ± 40121 ± 21+6 ± 2878 ± 146.813.420.75
LOCAL BHB27+9 ± 25129 ± 18−205 ± 1579 ± 11−7 ± 20101 ± 148.06
LOCAL RR32−12 ± 29160 ± 20−204 ± 19107 ± 13+11 ± 20113 ± 148.07
SampleNU (km s−1)σu (km s−1)V (km s−1)σv (km s−1)W (km s−1)σw (km s−1)Z〉 (kpc)D〉 (kpc)Rgal〉 (kpc)Notes
bhb8−73 ± 41115 ± 29−192 ± 45121 ± 30−55 ± 48134 ± 343.86.213.41
BHB (A)28+19 ± 26131 ± 18−329 ± 2199 ± 13−14 ± 2099 ± 133.76.113.22
RR (A)15+3 ± 40152 ± 28−228 ± 2695 ± 17+18 ± 28108 ± 202.84.511.73
BHB (B)3−177 ± 6989 ± 36−181 ± 95107 ± 44+86 ± 98118 ± 486.09.816.94
RR (B)16+31 ± 2997 ± 17−263 ± 40121 ± 21+6 ± 2878 ± 146.813.420.75
LOCAL BHB27+9 ± 25129 ± 18−205 ± 1579 ± 11−7 ± 20101 ± 148.06
LOCAL RR32−12 ± 29160 ± 20−204 ± 19107 ± 13+11 ± 20113 ± 148.07

Notes. (1) Stars classified as bhb (possible BHB stars).    (2) Halo BHB stars with D < 8.5 kpc.    (3) Halo RR Lyrae stars with D < 8.5 kpc.    (4) Halo BHB stars with D > 8.5 kpc.    (5) Halo RR Lyrae stars with 8.5 < D < 17 kpc.    (6) Local sample of BHB stars (Kinman et al. (2007b).    (7) Local sample of Halo RR Lyrae stars within 1 kpc from Maintz & de Boer (2005). Velocity dispersions are upper limits. For further details see text.

Table 2

Numbers of stars that are outliers and in the mainconcentration in the Anticentre and NGP fields.

Field†No. in main conc.No. of outliersPer cent of outliers (per cent)Rgalmainconcentration (kpc)Rgaloutliers (kpc)
ANTICENTRE BHB15144812.5 ± 0.414.1 ± 0.4
ANTICENTRE RR964011.2 ± 0.612.5 ± 0.7
ANTICENTRE BHB + RR24204512.0 ± 0.413.6 ± 0.5
NGP BHB519159.7 ± 0.211.4 ± 0.4
NGP RR2292910.2 ± 0.311.2 ± 0.6
NGP BHB + RR7318209.8 ± 0.211.3 ± 0.3
Field†No. in main conc.No. of outliersPer cent of outliers (per cent)Rgalmainconcentration (kpc)Rgaloutliers (kpc)
ANTICENTRE BHB15144812.5 ± 0.414.1 ± 0.4
ANTICENTRE RR964011.2 ± 0.612.5 ± 0.7
ANTICENTRE BHB + RR24204512.0 ± 0.413.6 ± 0.5
NGP BHB519159.7 ± 0.211.4 ± 0.4
NGP RR2292910.2 ± 0.311.2 ± 0.6
NGP BHB + RR7318209.8 ± 0.211.3 ± 0.3

†The Anticentre fields are those described in this paper and the fields at the NGP are those described in Kinman et al. (2007b).

Table 2

Numbers of stars that are outliers and in the mainconcentration in the Anticentre and NGP fields.

Field†No. in main conc.No. of outliersPer cent of outliers (per cent)Rgalmainconcentration (kpc)Rgaloutliers (kpc)
ANTICENTRE BHB15144812.5 ± 0.414.1 ± 0.4
ANTICENTRE RR964011.2 ± 0.612.5 ± 0.7
ANTICENTRE BHB + RR24204512.0 ± 0.413.6 ± 0.5
NGP BHB519159.7 ± 0.211.4 ± 0.4
NGP RR2292910.2 ± 0.311.2 ± 0.6
NGP BHB + RR7318209.8 ± 0.211.3 ± 0.3
Field†No. in main conc.No. of outliersPer cent of outliers (per cent)Rgalmainconcentration (kpc)Rgaloutliers (kpc)
ANTICENTRE BHB15144812.5 ± 0.414.1 ± 0.4
ANTICENTRE RR964011.2 ± 0.612.5 ± 0.7
ANTICENTRE BHB + RR24204512.0 ± 0.413.6 ± 0.5
NGP BHB519159.7 ± 0.211.4 ± 0.4
NGP RR2292910.2 ± 0.311.2 ± 0.6
NGP BHB + RR7318209.8 ± 0.211.3 ± 0.3

†The Anticentre fields are those described in this paper and the fields at the NGP are those described in Kinman et al. (2007b).

Table 3

Candidates for membership of the K07 group.

StarType†L (kpc km s−1)Lz (kpc km s−1)V〉 (mag)D (kpc)[Fe/H]Period (d)
HD 214925RGa1322 ± 119−2177 ± 2059.302.15−2.15
AT VIRRRa1576 ± 93−1712 ± 14911.341.30−1.600.5257
RV CAPRRa1464 ± 146−2090 ± 23911.041.06−1.720.4477
RR7-066BHBb1960 ± 1028−1533 ± 64515.318.47
CHSS 608BHBb1742 ± 452−2152 ± 65714.816.76
AF-115BHBc1571 ± 457−1484 ± 49415.428.13
SA57-032BHBc1621 ± 604−1514 ± 67015.137.81
AF-041BHBc1668 ± 511−1928 ± 63515.027.46
AF-053BHBc2091 ± 768−1609 ± 82815.196.94
SA57-001BHBc1430 ± 342−1742 ± 50314.435.68
AF-108BHBc1279 ± 224−2185 ± 37013.863.82
IP COMRRc1878 ± 780−1860 ± 78014.857.25−1.480.6406
EO COMRRc1743 ± 483−1889 ± 52814.746.94−1.670.6320
MQ COMRRc1572 ± 393−1895 ± 50114.235.400.6224
IS COMRRc1472 ± 177−1642 ± 33813.804.440.3146
StarType†L (kpc km s−1)Lz (kpc km s−1)V〉 (mag)D (kpc)[Fe/H]Period (d)
HD 214925RGa1322 ± 119−2177 ± 2059.302.15−2.15
AT VIRRRa1576 ± 93−1712 ± 14911.341.30−1.600.5257
RV CAPRRa1464 ± 146−2090 ± 23911.041.06−1.720.4477
RR7-066BHBb1960 ± 1028−1533 ± 64515.318.47
CHSS 608BHBb1742 ± 452−2152 ± 65714.816.76
AF-115BHBc1571 ± 457−1484 ± 49415.428.13
SA57-032BHBc1621 ± 604−1514 ± 67015.137.81
AF-041BHBc1668 ± 511−1928 ± 63515.027.46
AF-053BHBc2091 ± 768−1609 ± 82815.196.94
SA57-001BHBc1430 ± 342−1742 ± 50314.435.68
AF-108BHBc1279 ± 224−2185 ± 37013.863.82
IP COMRRc1878 ± 780−1860 ± 78014.857.25−1.480.6406
EO COMRRc1743 ± 483−1889 ± 52814.746.94−1.670.6320
MQ COMRRc1572 ± 393−1895 ± 50114.235.400.6224
IS COMRRc1472 ± 177−1642 ± 33813.804.440.3146

Notes. †RG = red giant; BHB = blue horizontal branch star; RR = RR Lyrae star. The superscripts a, b and c indicate that the star belongs to the solar neighbourhood, the Anticentre fields of the present paper or the NGP fields of Kinman et al. (2007b), respectively.

Table 3

Candidates for membership of the K07 group.

StarType†L (kpc km s−1)Lz (kpc km s−1)V〉 (mag)D (kpc)[Fe/H]Period (d)
HD 214925RGa1322 ± 119−2177 ± 2059.302.15−2.15
AT VIRRRa1576 ± 93−1712 ± 14911.341.30−1.600.5257
RV CAPRRa1464 ± 146−2090 ± 23911.041.06−1.720.4477
RR7-066BHBb1960 ± 1028−1533 ± 64515.318.47
CHSS 608BHBb1742 ± 452−2152 ± 65714.816.76
AF-115BHBc1571 ± 457−1484 ± 49415.428.13
SA57-032BHBc1621 ± 604−1514 ± 67015.137.81
AF-041BHBc1668 ± 511−1928 ± 63515.027.46
AF-053BHBc2091 ± 768−1609 ± 82815.196.94
SA57-001BHBc1430 ± 342−1742 ± 50314.435.68
AF-108BHBc1279 ± 224−2185 ± 37013.863.82
IP COMRRc1878 ± 780−1860 ± 78014.857.25−1.480.6406
EO COMRRc1743 ± 483−1889 ± 52814.746.94−1.670.6320
MQ COMRRc1572 ± 393−1895 ± 50114.235.400.6224
IS COMRRc1472 ± 177−1642 ± 33813.804.440.3146
StarType†L (kpc km s−1)Lz (kpc km s−1)V〉 (mag)D (kpc)[Fe/H]Period (d)
HD 214925RGa1322 ± 119−2177 ± 2059.302.15−2.15
AT VIRRRa1576 ± 93−1712 ± 14911.341.30−1.600.5257
RV CAPRRa1464 ± 146−2090 ± 23911.041.06−1.720.4477
RR7-066BHBb1960 ± 1028−1533 ± 64515.318.47
CHSS 608BHBb1742 ± 452−2152 ± 65714.816.76
AF-115BHBc1571 ± 457−1484 ± 49415.428.13
SA57-032BHBc1621 ± 604−1514 ± 67015.137.81
AF-041BHBc1668 ± 511−1928 ± 63515.027.46
AF-053BHBc2091 ± 768−1609 ± 82815.196.94
SA57-001BHBc1430 ± 342−1742 ± 50314.435.68
AF-108BHBc1279 ± 224−2185 ± 37013.863.82
IP COMRRc1878 ± 780−1860 ± 78014.857.25−1.480.6406
EO COMRRc1743 ± 483−1889 ± 52814.746.94−1.670.6320
MQ COMRRc1572 ± 393−1895 ± 50114.235.400.6224
IS COMRRc1472 ± 177−1642 ± 33813.804.440.3146

Notes. †RG = red giant; BHB = blue horizontal branch star; RR = RR Lyrae star. The superscripts a, b and c indicate that the star belongs to the solar neighbourhood, the Anticentre fields of the present paper or the NGP fields of Kinman et al. (2007b), respectively.

2 TARGET SELECTION

Our study of the Anticentre halo began with a search for RR Lyrae stars in the fields RR VI (l= 180°, b=+26°) and RR VII (l= 183°, b=+37°); each field covers an area of 30 deg2 (Kinman, Mahaffey & Wirtanen 1982). Later Sanduleak provided BHB star candidates for the RR VII field and these were discussed by Kinman et al. (1994). These samples of BHB and RR Lyrae stars have been enlarged for the present paper. New BHB candidates were taken from the objective prism surveys of Pesch & Sanduleak (1989; Case A–F stars) and of Beers et al. (1996; BPS BS stars). We are indebted to Dr Peter Pesch (private communication) for sending us unpublished candidate stars from the Case survey. These are given the prefix ‘P’ in Column 2 of Table 4 unless there is a previous identification in the literature.

Table 4

Positions and photometry for the BHB candidate stars. The equatorial coordinates are for J2000. The magnitudes and colours V, B, (uB)K, NUV and K are defined in the text. W is a weight and its relation to the type (Column 14) is given in Appendix A.

No (1)ID (2)RA (3)Dec. (4)l (5)b (6)V (7)BV (8)(uB)K (9)E(BV) (10)NUV (11)K (12)W (13)Type (14)Note (15)
1BS 17438-012608 04 07.0+38 10 30182.5+30.0013.55 ± 0.01+0.215 ± 0.0061.985 ± 0.0100.04616.146 ± 0.00412.800 ± 0.024−6A
2P 54-32.508 05 30.9+41 08 02179.2+30.915.38 ± 0.01+0.137 ± 0.0132.026 ± 0.0130.06417.904 ± 0.03314.813 ± 0.094+4bhb
3AF 18608 06 11.1+40 15 01180.3+30.815.66 ± 0.01+0.155 ± 0.0132.121 ± 0.0130.05518.238 ± 0.01415.281 ± 0.120+8BHB
4AF 18908 09 21.8+38 18 00182.6+31.015.20 ± 0.01+0.085 ± 0.0162.137 ± 0.0430.04817.616 ± 0.02915.108 ± 0.133+8BHB
5P 54-11108 12 06.5+38 50 53182.1+31.714.58 ± 0.01+0.136 ± 0.0092.119 ± 0.0130.03917.232 ± 0.00814.053 ± 0.053+8BHB
6P 54-12208 16 00.3+40 10 00180.7+32.615.17 ± 0.01+0.036 ± 0.0081.965 ± 0.0130.04515.152 ± 0.140+4bhb
7P 54-12008 16 02.9+39 25 11181.6+32.512.49 ± 0.01+0.216 ± 0.0021.984 ± 0.0050.03915.400 ± 0.01011.940 ± 0.022−3A
8P 54-11908 17 41.6+39 04 29182.1+32.814.26 ± 0.01+0.214 ± 0.0072.087 ± 0.0110.03817.254 ± 0.02313.532 ± 0.039+6BHB
9BS 17444-002508 21 33.5+42 31 36178.2+34.010.11 ± 0.01+0.136 ± 0.0052.138 ± 0.0050.05209.684 ± 0.013+4bhb1
10AF 20908 21 48.5+42 27 36178.2+34.116.41 ± 0.02+0.056 ± 0.0222.042 ± 0.0320.05118.889 ± 0.031>15.43+6BHB
11AF 21008 21 59.7+42 18 55178.4+34.115.42 ± 0.01+0.189 ± 0.0120.05118.090 ± 0.02015.339 ± 0.189+4bhb
12AF 21408 22 51.5+36 18 04185.6+33.315.66 ± 0.01+0.226 ± 0.0142.088 ± 0.0200.05818.751 ± 0.04915.126 ± 0.126+8BHB
13RR7 00208 22 00.6+37 09 40184.5+33.315.13 ± 0.01+0.201 ± 0.0102.167 ± 0.0200.05818.119 ± 0.03114.412 ± 0.086+8BHB2
14P 81-4208 23 47.9+44 32 44175.8+34.714.43 ± 0.01+0.050 ± 0.0042.039 ± 0.0110.04516.622 ± 0.01014.142 ± 0.059+8BHB
15RR7 00808 24 09.6+41 43 47179.2+34.415.14 ± 0.01+0.118 ± 0.0102.120 ± 0.0200.04317.601 ± 0.01014.510 ± 0.081+8BHB3
16RR7 01508 26 30.4+38 10 16183.5+34.311.75 ± 0.01+0.208 ± 0.0102.081 ± 0.0200.04211.007 ± 0.020+10BHB4
17P 81-3908 27 16.7+45 18 10174.9+35.315.69 ± 0.01+0.035 ± 0.0082.002 ± 0.0110.03117.902 ± 0.02315.200 ± 0.176+8BHB
18RR7 02108 28 02.3+40 21 57181.0+34.915.33 ± 0.01+0.104 ± 0.0102.118 ± 0.0200.04218.088 ± 0.03214.885 ± 0.131+1bhb
19P 81-7208 28 14.1+44 40 46175.7+35.511.79 ± 0.01+0.202 ± 0.0012.024 ± 0.0030.02811.281 ± 0.019+1bhb5
20P 81-7908 28 19.9+45 26 09174.8+35.513.37 ± 0.01+0.243 ± 0.0021.999 ± 0.0050.02616.445 ± 0.00412.732 ± 0.025−6A
21RR7 02308 28 29.6+40 27 47180.9+35.012.64 ± 0.01+0.059 ± 0.0102.111 ± 0.0200.04414.926 ± 0.00712.347 ± 0.022+9BHB6
22RR7 03608 32 26.5+39 27 25182.2+35.715.25 ± 0.01+0.165 ± 0.0102.137 ± 0.0200.04418.000 ± 0.04614.765 ± 0.102+12BHB7
23P 81-10108 34 24.5+46 00 23174.2+36.615.43 ± 0.01+0.154 ± 0.0152.116 ± 0.0200.02918.146 ± 0.02914.620 ± 0.070+5bhb
24P 81-12108 35 25.7+44 00 41176.7+36.715.65 ± 0.01+0.045 ± 0.0121.975 ± 0.0140.03017.676 ± 0.01115.316 ± 0.149+8BHB
25RR7 04308 35 29.7+42 01 19179.1+36.516.62 ± 0.01+0.036 ± 0.0151.986 ± 0.0200.02718.721 ± 0.03415.853 ± 0.238+8BHB8
26P 28-04508 37 42.5+36 07 28186.5+36.214.315 ± 0.01+0.135 ± 0.0082.133 ± 0.0210.03513.809 ± 0.042+4bhb
27RR7 05308 38 52.8+40 54 32180.6+37.015.05 ± 0.01+0.160 ± 0.0102.175 ± 0.0200.04117.782 ± 0.03314.4:+8BHB9
28P 81-16208 39 57.3+46 26 45173.7+37.616.05 ± 0.01+0.071 ± 0.0212.047 ± 0.0150.02718.341 ± 0.01015.819 ± 0.228+8BHB10
29RR7 05808 40 47.5+38 13 49184.0+37.115.43 ± 0.01+0.064 ± 0.0102.020 ± 0.0200.04117.641 ± 0.02615.055 ± 0.124+8BHB11
30RR7 06008 42 16.8+36 45 35185.9+37.214.49 ± 0.01+0.160 ± 0.0102.102 ± 0.0200.03517.164 ± 0.02313.836 ± 0.055+11BHB12
31P 82-0408 42 41.3+42 47 07178.3+37.915.84 ± 0.02+0.061 ± 0.0142.069 ± 0.0290.03318.123 ± 0.02715.544 ± 0.208+8BHB13
32RR7 06408 43 04.9+41 39 05179.7+37.911.22 ± 0.01+0.115 ± 0.0102.100 ± 0.0100.03210.820 ± 0.018+8BHB14
33RR7 06608 43 40.9+39 49 20182.1+37.815.31 ± 0.01+0.130 ± 0.0102.087 ± 0.0200.03517.901 ± 0.03014.771 ± 0.108+8BHB15
34P 81-16708 45 20.2+46 41 34173.4+38.514.44 ± 0.01+0.109 ± 0.0082.119 ± 0.0140.03516.957 ± 0.02713.959 ± 0.049+8BHB
35P 11419-0108 46 48.8+29 49 04194.6+36.812.79 ± 0.01+0.123 ± 0.0062.079 ± 0.0240.04315.376 ± 0.01012.348 ± 0.022+9BHB16
36RR7 08208 47 09.9+42 16 04179.0+38.710.69 ± 0.01+0.069 ± 0.0021.972 ± 0.0030.02810.475 ± 0.018−3A17
37AF 29308 47 41.0+36 10 50186.8+38.216.24 ± 0.01+0.193 ± 0.0132.055 ± 0.0360.03118.904 ± 0.01515.435 ± 0.189+8BHB
38P 11419-0408 47 59.8+31 31 06192.6+37.414.88 ± 0.01+0.044 ± 0.0042.017 ± 0.0170.03817.028 ± 0.02214.739 ± 0.087+8BHB
39RR7 08408 48 15.0+40 28 45181.3+38.815.76 ± 0.01+0.141 ± 0.0102.097 ± 0.0200.02818.476 ± 0.02415.148 ± 0.143+8BHB18
40RR7 09108 49 10.7+39 40 06182.4+38.914.16 ± 0.01+0.042 ± 0.0102.046 ± 0.0200.02616.343 ± 0.01013.906 ± 0.043+12BHB19
41RR7 09008 49 23.3+40 23 40181.5+39.015.65 ± 0.01+0.089 ± 0.0102.090 ± 0.0200.02418.028 ± 0.01915.285 ± 0.125+8BHB20
42P 82-4908 53 25.8+44 26 21176.3+39.915.48 ± 0.01+0.108 ± 0.0082.099 ± 0.0170.02917.905 ± 0.03214.977 ± 0.103+8BHB21
43BS 16473-009008 57 34.5+43 28 21177.6+40.710.91 ± 0.01+0.215 ± 0.0101.991 ± 0.0100.02310.414 ± 0.0200A
44BS 16473-010208 58 27.1+47 04 08172.8+40.813.93 ± 0.01+0.103 ± 0.0052.092 ± 0.0170.02116.338 ± 0.01413.504 ± 0.033+8BHB
45BS 17139-006909 06 14.4+30 58 33194.3+41.214.45 ± 0.01+0.146 ± 0.0042.073 ± 0.0150.02517.052 ± 0.04413.879 ± 0.046+8BHB
46TON 38409 06 56.8+30 04 20195.5+41.115.25 ± 0.01+0.056 ± 0.0112.126 ± 0.0610.02817.721 ± 0.03514.759 ± 0.078+4bhb22
47BS 16468-002609 07 13.9+40 23 48181.7+42.414.72 ± 0.01+0.077 ± 0.0052.089 ± 0.0540.02017.101 ± 0.01814.186 ± 0.045+8BHB
48AF 37909 10 37.1+38 55 10183.8+43.015.26 ± 0.02+0.064 ± 0.0102.018 ± 0.0230.01917.547 ± 0.02615.149 ± 0.139+8BHB
49AF 38609 13 30.0+36 49 22186.7+43.415.01 ± 0.01+0.088 ± 0.0052.005 ± 0.0320.02017.476 ± 0.37014.679 ± 0.089+6BHB
50AF 39009 15 35.7+38 36 12184.3+43.915.37 ± 0.01+0.042 ± 0.0252.091 ± 0.0200.01917.497 ± 0.02215.117 ± 0.149+8BHB
51BS 16468-007809 16 19.4+40 16 02181.9+44.111.67 ± 0.01+0.024 ± 0.0011.998 ± 0.0100.01411.446 ± 0.017+7BHB23
52P 30-1609 16 53.1+35 52 17188.1+44.014.40 ± 0.01+0.123 ± 0.0062.058 ± 0.0300.01913.879 ± 0.055+4bhb
53BS 16468-008009 17 13.4+41 20 43180.5+44.214.09 ± 0.01+0.023 ± 0.0091.900 ± 0.0170.02115.915 ± 0.01214.009 ± 0.057+4bhb
54P 30-2809 17 44.4+33 20 52191.6+43.910.28 ± 0.01+0.119 ± 0.0042.083 ± 0.0030.01809.757 ± 0.016+7BHB24
55BS 16468-009009 18 25.8+39 29 59183.0+44.514.10 ± 0.01+0.132 ± 0.0112.075 ± 0.0040.01616.674 ± 0.01713.676 ± 0.045+8BHB
56CHSS 60809 18 59.0+29 40 46196.7+43.614.81 ± 0.01+0.089 ± 0.0112.045 ± 0.0300.02117.276 ± 0.02314.353 ± 0.071+11BHB
57P 11424-2809 20 23.3+31 17 11194.5+44.214.50 ± 0.01+0.104 ± 0.0072.049 ± 0.0240.02317.052 ± 0.02214.008 ± 0.053+8BHB
58P 30-3809 21 27.6+35 24 14188.8+44.914.39 ± 0.01+0.142 ± 0.0152.046 ± 0.0500.01817.029 ± 0.01613.929 ± 0.057+8BHB
5957-12109 25 48.5+39 04 30183.7+45.915.25 ± 0.02+0.005 ± 0.0202.040 ± 0.0330.01417.310 ± 0.02515.396 ± 0.209+6BHB
60AF 41909 25 56.3+28 50 07198.2+45.015.19 ± 0.02+0.113 ± 0.0162.100 ± 0.0430.01917.636 ± 0.02914.611 ± 0.093+9BHB25
61P 11424-7009 30 02.7+31 54 14194.1+46.314.57 ± 0.01+0.072 ± 0.0192.072 ± 0.0320.02016.939 ± 0.01914.236 ± 0.073+8BHB
62BS 16927-2209 32 43.6+39 28 31183.1+47.311.18 ± 0.01+0.103 ± 0.0052.084 ± 0.0110.01710.710 ± 0.019+4bhb
63CHSS 66309 33 48.8+29 07 14198.2+46.715.18 ± 0.01+0.056 ± 0.0112.077 ± 0.0350.01817.282 ± 0.02414.959 ± 0.112+12BHB
64P 11424-8209 34 23.5+29 48 10197.3+46.914.99 ± 0.01+0.136 ± 0.0172.115 ± 0.0480.01917.554 ± 0.02614.379 ± 0.068+8BHB
65BS 16940-4509 37 07.2+36 09 48188.0+48.113.55 ± 0.01+0.021 ± 0.0112.009 ± 0.0080.01415.602 ± 0.01513.336 ± 0.030+8BHB
66BS 16927-5509 40 31.5+41 48 32179.5+48.614.53 ± 0.01+0.003 ± 0.0051.993 ± 0.0460.01216.592 ± 0.02314.276 ± 0.064+6BHB
67BS 16940-007009 42 36.7+34 38 18190.4+49.114.98 ± 0.01+0.016 ± 0.0082.002 ± 0.0830.01117.201 ± 0.03114.815 ± 0.077+4bhb
68BS 16940-007209 43 10.3+33 57 10191.4+49.213.99 ± 0.01+0.107 ± 0.0082.032 ± 0.0040.01416.453 ± 0.01513.524 ± 0.027+8BHB
No (1)ID (2)RA (3)Dec. (4)l (5)b (6)V (7)BV (8)(uB)K (9)E(BV) (10)NUV (11)K (12)W (13)Type (14)Note (15)
1BS 17438-012608 04 07.0+38 10 30182.5+30.0013.55 ± 0.01+0.215 ± 0.0061.985 ± 0.0100.04616.146 ± 0.00412.800 ± 0.024−6A
2P 54-32.508 05 30.9+41 08 02179.2+30.915.38 ± 0.01+0.137 ± 0.0132.026 ± 0.0130.06417.904 ± 0.03314.813 ± 0.094+4bhb
3AF 18608 06 11.1+40 15 01180.3+30.815.66 ± 0.01+0.155 ± 0.0132.121 ± 0.0130.05518.238 ± 0.01415.281 ± 0.120+8BHB
4AF 18908 09 21.8+38 18 00182.6+31.015.20 ± 0.01+0.085 ± 0.0162.137 ± 0.0430.04817.616 ± 0.02915.108 ± 0.133+8BHB
5P 54-11108 12 06.5+38 50 53182.1+31.714.58 ± 0.01+0.136 ± 0.0092.119 ± 0.0130.03917.232 ± 0.00814.053 ± 0.053+8BHB
6P 54-12208 16 00.3+40 10 00180.7+32.615.17 ± 0.01+0.036 ± 0.0081.965 ± 0.0130.04515.152 ± 0.140+4bhb
7P 54-12008 16 02.9+39 25 11181.6+32.512.49 ± 0.01+0.216 ± 0.0021.984 ± 0.0050.03915.400 ± 0.01011.940 ± 0.022−3A
8P 54-11908 17 41.6+39 04 29182.1+32.814.26 ± 0.01+0.214 ± 0.0072.087 ± 0.0110.03817.254 ± 0.02313.532 ± 0.039+6BHB
9BS 17444-002508 21 33.5+42 31 36178.2+34.010.11 ± 0.01+0.136 ± 0.0052.138 ± 0.0050.05209.684 ± 0.013+4bhb1
10AF 20908 21 48.5+42 27 36178.2+34.116.41 ± 0.02+0.056 ± 0.0222.042 ± 0.0320.05118.889 ± 0.031>15.43+6BHB
11AF 21008 21 59.7+42 18 55178.4+34.115.42 ± 0.01+0.189 ± 0.0120.05118.090 ± 0.02015.339 ± 0.189+4bhb
12AF 21408 22 51.5+36 18 04185.6+33.315.66 ± 0.01+0.226 ± 0.0142.088 ± 0.0200.05818.751 ± 0.04915.126 ± 0.126+8BHB
13RR7 00208 22 00.6+37 09 40184.5+33.315.13 ± 0.01+0.201 ± 0.0102.167 ± 0.0200.05818.119 ± 0.03114.412 ± 0.086+8BHB2
14P 81-4208 23 47.9+44 32 44175.8+34.714.43 ± 0.01+0.050 ± 0.0042.039 ± 0.0110.04516.622 ± 0.01014.142 ± 0.059+8BHB
15RR7 00808 24 09.6+41 43 47179.2+34.415.14 ± 0.01+0.118 ± 0.0102.120 ± 0.0200.04317.601 ± 0.01014.510 ± 0.081+8BHB3
16RR7 01508 26 30.4+38 10 16183.5+34.311.75 ± 0.01+0.208 ± 0.0102.081 ± 0.0200.04211.007 ± 0.020+10BHB4
17P 81-3908 27 16.7+45 18 10174.9+35.315.69 ± 0.01+0.035 ± 0.0082.002 ± 0.0110.03117.902 ± 0.02315.200 ± 0.176+8BHB
18RR7 02108 28 02.3+40 21 57181.0+34.915.33 ± 0.01+0.104 ± 0.0102.118 ± 0.0200.04218.088 ± 0.03214.885 ± 0.131+1bhb
19P 81-7208 28 14.1+44 40 46175.7+35.511.79 ± 0.01+0.202 ± 0.0012.024 ± 0.0030.02811.281 ± 0.019+1bhb5
20P 81-7908 28 19.9+45 26 09174.8+35.513.37 ± 0.01+0.243 ± 0.0021.999 ± 0.0050.02616.445 ± 0.00412.732 ± 0.025−6A
21RR7 02308 28 29.6+40 27 47180.9+35.012.64 ± 0.01+0.059 ± 0.0102.111 ± 0.0200.04414.926 ± 0.00712.347 ± 0.022+9BHB6
22RR7 03608 32 26.5+39 27 25182.2+35.715.25 ± 0.01+0.165 ± 0.0102.137 ± 0.0200.04418.000 ± 0.04614.765 ± 0.102+12BHB7
23P 81-10108 34 24.5+46 00 23174.2+36.615.43 ± 0.01+0.154 ± 0.0152.116 ± 0.0200.02918.146 ± 0.02914.620 ± 0.070+5bhb
24P 81-12108 35 25.7+44 00 41176.7+36.715.65 ± 0.01+0.045 ± 0.0121.975 ± 0.0140.03017.676 ± 0.01115.316 ± 0.149+8BHB
25RR7 04308 35 29.7+42 01 19179.1+36.516.62 ± 0.01+0.036 ± 0.0151.986 ± 0.0200.02718.721 ± 0.03415.853 ± 0.238+8BHB8
26P 28-04508 37 42.5+36 07 28186.5+36.214.315 ± 0.01+0.135 ± 0.0082.133 ± 0.0210.03513.809 ± 0.042+4bhb
27RR7 05308 38 52.8+40 54 32180.6+37.015.05 ± 0.01+0.160 ± 0.0102.175 ± 0.0200.04117.782 ± 0.03314.4:+8BHB9
28P 81-16208 39 57.3+46 26 45173.7+37.616.05 ± 0.01+0.071 ± 0.0212.047 ± 0.0150.02718.341 ± 0.01015.819 ± 0.228+8BHB10
29RR7 05808 40 47.5+38 13 49184.0+37.115.43 ± 0.01+0.064 ± 0.0102.020 ± 0.0200.04117.641 ± 0.02615.055 ± 0.124+8BHB11
30RR7 06008 42 16.8+36 45 35185.9+37.214.49 ± 0.01+0.160 ± 0.0102.102 ± 0.0200.03517.164 ± 0.02313.836 ± 0.055+11BHB12
31P 82-0408 42 41.3+42 47 07178.3+37.915.84 ± 0.02+0.061 ± 0.0142.069 ± 0.0290.03318.123 ± 0.02715.544 ± 0.208+8BHB13
32RR7 06408 43 04.9+41 39 05179.7+37.911.22 ± 0.01+0.115 ± 0.0102.100 ± 0.0100.03210.820 ± 0.018+8BHB14
33RR7 06608 43 40.9+39 49 20182.1+37.815.31 ± 0.01+0.130 ± 0.0102.087 ± 0.0200.03517.901 ± 0.03014.771 ± 0.108+8BHB15
34P 81-16708 45 20.2+46 41 34173.4+38.514.44 ± 0.01+0.109 ± 0.0082.119 ± 0.0140.03516.957 ± 0.02713.959 ± 0.049+8BHB
35P 11419-0108 46 48.8+29 49 04194.6+36.812.79 ± 0.01+0.123 ± 0.0062.079 ± 0.0240.04315.376 ± 0.01012.348 ± 0.022+9BHB16
36RR7 08208 47 09.9+42 16 04179.0+38.710.69 ± 0.01+0.069 ± 0.0021.972 ± 0.0030.02810.475 ± 0.018−3A17
37AF 29308 47 41.0+36 10 50186.8+38.216.24 ± 0.01+0.193 ± 0.0132.055 ± 0.0360.03118.904 ± 0.01515.435 ± 0.189+8BHB
38P 11419-0408 47 59.8+31 31 06192.6+37.414.88 ± 0.01+0.044 ± 0.0042.017 ± 0.0170.03817.028 ± 0.02214.739 ± 0.087+8BHB
39RR7 08408 48 15.0+40 28 45181.3+38.815.76 ± 0.01+0.141 ± 0.0102.097 ± 0.0200.02818.476 ± 0.02415.148 ± 0.143+8BHB18
40RR7 09108 49 10.7+39 40 06182.4+38.914.16 ± 0.01+0.042 ± 0.0102.046 ± 0.0200.02616.343 ± 0.01013.906 ± 0.043+12BHB19
41RR7 09008 49 23.3+40 23 40181.5+39.015.65 ± 0.01+0.089 ± 0.0102.090 ± 0.0200.02418.028 ± 0.01915.285 ± 0.125+8BHB20
42P 82-4908 53 25.8+44 26 21176.3+39.915.48 ± 0.01+0.108 ± 0.0082.099 ± 0.0170.02917.905 ± 0.03214.977 ± 0.103+8BHB21
43BS 16473-009008 57 34.5+43 28 21177.6+40.710.91 ± 0.01+0.215 ± 0.0101.991 ± 0.0100.02310.414 ± 0.0200A
44BS 16473-010208 58 27.1+47 04 08172.8+40.813.93 ± 0.01+0.103 ± 0.0052.092 ± 0.0170.02116.338 ± 0.01413.504 ± 0.033+8BHB
45BS 17139-006909 06 14.4+30 58 33194.3+41.214.45 ± 0.01+0.146 ± 0.0042.073 ± 0.0150.02517.052 ± 0.04413.879 ± 0.046+8BHB
46TON 38409 06 56.8+30 04 20195.5+41.115.25 ± 0.01+0.056 ± 0.0112.126 ± 0.0610.02817.721 ± 0.03514.759 ± 0.078+4bhb22
47BS 16468-002609 07 13.9+40 23 48181.7+42.414.72 ± 0.01+0.077 ± 0.0052.089 ± 0.0540.02017.101 ± 0.01814.186 ± 0.045+8BHB
48AF 37909 10 37.1+38 55 10183.8+43.015.26 ± 0.02+0.064 ± 0.0102.018 ± 0.0230.01917.547 ± 0.02615.149 ± 0.139+8BHB
49AF 38609 13 30.0+36 49 22186.7+43.415.01 ± 0.01+0.088 ± 0.0052.005 ± 0.0320.02017.476 ± 0.37014.679 ± 0.089+6BHB
50AF 39009 15 35.7+38 36 12184.3+43.915.37 ± 0.01+0.042 ± 0.0252.091 ± 0.0200.01917.497 ± 0.02215.117 ± 0.149+8BHB
51BS 16468-007809 16 19.4+40 16 02181.9+44.111.67 ± 0.01+0.024 ± 0.0011.998 ± 0.0100.01411.446 ± 0.017+7BHB23
52P 30-1609 16 53.1+35 52 17188.1+44.014.40 ± 0.01+0.123 ± 0.0062.058 ± 0.0300.01913.879 ± 0.055+4bhb
53BS 16468-008009 17 13.4+41 20 43180.5+44.214.09 ± 0.01+0.023 ± 0.0091.900 ± 0.0170.02115.915 ± 0.01214.009 ± 0.057+4bhb
54P 30-2809 17 44.4+33 20 52191.6+43.910.28 ± 0.01+0.119 ± 0.0042.083 ± 0.0030.01809.757 ± 0.016+7BHB24
55BS 16468-009009 18 25.8+39 29 59183.0+44.514.10 ± 0.01+0.132 ± 0.0112.075 ± 0.0040.01616.674 ± 0.01713.676 ± 0.045+8BHB
56CHSS 60809 18 59.0+29 40 46196.7+43.614.81 ± 0.01+0.089 ± 0.0112.045 ± 0.0300.02117.276 ± 0.02314.353 ± 0.071+11BHB
57P 11424-2809 20 23.3+31 17 11194.5+44.214.50 ± 0.01+0.104 ± 0.0072.049 ± 0.0240.02317.052 ± 0.02214.008 ± 0.053+8BHB
58P 30-3809 21 27.6+35 24 14188.8+44.914.39 ± 0.01+0.142 ± 0.0152.046 ± 0.0500.01817.029 ± 0.01613.929 ± 0.057+8BHB
5957-12109 25 48.5+39 04 30183.7+45.915.25 ± 0.02+0.005 ± 0.0202.040 ± 0.0330.01417.310 ± 0.02515.396 ± 0.209+6BHB
60AF 41909 25 56.3+28 50 07198.2+45.015.19 ± 0.02+0.113 ± 0.0162.100 ± 0.0430.01917.636 ± 0.02914.611 ± 0.093+9BHB25
61P 11424-7009 30 02.7+31 54 14194.1+46.314.57 ± 0.01+0.072 ± 0.0192.072 ± 0.0320.02016.939 ± 0.01914.236 ± 0.073+8BHB
62BS 16927-2209 32 43.6+39 28 31183.1+47.311.18 ± 0.01+0.103 ± 0.0052.084 ± 0.0110.01710.710 ± 0.019+4bhb
63CHSS 66309 33 48.8+29 07 14198.2+46.715.18 ± 0.01+0.056 ± 0.0112.077 ± 0.0350.01817.282 ± 0.02414.959 ± 0.112+12BHB
64P 11424-8209 34 23.5+29 48 10197.3+46.914.99 ± 0.01+0.136 ± 0.0172.115 ± 0.0480.01917.554 ± 0.02614.379 ± 0.068+8BHB
65BS 16940-4509 37 07.2+36 09 48188.0+48.113.55 ± 0.01+0.021 ± 0.0112.009 ± 0.0080.01415.602 ± 0.01513.336 ± 0.030+8BHB
66BS 16927-5509 40 31.5+41 48 32179.5+48.614.53 ± 0.01+0.003 ± 0.0051.993 ± 0.0460.01216.592 ± 0.02314.276 ± 0.064+6BHB
67BS 16940-007009 42 36.7+34 38 18190.4+49.114.98 ± 0.01+0.016 ± 0.0082.002 ± 0.0830.01117.201 ± 0.03114.815 ± 0.077+4bhb
68BS 16940-007209 43 10.3+33 57 10191.4+49.213.99 ± 0.01+0.107 ± 0.0082.032 ± 0.0040.01416.453 ± 0.01513.524 ± 0.027+8BHB

Notes.

(1) BD +42 1850; (2) AF 211; (3) AF 217; (4) Strömgren β= 2.758; CHSS (class 3); (5) Strömgren β= 2.855;

(6) Strömgren β= 2.879; CHSS (class 3); (7) CHSS (class 4); (8) AF 241; (9) AF 256; (10) US 1430;

(11) AF 262. (12) CHSS (class 3); (13) US 1513; (14) Strömgren β= 2.856; CHSS (class 3); (15) AF 271;

(16) Strömgren β= 2.801; (17) Strömgren β= 2.892; (18) AF 297; (19) CHSS (class 4); (20) AF 307;

(21) BD +42 1926; US 1862; (22) AF 368; (23) Strömgren β= 2.858;

(24) Strömgren β= 2.827; BD +33 1834; (25) CHSS 632 (class 1).

References to Notes:

Table 4

Positions and photometry for the BHB candidate stars. The equatorial coordinates are for J2000. The magnitudes and colours V, B, (uB)K, NUV and K are defined in the text. W is a weight and its relation to the type (Column 14) is given in Appendix A.

No (1)ID (2)RA (3)Dec. (4)l (5)b (6)V (7)BV (8)(uB)K (9)E(BV) (10)NUV (11)K (12)W (13)Type (14)Note (15)
1BS 17438-012608 04 07.0+38 10 30182.5+30.0013.55 ± 0.01+0.215 ± 0.0061.985 ± 0.0100.04616.146 ± 0.00412.800 ± 0.024−6A
2P 54-32.508 05 30.9+41 08 02179.2+30.915.38 ± 0.01+0.137 ± 0.0132.026 ± 0.0130.06417.904 ± 0.03314.813 ± 0.094+4bhb
3AF 18608 06 11.1+40 15 01180.3+30.815.66 ± 0.01+0.155 ± 0.0132.121 ± 0.0130.05518.238 ± 0.01415.281 ± 0.120+8BHB
4AF 18908 09 21.8+38 18 00182.6+31.015.20 ± 0.01+0.085 ± 0.0162.137 ± 0.0430.04817.616 ± 0.02915.108 ± 0.133+8BHB
5P 54-11108 12 06.5+38 50 53182.1+31.714.58 ± 0.01+0.136 ± 0.0092.119 ± 0.0130.03917.232 ± 0.00814.053 ± 0.053+8BHB
6P 54-12208 16 00.3+40 10 00180.7+32.615.17 ± 0.01+0.036 ± 0.0081.965 ± 0.0130.04515.152 ± 0.140+4bhb
7P 54-12008 16 02.9+39 25 11181.6+32.512.49 ± 0.01+0.216 ± 0.0021.984 ± 0.0050.03915.400 ± 0.01011.940 ± 0.022−3A
8P 54-11908 17 41.6+39 04 29182.1+32.814.26 ± 0.01+0.214 ± 0.0072.087 ± 0.0110.03817.254 ± 0.02313.532 ± 0.039+6BHB
9BS 17444-002508 21 33.5+42 31 36178.2+34.010.11 ± 0.01+0.136 ± 0.0052.138 ± 0.0050.05209.684 ± 0.013+4bhb1
10AF 20908 21 48.5+42 27 36178.2+34.116.41 ± 0.02+0.056 ± 0.0222.042 ± 0.0320.05118.889 ± 0.031>15.43+6BHB
11AF 21008 21 59.7+42 18 55178.4+34.115.42 ± 0.01+0.189 ± 0.0120.05118.090 ± 0.02015.339 ± 0.189+4bhb
12AF 21408 22 51.5+36 18 04185.6+33.315.66 ± 0.01+0.226 ± 0.0142.088 ± 0.0200.05818.751 ± 0.04915.126 ± 0.126+8BHB
13RR7 00208 22 00.6+37 09 40184.5+33.315.13 ± 0.01+0.201 ± 0.0102.167 ± 0.0200.05818.119 ± 0.03114.412 ± 0.086+8BHB2
14P 81-4208 23 47.9+44 32 44175.8+34.714.43 ± 0.01+0.050 ± 0.0042.039 ± 0.0110.04516.622 ± 0.01014.142 ± 0.059+8BHB
15RR7 00808 24 09.6+41 43 47179.2+34.415.14 ± 0.01+0.118 ± 0.0102.120 ± 0.0200.04317.601 ± 0.01014.510 ± 0.081+8BHB3
16RR7 01508 26 30.4+38 10 16183.5+34.311.75 ± 0.01+0.208 ± 0.0102.081 ± 0.0200.04211.007 ± 0.020+10BHB4
17P 81-3908 27 16.7+45 18 10174.9+35.315.69 ± 0.01+0.035 ± 0.0082.002 ± 0.0110.03117.902 ± 0.02315.200 ± 0.176+8BHB
18RR7 02108 28 02.3+40 21 57181.0+34.915.33 ± 0.01+0.104 ± 0.0102.118 ± 0.0200.04218.088 ± 0.03214.885 ± 0.131+1bhb
19P 81-7208 28 14.1+44 40 46175.7+35.511.79 ± 0.01+0.202 ± 0.0012.024 ± 0.0030.02811.281 ± 0.019+1bhb5
20P 81-7908 28 19.9+45 26 09174.8+35.513.37 ± 0.01+0.243 ± 0.0021.999 ± 0.0050.02616.445 ± 0.00412.732 ± 0.025−6A
21RR7 02308 28 29.6+40 27 47180.9+35.012.64 ± 0.01+0.059 ± 0.0102.111 ± 0.0200.04414.926 ± 0.00712.347 ± 0.022+9BHB6
22RR7 03608 32 26.5+39 27 25182.2+35.715.25 ± 0.01+0.165 ± 0.0102.137 ± 0.0200.04418.000 ± 0.04614.765 ± 0.102+12BHB7
23P 81-10108 34 24.5+46 00 23174.2+36.615.43 ± 0.01+0.154 ± 0.0152.116 ± 0.0200.02918.146 ± 0.02914.620 ± 0.070+5bhb
24P 81-12108 35 25.7+44 00 41176.7+36.715.65 ± 0.01+0.045 ± 0.0121.975 ± 0.0140.03017.676 ± 0.01115.316 ± 0.149+8BHB
25RR7 04308 35 29.7+42 01 19179.1+36.516.62 ± 0.01+0.036 ± 0.0151.986 ± 0.0200.02718.721 ± 0.03415.853 ± 0.238+8BHB8
26P 28-04508 37 42.5+36 07 28186.5+36.214.315 ± 0.01+0.135 ± 0.0082.133 ± 0.0210.03513.809 ± 0.042+4bhb
27RR7 05308 38 52.8+40 54 32180.6+37.015.05 ± 0.01+0.160 ± 0.0102.175 ± 0.0200.04117.782 ± 0.03314.4:+8BHB9
28P 81-16208 39 57.3+46 26 45173.7+37.616.05 ± 0.01+0.071 ± 0.0212.047 ± 0.0150.02718.341 ± 0.01015.819 ± 0.228+8BHB10
29RR7 05808 40 47.5+38 13 49184.0+37.115.43 ± 0.01+0.064 ± 0.0102.020 ± 0.0200.04117.641 ± 0.02615.055 ± 0.124+8BHB11
30RR7 06008 42 16.8+36 45 35185.9+37.214.49 ± 0.01+0.160 ± 0.0102.102 ± 0.0200.03517.164 ± 0.02313.836 ± 0.055+11BHB12
31P 82-0408 42 41.3+42 47 07178.3+37.915.84 ± 0.02+0.061 ± 0.0142.069 ± 0.0290.03318.123 ± 0.02715.544 ± 0.208+8BHB13
32RR7 06408 43 04.9+41 39 05179.7+37.911.22 ± 0.01+0.115 ± 0.0102.100 ± 0.0100.03210.820 ± 0.018+8BHB14
33RR7 06608 43 40.9+39 49 20182.1+37.815.31 ± 0.01+0.130 ± 0.0102.087 ± 0.0200.03517.901 ± 0.03014.771 ± 0.108+8BHB15
34P 81-16708 45 20.2+46 41 34173.4+38.514.44 ± 0.01+0.109 ± 0.0082.119 ± 0.0140.03516.957 ± 0.02713.959 ± 0.049+8BHB
35P 11419-0108 46 48.8+29 49 04194.6+36.812.79 ± 0.01+0.123 ± 0.0062.079 ± 0.0240.04315.376 ± 0.01012.348 ± 0.022+9BHB16
36RR7 08208 47 09.9+42 16 04179.0+38.710.69 ± 0.01+0.069 ± 0.0021.972 ± 0.0030.02810.475 ± 0.018−3A17
37AF 29308 47 41.0+36 10 50186.8+38.216.24 ± 0.01+0.193 ± 0.0132.055 ± 0.0360.03118.904 ± 0.01515.435 ± 0.189+8BHB
38P 11419-0408 47 59.8+31 31 06192.6+37.414.88 ± 0.01+0.044 ± 0.0042.017 ± 0.0170.03817.028 ± 0.02214.739 ± 0.087+8BHB
39RR7 08408 48 15.0+40 28 45181.3+38.815.76 ± 0.01+0.141 ± 0.0102.097 ± 0.0200.02818.476 ± 0.02415.148 ± 0.143+8BHB18
40RR7 09108 49 10.7+39 40 06182.4+38.914.16 ± 0.01+0.042 ± 0.0102.046 ± 0.0200.02616.343 ± 0.01013.906 ± 0.043+12BHB19
41RR7 09008 49 23.3+40 23 40181.5+39.015.65 ± 0.01+0.089 ± 0.0102.090 ± 0.0200.02418.028 ± 0.01915.285 ± 0.125+8BHB20
42P 82-4908 53 25.8+44 26 21176.3+39.915.48 ± 0.01+0.108 ± 0.0082.099 ± 0.0170.02917.905 ± 0.03214.977 ± 0.103+8BHB21
43BS 16473-009008 57 34.5+43 28 21177.6+40.710.91 ± 0.01+0.215 ± 0.0101.991 ± 0.0100.02310.414 ± 0.0200A
44BS 16473-010208 58 27.1+47 04 08172.8+40.813.93 ± 0.01+0.103 ± 0.0052.092 ± 0.0170.02116.338 ± 0.01413.504 ± 0.033+8BHB
45BS 17139-006909 06 14.4+30 58 33194.3+41.214.45 ± 0.01+0.146 ± 0.0042.073 ± 0.0150.02517.052 ± 0.04413.879 ± 0.046+8BHB
46TON 38409 06 56.8+30 04 20195.5+41.115.25 ± 0.01+0.056 ± 0.0112.126 ± 0.0610.02817.721 ± 0.03514.759 ± 0.078+4bhb22
47BS 16468-002609 07 13.9+40 23 48181.7+42.414.72 ± 0.01+0.077 ± 0.0052.089 ± 0.0540.02017.101 ± 0.01814.186 ± 0.045+8BHB
48AF 37909 10 37.1+38 55 10183.8+43.015.26 ± 0.02+0.064 ± 0.0102.018 ± 0.0230.01917.547 ± 0.02615.149 ± 0.139+8BHB
49AF 38609 13 30.0+36 49 22186.7+43.415.01 ± 0.01+0.088 ± 0.0052.005 ± 0.0320.02017.476 ± 0.37014.679 ± 0.089+6BHB
50AF 39009 15 35.7+38 36 12184.3+43.915.37 ± 0.01+0.042 ± 0.0252.091 ± 0.0200.01917.497 ± 0.02215.117 ± 0.149+8BHB
51BS 16468-007809 16 19.4+40 16 02181.9+44.111.67 ± 0.01+0.024 ± 0.0011.998 ± 0.0100.01411.446 ± 0.017+7BHB23
52P 30-1609 16 53.1+35 52 17188.1+44.014.40 ± 0.01+0.123 ± 0.0062.058 ± 0.0300.01913.879 ± 0.055+4bhb
53BS 16468-008009 17 13.4+41 20 43180.5+44.214.09 ± 0.01+0.023 ± 0.0091.900 ± 0.0170.02115.915 ± 0.01214.009 ± 0.057+4bhb
54P 30-2809 17 44.4+33 20 52191.6+43.910.28 ± 0.01+0.119 ± 0.0042.083 ± 0.0030.01809.757 ± 0.016+7BHB24
55BS 16468-009009 18 25.8+39 29 59183.0+44.514.10 ± 0.01+0.132 ± 0.0112.075 ± 0.0040.01616.674 ± 0.01713.676 ± 0.045+8BHB
56CHSS 60809 18 59.0+29 40 46196.7+43.614.81 ± 0.01+0.089 ± 0.0112.045 ± 0.0300.02117.276 ± 0.02314.353 ± 0.071+11BHB
57P 11424-2809 20 23.3+31 17 11194.5+44.214.50 ± 0.01+0.104 ± 0.0072.049 ± 0.0240.02317.052 ± 0.02214.008 ± 0.053+8BHB
58P 30-3809 21 27.6+35 24 14188.8+44.914.39 ± 0.01+0.142 ± 0.0152.046 ± 0.0500.01817.029 ± 0.01613.929 ± 0.057+8BHB
5957-12109 25 48.5+39 04 30183.7+45.915.25 ± 0.02+0.005 ± 0.0202.040 ± 0.0330.01417.310 ± 0.02515.396 ± 0.209+6BHB
60AF 41909 25 56.3+28 50 07198.2+45.015.19 ± 0.02+0.113 ± 0.0162.100 ± 0.0430.01917.636 ± 0.02914.611 ± 0.093+9BHB25
61P 11424-7009 30 02.7+31 54 14194.1+46.314.57 ± 0.01+0.072 ± 0.0192.072 ± 0.0320.02016.939 ± 0.01914.236 ± 0.073+8BHB
62BS 16927-2209 32 43.6+39 28 31183.1+47.311.18 ± 0.01+0.103 ± 0.0052.084 ± 0.0110.01710.710 ± 0.019+4bhb
63CHSS 66309 33 48.8+29 07 14198.2+46.715.18 ± 0.01+0.056 ± 0.0112.077 ± 0.0350.01817.282 ± 0.02414.959 ± 0.112+12BHB
64P 11424-8209 34 23.5+29 48 10197.3+46.914.99 ± 0.01+0.136 ± 0.0172.115 ± 0.0480.01917.554 ± 0.02614.379 ± 0.068+8BHB
65BS 16940-4509 37 07.2+36 09 48188.0+48.113.55 ± 0.01+0.021 ± 0.0112.009 ± 0.0080.01415.602 ± 0.01513.336 ± 0.030+8BHB
66BS 16927-5509 40 31.5+41 48 32179.5+48.614.53 ± 0.01+0.003 ± 0.0051.993 ± 0.0460.01216.592 ± 0.02314.276 ± 0.064+6BHB
67BS 16940-007009 42 36.7+34 38 18190.4+49.114.98 ± 0.01+0.016 ± 0.0082.002 ± 0.0830.01117.201 ± 0.03114.815 ± 0.077+4bhb
68BS 16940-007209 43 10.3+33 57 10191.4+49.213.99 ± 0.01+0.107 ± 0.0082.032 ± 0.0040.01416.453 ± 0.01513.524 ± 0.027+8BHB
No (1)ID (2)RA (3)Dec. (4)l (5)b (6)V (7)BV (8)(uB)K (9)E(BV) (10)NUV (11)K (12)W (13)Type (14)Note (15)
1BS 17438-012608 04 07.0+38 10 30182.5+30.0013.55 ± 0.01+0.215 ± 0.0061.985 ± 0.0100.04616.146 ± 0.00412.800 ± 0.024−6A
2P 54-32.508 05 30.9+41 08 02179.2+30.915.38 ± 0.01+0.137 ± 0.0132.026 ± 0.0130.06417.904 ± 0.03314.813 ± 0.094+4bhb
3AF 18608 06 11.1+40 15 01180.3+30.815.66 ± 0.01+0.155 ± 0.0132.121 ± 0.0130.05518.238 ± 0.01415.281 ± 0.120+8BHB
4AF 18908 09 21.8+38 18 00182.6+31.015.20 ± 0.01+0.085 ± 0.0162.137 ± 0.0430.04817.616 ± 0.02915.108 ± 0.133+8BHB
5P 54-11108 12 06.5+38 50 53182.1+31.714.58 ± 0.01+0.136 ± 0.0092.119 ± 0.0130.03917.232 ± 0.00814.053 ± 0.053+8BHB
6P 54-12208 16 00.3+40 10 00180.7+32.615.17 ± 0.01+0.036 ± 0.0081.965 ± 0.0130.04515.152 ± 0.140+4bhb
7P 54-12008 16 02.9+39 25 11181.6+32.512.49 ± 0.01+0.216 ± 0.0021.984 ± 0.0050.03915.400 ± 0.01011.940 ± 0.022−3A
8P 54-11908 17 41.6+39 04 29182.1+32.814.26 ± 0.01+0.214 ± 0.0072.087 ± 0.0110.03817.254 ± 0.02313.532 ± 0.039+6BHB
9BS 17444-002508 21 33.5+42 31 36178.2+34.010.11 ± 0.01+0.136 ± 0.0052.138 ± 0.0050.05209.684 ± 0.013+4bhb1
10AF 20908 21 48.5+42 27 36178.2+34.116.41 ± 0.02+0.056 ± 0.0222.042 ± 0.0320.05118.889 ± 0.031>15.43+6BHB
11AF 21008 21 59.7+42 18 55178.4+34.115.42 ± 0.01+0.189 ± 0.0120.05118.090 ± 0.02015.339 ± 0.189+4bhb
12AF 21408 22 51.5+36 18 04185.6+33.315.66 ± 0.01+0.226 ± 0.0142.088 ± 0.0200.05818.751 ± 0.04915.126 ± 0.126+8BHB
13RR7 00208 22 00.6+37 09 40184.5+33.315.13 ± 0.01+0.201 ± 0.0102.167 ± 0.0200.05818.119 ± 0.03114.412 ± 0.086+8BHB2
14P 81-4208 23 47.9+44 32 44175.8+34.714.43 ± 0.01+0.050 ± 0.0042.039 ± 0.0110.04516.622 ± 0.01014.142 ± 0.059+8BHB
15RR7 00808 24 09.6+41 43 47179.2+34.415.14 ± 0.01+0.118 ± 0.0102.120 ± 0.0200.04317.601 ± 0.01014.510 ± 0.081+8BHB3
16RR7 01508 26 30.4+38 10 16183.5+34.311.75 ± 0.01+0.208 ± 0.0102.081 ± 0.0200.04211.007 ± 0.020+10BHB4
17P 81-3908 27 16.7+45 18 10174.9+35.315.69 ± 0.01+0.035 ± 0.0082.002 ± 0.0110.03117.902 ± 0.02315.200 ± 0.176+8BHB
18RR7 02108 28 02.3+40 21 57181.0+34.915.33 ± 0.01+0.104 ± 0.0102.118 ± 0.0200.04218.088 ± 0.03214.885 ± 0.131+1bhb
19P 81-7208 28 14.1+44 40 46175.7+35.511.79 ± 0.01+0.202 ± 0.0012.024 ± 0.0030.02811.281 ± 0.019+1bhb5
20P 81-7908 28 19.9+45 26 09174.8+35.513.37 ± 0.01+0.243 ± 0.0021.999 ± 0.0050.02616.445 ± 0.00412.732 ± 0.025−6A
21RR7 02308 28 29.6+40 27 47180.9+35.012.64 ± 0.01+0.059 ± 0.0102.111 ± 0.0200.04414.926 ± 0.00712.347 ± 0.022+9BHB6
22RR7 03608 32 26.5+39 27 25182.2+35.715.25 ± 0.01+0.165 ± 0.0102.137 ± 0.0200.04418.000 ± 0.04614.765 ± 0.102+12BHB7
23P 81-10108 34 24.5+46 00 23174.2+36.615.43 ± 0.01+0.154 ± 0.0152.116 ± 0.0200.02918.146 ± 0.02914.620 ± 0.070+5bhb
24P 81-12108 35 25.7+44 00 41176.7+36.715.65 ± 0.01+0.045 ± 0.0121.975 ± 0.0140.03017.676 ± 0.01115.316 ± 0.149+8BHB
25RR7 04308 35 29.7+42 01 19179.1+36.516.62 ± 0.01+0.036 ± 0.0151.986 ± 0.0200.02718.721 ± 0.03415.853 ± 0.238+8BHB8
26P 28-04508 37 42.5+36 07 28186.5+36.214.315 ± 0.01+0.135 ± 0.0082.133 ± 0.0210.03513.809 ± 0.042+4bhb
27RR7 05308 38 52.8+40 54 32180.6+37.015.05 ± 0.01+0.160 ± 0.0102.175 ± 0.0200.04117.782 ± 0.03314.4:+8BHB9
28P 81-16208 39 57.3+46 26 45173.7+37.616.05 ± 0.01+0.071 ± 0.0212.047 ± 0.0150.02718.341 ± 0.01015.819 ± 0.228+8BHB10
29RR7 05808 40 47.5+38 13 49184.0+37.115.43 ± 0.01+0.064 ± 0.0102.020 ± 0.0200.04117.641 ± 0.02615.055 ± 0.124+8BHB11
30RR7 06008 42 16.8+36 45 35185.9+37.214.49 ± 0.01+0.160 ± 0.0102.102 ± 0.0200.03517.164 ± 0.02313.836 ± 0.055+11BHB12
31P 82-0408 42 41.3+42 47 07178.3+37.915.84 ± 0.02+0.061 ± 0.0142.069 ± 0.0290.03318.123 ± 0.02715.544 ± 0.208+8BHB13
32RR7 06408 43 04.9+41 39 05179.7+37.911.22 ± 0.01+0.115 ± 0.0102.100 ± 0.0100.03210.820 ± 0.018+8BHB14
33RR7 06608 43 40.9+39 49 20182.1+37.815.31 ± 0.01+0.130 ± 0.0102.087 ± 0.0200.03517.901 ± 0.03014.771 ± 0.108+8BHB15
34P 81-16708 45 20.2+46 41 34173.4+38.514.44 ± 0.01+0.109 ± 0.0082.119 ± 0.0140.03516.957 ± 0.02713.959 ± 0.049+8BHB
35P 11419-0108 46 48.8+29 49 04194.6+36.812.79 ± 0.01+0.123 ± 0.0062.079 ± 0.0240.04315.376 ± 0.01012.348 ± 0.022+9BHB16
36RR7 08208 47 09.9+42 16 04179.0+38.710.69 ± 0.01+0.069 ± 0.0021.972 ± 0.0030.02810.475 ± 0.018−3A17
37AF 29308 47 41.0+36 10 50186.8+38.216.24 ± 0.01+0.193 ± 0.0132.055 ± 0.0360.03118.904 ± 0.01515.435 ± 0.189+8BHB
38P 11419-0408 47 59.8+31 31 06192.6+37.414.88 ± 0.01+0.044 ± 0.0042.017 ± 0.0170.03817.028 ± 0.02214.739 ± 0.087+8BHB
39RR7 08408 48 15.0+40 28 45181.3+38.815.76 ± 0.01+0.141 ± 0.0102.097 ± 0.0200.02818.476 ± 0.02415.148 ± 0.143+8BHB18
40RR7 09108 49 10.7+39 40 06182.4+38.914.16 ± 0.01+0.042 ± 0.0102.046 ± 0.0200.02616.343 ± 0.01013.906 ± 0.043+12BHB19
41RR7 09008 49 23.3+40 23 40181.5+39.015.65 ± 0.01+0.089 ± 0.0102.090 ± 0.0200.02418.028 ± 0.01915.285 ± 0.125+8BHB20
42P 82-4908 53 25.8+44 26 21176.3+39.915.48 ± 0.01+0.108 ± 0.0082.099 ± 0.0170.02917.905 ± 0.03214.977 ± 0.103+8BHB21
43BS 16473-009008 57 34.5+43 28 21177.6+40.710.91 ± 0.01+0.215 ± 0.0101.991 ± 0.0100.02310.414 ± 0.0200A
44BS 16473-010208 58 27.1+47 04 08172.8+40.813.93 ± 0.01+0.103 ± 0.0052.092 ± 0.0170.02116.338 ± 0.01413.504 ± 0.033+8BHB
45BS 17139-006909 06 14.4+30 58 33194.3+41.214.45 ± 0.01+0.146 ± 0.0042.073 ± 0.0150.02517.052 ± 0.04413.879 ± 0.046+8BHB
46TON 38409 06 56.8+30 04 20195.5+41.115.25 ± 0.01+0.056 ± 0.0112.126 ± 0.0610.02817.721 ± 0.03514.759 ± 0.078+4bhb22
47BS 16468-002609 07 13.9+40 23 48181.7+42.414.72 ± 0.01+0.077 ± 0.0052.089 ± 0.0540.02017.101 ± 0.01814.186 ± 0.045+8BHB
48AF 37909 10 37.1+38 55 10183.8+43.015.26 ± 0.02+0.064 ± 0.0102.018 ± 0.0230.01917.547 ± 0.02615.149 ± 0.139+8BHB
49AF 38609 13 30.0+36 49 22186.7+43.415.01 ± 0.01+0.088 ± 0.0052.005 ± 0.0320.02017.476 ± 0.37014.679 ± 0.089+6BHB
50AF 39009 15 35.7+38 36 12184.3+43.915.37 ± 0.01+0.042 ± 0.0252.091 ± 0.0200.01917.497 ± 0.02215.117 ± 0.149+8BHB
51BS 16468-007809 16 19.4+40 16 02181.9+44.111.67 ± 0.01+0.024 ± 0.0011.998 ± 0.0100.01411.446 ± 0.017+7BHB23
52P 30-1609 16 53.1+35 52 17188.1+44.014.40 ± 0.01+0.123 ± 0.0062.058 ± 0.0300.01913.879 ± 0.055+4bhb
53BS 16468-008009 17 13.4+41 20 43180.5+44.214.09 ± 0.01+0.023 ± 0.0091.900 ± 0.0170.02115.915 ± 0.01214.009 ± 0.057+4bhb
54P 30-2809 17 44.4+33 20 52191.6+43.910.28 ± 0.01+0.119 ± 0.0042.083 ± 0.0030.01809.757 ± 0.016+7BHB24
55BS 16468-009009 18 25.8+39 29 59183.0+44.514.10 ± 0.01+0.132 ± 0.0112.075 ± 0.0040.01616.674 ± 0.01713.676 ± 0.045+8BHB
56CHSS 60809 18 59.0+29 40 46196.7+43.614.81 ± 0.01+0.089 ± 0.0112.045 ± 0.0300.02117.276 ± 0.02314.353 ± 0.071+11BHB
57P 11424-2809 20 23.3+31 17 11194.5+44.214.50 ± 0.01+0.104 ± 0.0072.049 ± 0.0240.02317.052 ± 0.02214.008 ± 0.053+8BHB
58P 30-3809 21 27.6+35 24 14188.8+44.914.39 ± 0.01+0.142 ± 0.0152.046 ± 0.0500.01817.029 ± 0.01613.929 ± 0.057+8BHB
5957-12109 25 48.5+39 04 30183.7+45.915.25 ± 0.02+0.005 ± 0.0202.040 ± 0.0330.01417.310 ± 0.02515.396 ± 0.209+6BHB
60AF 41909 25 56.3+28 50 07198.2+45.015.19 ± 0.02+0.113 ± 0.0162.100 ± 0.0430.01917.636 ± 0.02914.611 ± 0.093+9BHB25
61P 11424-7009 30 02.7+31 54 14194.1+46.314.57 ± 0.01+0.072 ± 0.0192.072 ± 0.0320.02016.939 ± 0.01914.236 ± 0.073+8BHB
62BS 16927-2209 32 43.6+39 28 31183.1+47.311.18 ± 0.01+0.103 ± 0.0052.084 ± 0.0110.01710.710 ± 0.019+4bhb
63CHSS 66309 33 48.8+29 07 14198.2+46.715.18 ± 0.01+0.056 ± 0.0112.077 ± 0.0350.01817.282 ± 0.02414.959 ± 0.112+12BHB
64P 11424-8209 34 23.5+29 48 10197.3+46.914.99 ± 0.01+0.136 ± 0.0172.115 ± 0.0480.01917.554 ± 0.02614.379 ± 0.068+8BHB
65BS 16940-4509 37 07.2+36 09 48188.0+48.113.55 ± 0.01+0.021 ± 0.0112.009 ± 0.0080.01415.602 ± 0.01513.336 ± 0.030+8BHB
66BS 16927-5509 40 31.5+41 48 32179.5+48.614.53 ± 0.01+0.003 ± 0.0051.993 ± 0.0460.01216.592 ± 0.02314.276 ± 0.064+6BHB
67BS 16940-007009 42 36.7+34 38 18190.4+49.114.98 ± 0.01+0.016 ± 0.0082.002 ± 0.0830.01117.201 ± 0.03114.815 ± 0.077+4bhb
68BS 16940-007209 43 10.3+33 57 10191.4+49.213.99 ± 0.01+0.107 ± 0.0082.032 ± 0.0040.01416.453 ± 0.01513.524 ± 0.027+8BHB

Notes.

(1) BD +42 1850; (2) AF 211; (3) AF 217; (4) Strömgren β= 2.758; CHSS (class 3); (5) Strömgren β= 2.855;

(6) Strömgren β= 2.879; CHSS (class 3); (7) CHSS (class 4); (8) AF 241; (9) AF 256; (10) US 1430;

(11) AF 262. (12) CHSS (class 3); (13) US 1513; (14) Strömgren β= 2.856; CHSS (class 3); (15) AF 271;

(16) Strömgren β= 2.801; (17) Strömgren β= 2.892; (18) AF 297; (19) CHSS (class 4); (20) AF 307;

(21) BD +42 1926; US 1862; (22) AF 368; (23) Strömgren β= 2.858;

(24) Strömgren β= 2.827; BD +33 1834; (25) CHSS 632 (class 1).

References to Notes:

Our methods of selecting BHB stars from these candidates and the calculation of their distances are described in Appendix A. Apart from the RR Lyrae stars in fields RR VI and RR VII, the additional RR Lyrae stars have mostly been found among BHB candidates that were found to be variable. Seven of these RR Lyrae stars have not been previously identified and their light curves and ephemerides are given in Appendix B. All our program stars are listed in Tables 4 and 5 for the BHB and RR Lyrae stars, respectively. These tables give positions and photometric data for the BHB stars and, also, metallicities and periods for the RR Lyrae stars; sources of these data are given in notes to these tables.

Table 5

Positions, photometry and abundances for the RR Lyrae stars. The equatorial coordinates are for J2000. The magnitudes and colours V and K are defined in the text. Sources are given in the notes.

No (1)ID (2)RA (3)Dec. (4)l (5)b (6)Type (7)log P (8)[Fe/H] (9)V〉 (10)Vamp (11)K〉 (12)E(BV) (13)Notes (14)
1V385 Aur07 25 56.0+38 12 59180.3+22.8ab−0.266(17.41)(0.59)0.053
2V386 Aur07 26 13.2+40 52 50177.6+23.6c−0.516−1.75(16.75)(0.50)0.0635
3V387 Aur07 27 01.0+36 38 46182.0+22.5ab−0.308−1.32(16.92)(1.05)0.0565
4V389 Aur07 30 10.8+38 21 54180.4+23.6ab−0.249(17.53)(0.95)0.057
5VX Lyn07 31 51.9+39 07 47179.7+24.1ab−0.257−1.5817.01(0.82)0.0574
6VY Lyn07 32 26.0+38 50.05180.1+24.2c−0.451−1.5715.75(0.37)14.61 ± 0.120.0624
7VZ Lyn07 32 40.8+41 37 38177.1+25.0c−0.487−1.4816.20(0.42)15.43 ± 0.190.0544
8WX Lyn07 35 38.5+39 15 27179.8+24.9ab−0.257−1.7216.84(0.69)0.0494
9AS Lyn07 40 32.9+41 11 37178.0+26.3ab−0.298−1.2:(18.35)1.05)0.0491
10WZ Lyn07 40 45.7+39 18 51180.1+25.8ab−0.207−1.89(14.25)(0.95)13.11 ± 0.030.0492
11XZ Lyn07 44 48.4+40 12 44179.3+26.8c−0.549(16.32)(0.50)0.050
12TW Lyn07 45 06.3+43 06 42176.1+27.5ab−0.317−0.4311.991.0010.78 ± 0.020.0463,8
13YY Lyn07 45 30.1+37 22 59182.4+26.2c−0.476−1.8714.98(0.46)14.08 ± 0.110.0654
14YZ Lyn07 45 40.9+40 22 32179.2+27.0ab−0.304−0.6:(17.47)(0.80)0.0521
15AU Lyn07 49 35.3+41 42 57177.9+28.0ab−0.197−1.8:(17.82)(0.76)0.0481
16ZZ Lyn07 50 21.8+37 42 00182.3+27.3ab−0.313−1.4215.80(1.03)15.08 ± 0.140.0484
17RW Lyn07 50 39.2+38 27 15181.5+27.5ab−0.302−1.5312.90(1.20)11.66 ± 0.020.0404,9
18AV Lyn07 54 09.6+42 49 04176.9+29.1ab−0.233−1.7:(16.62)(0.76)0.0481
19AC Lyn07 54 42.1+38 54 20181.2+28.4ab−0.256−1.5016.38(0.85)0.0474
20AD Lyn07 56 23.0+39 22 58180.8+28.8c−0.450−1.4615.85(0.49)15.13 ± 0.150.0614
21AW Lyn07 57 24.5+43 12 29176.5+29.8ab−0.333−1.6:(16.13)(0.92)15.00 ± 0.110.0361
22AX Lyn07 59 46.4+39 16 30181.1+29.4ab−0.331(18.54)(0.76)0.048
23AY Lyn08 00 29.9+40 39 24179.6+29.8c−0.503(16.88)(0.47)0.045
24P 54-1308 01 56.2+41 01 18179.2+30.2ab−0.22615.200.9013.52 ± 0.040.0586
25AZ Lyn08 03 39.8+42 30 45177.6+30.7ab−0.324−2.2416.47(0.84)0.0465
26BB Lyn08 04 36.2+42 29 01177.6+30.9ab−0.253−1.36(16.86)(0.92)0.0485
27BC Lyn08 09 37.4+42 33 31177.7+31.9ab−0.281−1.6:(17.00)(1.07)0.0481
28AF 19408 12 00.6+40 39 20180.0+32.0ab−0.07515.840.4514.37 ± 0.080.0487
29AF 19708 13 46.4+38 03 02183.1+31.8c−0.41115.500.4014.35 ± 0.070.0387
30DQ Lyn08 23 41.0+37 28 11184.2+33.6c−0.30611.410.3710.44 ± 0.020.0446
31RR7 03208 30 41.8+40 24 24181.0+35.4ab−0.20114.580.6513.22 ± 0.030.0476
32RR7 03408 31 52.2+38 32 14183.3+35.4c−0.53915.320.2914.64 ± 0.090.0396
33P 81 12908 32 49.6+43 16 02177.5+36.2c−0.51014.460.5213.67 ± 0.040.0226
34AF Lyn08 35 57.4+41 01 11180.4+36.5ab−0.237−1.5616.12(0.76)14.87 ± 0.090.0394
35P 82 0608 43 56.7+43 22 13177.6+38.2c−0.54814.150.3013.45 ± 0.030.0246
36AI Lyn08 44 02.6+38 54 48183.2+37.8ab−0.250(17.10)(0.92)0.032
37AK Lyn08 45 55.1+39 14 55182.8+38.2ab−0.329−1.5616.00(1.07)14.86 ± 0.110.0304
38EN Lyn08 46 07.0+38 02 53184.4+38.1ab−0.20413.530.5212.18 ± 0.020.0356
39RR7-08608 48 26.2+36 20 08186.6+38.4c−0.45116.140.6315.51 ± 0.150.0297
40AL Lyn08 49 13.1+38 49 31183.5+38.8ab−0.293−1.9016.52(0.99)15.18 ± 0.110.0354
41AM Lyn08 49 50.2+36 56 00185.9+38.7ab−0.294(17.30)(1.31)0.033
42P 82-3208 50 39.5+43 40 03177.3+39.4ab−0.30415.071.1614.24 ± 0.060.0316
43AF 31608 50.46.3+41 18 54180.3+39.3c−0.46216.130.4615.09 ± 0.120.0277
44RR7-10108 51 40.2+40 17 11181.6+39.4c−0.48216.150.6015.14 ± 0.110.0227
45TT Lyn09 03 07.8+44 35 08176.1+41.7ab−0.224−1.3509.850.7008.61 ± 0.020.01810,11
46AF 40009 18 17.0+31 58 49193.5+43.9c−0.40314.100.4013.37 ± 0.030.0187
47AF 43009 30 23.3+33 53 11191.2+46.6c−0.51514.900.4014.21 ± 0.040.0167
48BS 16927-12309 44 36.4+41 08 39180.4+49.4c−0.44513.180.4612.36 ± 0.020.0176
49X LMi10 06 06.7+39 21 28182.5+53.7ab−0.165−1.4112.351.0211.06 ± 0.010.01812,13
50AG UMa10 48 56.3+42 40 14172.9+60.7ab−0.335(15.42)1.7114.53 ± 0.100.01214
51BK UMa10 50 18.9+42 34 08172.9+61.0ab−0.197−1.2912.910.5411.50 ± 0.020.01212,15
52AK UMa10 53 13.2+41 19 02174.9+61.9c−0.309(16.08)(0.46)15.00 ± 0.120.01216
53AO UMa11 07 39.8+40 33 58174.1+64.7ab−0.251(15.54)(1.22)14.62 ± 0.100.015
54BN UMa11 16 22.9+41 14 02170.9+65.9d−0.39813.500.5012.58 ± 0.030.0146,17
55CK UMa12 01 36.4+31 54 12186.2+78.2ab−0.21414.080.5312.72 ± 0.030.0246
No (1)ID (2)RA (3)Dec. (4)l (5)b (6)Type (7)log P (8)[Fe/H] (9)V〉 (10)Vamp (11)K〉 (12)E(BV) (13)Notes (14)
1V385 Aur07 25 56.0+38 12 59180.3+22.8ab−0.266(17.41)(0.59)0.053
2V386 Aur07 26 13.2+40 52 50177.6+23.6c−0.516−1.75(16.75)(0.50)0.0635
3V387 Aur07 27 01.0+36 38 46182.0+22.5ab−0.308−1.32(16.92)(1.05)0.0565
4V389 Aur07 30 10.8+38 21 54180.4+23.6ab−0.249(17.53)(0.95)0.057
5VX Lyn07 31 51.9+39 07 47179.7+24.1ab−0.257−1.5817.01(0.82)0.0574
6VY Lyn07 32 26.0+38 50.05180.1+24.2c−0.451−1.5715.75(0.37)14.61 ± 0.120.0624
7VZ Lyn07 32 40.8+41 37 38177.1+25.0c−0.487−1.4816.20(0.42)15.43 ± 0.190.0544
8WX Lyn07 35 38.5+39 15 27179.8+24.9ab−0.257−1.7216.84(0.69)0.0494
9AS Lyn07 40 32.9+41 11 37178.0+26.3ab−0.298−1.2:(18.35)1.05)0.0491
10WZ Lyn07 40 45.7+39 18 51180.1+25.8ab−0.207−1.89(14.25)(0.95)13.11 ± 0.030.0492
11XZ Lyn07 44 48.4+40 12 44179.3+26.8c−0.549(16.32)(0.50)0.050
12TW Lyn07 45 06.3+43 06 42176.1+27.5ab−0.317−0.4311.991.0010.78 ± 0.020.0463,8
13YY Lyn07 45 30.1+37 22 59182.4+26.2c−0.476−1.8714.98(0.46)14.08 ± 0.110.0654
14YZ Lyn07 45 40.9+40 22 32179.2+27.0ab−0.304−0.6:(17.47)(0.80)0.0521
15AU Lyn07 49 35.3+41 42 57177.9+28.0ab−0.197−1.8:(17.82)(0.76)0.0481
16ZZ Lyn07 50 21.8+37 42 00182.3+27.3ab−0.313−1.4215.80(1.03)15.08 ± 0.140.0484
17RW Lyn07 50 39.2+38 27 15181.5+27.5ab−0.302−1.5312.90(1.20)11.66 ± 0.020.0404,9
18AV Lyn07 54 09.6+42 49 04176.9+29.1ab−0.233−1.7:(16.62)(0.76)0.0481
19AC Lyn07 54 42.1+38 54 20181.2+28.4ab−0.256−1.5016.38(0.85)0.0474
20AD Lyn07 56 23.0+39 22 58180.8+28.8c−0.450−1.4615.85(0.49)15.13 ± 0.150.0614
21AW Lyn07 57 24.5+43 12 29176.5+29.8ab−0.333−1.6:(16.13)(0.92)15.00 ± 0.110.0361
22AX Lyn07 59 46.4+39 16 30181.1+29.4ab−0.331(18.54)(0.76)0.048
23AY Lyn08 00 29.9+40 39 24179.6+29.8c−0.503(16.88)(0.47)0.045
24P 54-1308 01 56.2+41 01 18179.2+30.2ab−0.22615.200.9013.52 ± 0.040.0586
25AZ Lyn08 03 39.8+42 30 45177.6+30.7ab−0.324−2.2416.47(0.84)0.0465
26BB Lyn08 04 36.2+42 29 01177.6+30.9ab−0.253−1.36(16.86)(0.92)0.0485
27BC Lyn08 09 37.4+42 33 31177.7+31.9ab−0.281−1.6:(17.00)(1.07)0.0481
28AF 19408 12 00.6+40 39 20180.0+32.0ab−0.07515.840.4514.37 ± 0.080.0487
29AF 19708 13 46.4+38 03 02183.1+31.8c−0.41115.500.4014.35 ± 0.070.0387
30DQ Lyn08 23 41.0+37 28 11184.2+33.6c−0.30611.410.3710.44 ± 0.020.0446
31RR7 03208 30 41.8+40 24 24181.0+35.4ab−0.20114.580.6513.22 ± 0.030.0476
32RR7 03408 31 52.2+38 32 14183.3+35.4c−0.53915.320.2914.64 ± 0.090.0396
33P 81 12908 32 49.6+43 16 02177.5+36.2c−0.51014.460.5213.67 ± 0.040.0226
34AF Lyn08 35 57.4+41 01 11180.4+36.5ab−0.237−1.5616.12(0.76)14.87 ± 0.090.0394
35P 82 0608 43 56.7+43 22 13177.6+38.2c−0.54814.150.3013.45 ± 0.030.0246
36AI Lyn08 44 02.6+38 54 48183.2+37.8ab−0.250(17.10)(0.92)0.032
37AK Lyn08 45 55.1+39 14 55182.8+38.2ab−0.329−1.5616.00(1.07)14.86 ± 0.110.0304
38EN Lyn08 46 07.0+38 02 53184.4+38.1ab−0.20413.530.5212.18 ± 0.020.0356
39RR7-08608 48 26.2+36 20 08186.6+38.4c−0.45116.140.6315.51 ± 0.150.0297
40AL Lyn08 49 13.1+38 49 31183.5+38.8ab−0.293−1.9016.52(0.99)15.18 ± 0.110.0354
41AM Lyn08 49 50.2+36 56 00185.9+38.7ab−0.294(17.30)(1.31)0.033
42P 82-3208 50 39.5+43 40 03177.3+39.4ab−0.30415.071.1614.24 ± 0.060.0316
43AF 31608 50.46.3+41 18 54180.3+39.3c−0.46216.130.4615.09 ± 0.120.0277
44RR7-10108 51 40.2+40 17 11181.6+39.4c−0.48216.150.6015.14 ± 0.110.0227
45TT Lyn09 03 07.8+44 35 08176.1+41.7ab−0.224−1.3509.850.7008.61 ± 0.020.01810,11
46AF 40009 18 17.0+31 58 49193.5+43.9c−0.40314.100.4013.37 ± 0.030.0187
47AF 43009 30 23.3+33 53 11191.2+46.6c−0.51514.900.4014.21 ± 0.040.0167
48BS 16927-12309 44 36.4+41 08 39180.4+49.4c−0.44513.180.4612.36 ± 0.020.0176
49X LMi10 06 06.7+39 21 28182.5+53.7ab−0.165−1.4112.351.0211.06 ± 0.010.01812,13
50AG UMa10 48 56.3+42 40 14172.9+60.7ab−0.335(15.42)1.7114.53 ± 0.100.01214
51BK UMa10 50 18.9+42 34 08172.9+61.0ab−0.197−1.2912.910.5411.50 ± 0.020.01212,15
52AK UMa10 53 13.2+41 19 02174.9+61.9c−0.309(16.08)(0.46)15.00 ± 0.120.01216
53AO UMa11 07 39.8+40 33 58174.1+64.7ab−0.251(15.54)(1.22)14.62 ± 0.100.015
54BN UMa11 16 22.9+41 14 02170.9+65.9d−0.39813.500.5012.58 ± 0.030.0146,17
55CK UMa12 01 36.4+31 54 12186.2+78.2ab−0.21414.080.5312.72 ± 0.030.0246

Notes. (1) [Fe/H] from Saha & Oke (1984). (2) [Fe/H] from Suntzeff (1990, private communication). (3) [Fe/H] from Jurcsik et al. (2006). (4) [Fe/H] and 〈V〉 from Pier et al. (2003). (5) [Fe/H] and 〈V〉 from Kinman et al. (2004). (6) 〈V〉 from Kinman & Brown (2010). (7) 〈V〉 from this paper (Appendix). (8) 〈V〉 from Schmidt, Chab & Reiswig (1995). (9) 〈V〉 from Schmidt & Seth (1996). (10) 〈V〉 from Liu & Janes (1990). (11) [Fe/H] from Sodor, Jurcsik & Szeidl (2009). (12) 〈V〉 from Schmidt (2002). (13) [Fe/H] from Jurcsik & Kovacs (1996). (14) 〈V〉 from Kinemuchi et al. (2006). (15) [Fe/H] from Kemper (1982). (16) Bailey type and period uncertain. (17) McClusky (2008) showed that this star is an RRd. The period given is that of the first overtone.

Table 5

Positions, photometry and abundances for the RR Lyrae stars. The equatorial coordinates are for J2000. The magnitudes and colours V and K are defined in the text. Sources are given in the notes.

No (1)ID (2)RA (3)Dec. (4)l (5)b (6)Type (7)log P (8)[Fe/H] (9)V〉 (10)Vamp (11)K〉 (12)E(BV) (13)Notes (14)
1V385 Aur07 25 56.0+38 12 59180.3+22.8ab−0.266(17.41)(0.59)0.053
2V386 Aur07 26 13.2+40 52 50177.6+23.6c−0.516−1.75(16.75)(0.50)0.0635
3V387 Aur07 27 01.0+36 38 46182.0+22.5ab−0.308−1.32(16.92)(1.05)0.0565
4V389 Aur07 30 10.8+38 21 54180.4+23.6ab−0.249(17.53)(0.95)0.057
5VX Lyn07 31 51.9+39 07 47179.7+24.1ab−0.257−1.5817.01(0.82)0.0574
6VY Lyn07 32 26.0+38 50.05180.1+24.2c−0.451−1.5715.75(0.37)14.61 ± 0.120.0624
7VZ Lyn07 32 40.8+41 37 38177.1+25.0c−0.487−1.4816.20(0.42)15.43 ± 0.190.0544
8WX Lyn07 35 38.5+39 15 27179.8+24.9ab−0.257−1.7216.84(0.69)0.0494
9AS Lyn07 40 32.9+41 11 37178.0+26.3ab−0.298−1.2:(18.35)1.05)0.0491
10WZ Lyn07 40 45.7+39 18 51180.1+25.8ab−0.207−1.89(14.25)(0.95)13.11 ± 0.030.0492
11XZ Lyn07 44 48.4+40 12 44179.3+26.8c−0.549(16.32)(0.50)0.050
12TW Lyn07 45 06.3+43 06 42176.1+27.5ab−0.317−0.4311.991.0010.78 ± 0.020.0463,8
13YY Lyn07 45 30.1+37 22 59182.4+26.2c−0.476−1.8714.98(0.46)14.08 ± 0.110.0654
14YZ Lyn07 45 40.9+40 22 32179.2+27.0ab−0.304−0.6:(17.47)(0.80)0.0521
15AU Lyn07 49 35.3+41 42 57177.9+28.0ab−0.197−1.8:(17.82)(0.76)0.0481
16ZZ Lyn07 50 21.8+37 42 00182.3+27.3ab−0.313−1.4215.80(1.03)15.08 ± 0.140.0484
17RW Lyn07 50 39.2+38 27 15181.5+27.5ab−0.302−1.5312.90(1.20)11.66 ± 0.020.0404,9
18AV Lyn07 54 09.6+42 49 04176.9+29.1ab−0.233−1.7:(16.62)(0.76)0.0481
19AC Lyn07 54 42.1+38 54 20181.2+28.4ab−0.256−1.5016.38(0.85)0.0474
20AD Lyn07 56 23.0+39 22 58180.8+28.8c−0.450−1.4615.85(0.49)15.13 ± 0.150.0614
21AW Lyn07 57 24.5+43 12 29176.5+29.8ab−0.333−1.6:(16.13)(0.92)15.00 ± 0.110.0361
22AX Lyn07 59 46.4+39 16 30181.1+29.4ab−0.331(18.54)(0.76)0.048
23AY Lyn08 00 29.9+40 39 24179.6+29.8c−0.503(16.88)(0.47)0.045
24P 54-1308 01 56.2+41 01 18179.2+30.2ab−0.22615.200.9013.52 ± 0.040.0586
25AZ Lyn08 03 39.8+42 30 45177.6+30.7ab−0.324−2.2416.47(0.84)0.0465
26BB Lyn08 04 36.2+42 29 01177.6+30.9ab−0.253−1.36(16.86)(0.92)0.0485
27BC Lyn08 09 37.4+42 33 31177.7+31.9ab−0.281−1.6:(17.00)(1.07)0.0481
28AF 19408 12 00.6+40 39 20180.0+32.0ab−0.07515.840.4514.37 ± 0.080.0487
29AF 19708 13 46.4+38 03 02183.1+31.8c−0.41115.500.4014.35 ± 0.070.0387
30DQ Lyn08 23 41.0+37 28 11184.2+33.6c−0.30611.410.3710.44 ± 0.020.0446
31RR7 03208 30 41.8+40 24 24181.0+35.4ab−0.20114.580.6513.22 ± 0.030.0476
32RR7 03408 31 52.2+38 32 14183.3+35.4c−0.53915.320.2914.64 ± 0.090.0396
33P 81 12908 32 49.6+43 16 02177.5+36.2c−0.51014.460.5213.67 ± 0.040.0226
34AF Lyn08 35 57.4+41 01 11180.4+36.5ab−0.237−1.5616.12(0.76)14.87 ± 0.090.0394
35P 82 0608 43 56.7+43 22 13177.6+38.2c−0.54814.150.3013.45 ± 0.030.0246
36AI Lyn08 44 02.6+38 54 48183.2+37.8ab−0.250(17.10)(0.92)0.032
37AK Lyn08 45 55.1+39 14 55182.8+38.2ab−0.329−1.5616.00(1.07)14.86 ± 0.110.0304
38EN Lyn08 46 07.0+38 02 53184.4+38.1ab−0.20413.530.5212.18 ± 0.020.0356
39RR7-08608 48 26.2+36 20 08186.6+38.4c−0.45116.140.6315.51 ± 0.150.0297
40AL Lyn08 49 13.1+38 49 31183.5+38.8ab−0.293−1.9016.52(0.99)15.18 ± 0.110.0354
41AM Lyn08 49 50.2+36 56 00185.9+38.7ab−0.294(17.30)(1.31)0.033
42P 82-3208 50 39.5+43 40 03177.3+39.4ab−0.30415.071.1614.24 ± 0.060.0316
43AF 31608 50.46.3+41 18 54180.3+39.3c−0.46216.130.4615.09 ± 0.120.0277
44RR7-10108 51 40.2+40 17 11181.6+39.4c−0.48216.150.6015.14 ± 0.110.0227
45TT Lyn09 03 07.8+44 35 08176.1+41.7ab−0.224−1.3509.850.7008.61 ± 0.020.01810,11
46AF 40009 18 17.0+31 58 49193.5+43.9c−0.40314.100.4013.37 ± 0.030.0187
47AF 43009 30 23.3+33 53 11191.2+46.6c−0.51514.900.4014.21 ± 0.040.0167
48BS 16927-12309 44 36.4+41 08 39180.4+49.4c−0.44513.180.4612.36 ± 0.020.0176
49X LMi10 06 06.7+39 21 28182.5+53.7ab−0.165−1.4112.351.0211.06 ± 0.010.01812,13
50AG UMa10 48 56.3+42 40 14172.9+60.7ab−0.335(15.42)1.7114.53 ± 0.100.01214
51BK UMa10 50 18.9+42 34 08172.9+61.0ab−0.197−1.2912.910.5411.50 ± 0.020.01212,15
52AK UMa10 53 13.2+41 19 02174.9+61.9c−0.309(16.08)(0.46)15.00 ± 0.120.01216
53AO UMa11 07 39.8+40 33 58174.1+64.7ab−0.251(15.54)(1.22)14.62 ± 0.100.015
54BN UMa11 16 22.9+41 14 02170.9+65.9d−0.39813.500.5012.58 ± 0.030.0146,17
55CK UMa12 01 36.4+31 54 12186.2+78.2ab−0.21414.080.5312.72 ± 0.030.0246
No (1)ID (2)RA (3)Dec. (4)l (5)b (6)Type (7)log P (8)[Fe/H] (9)V〉 (10)Vamp (11)K〉 (12)E(BV) (13)Notes (14)
1V385 Aur07 25 56.0+38 12 59180.3+22.8ab−0.266(17.41)(0.59)0.053
2V386 Aur07 26 13.2+40 52 50177.6+23.6c−0.516−1.75(16.75)(0.50)0.0635
3V387 Aur07 27 01.0+36 38 46182.0+22.5ab−0.308−1.32(16.92)(1.05)0.0565
4V389 Aur07 30 10.8+38 21 54180.4+23.6ab−0.249(17.53)(0.95)0.057
5VX Lyn07 31 51.9+39 07 47179.7+24.1ab−0.257−1.5817.01(0.82)0.0574
6VY Lyn07 32 26.0+38 50.05180.1+24.2c−0.451−1.5715.75(0.37)14.61 ± 0.120.0624
7VZ Lyn07 32 40.8+41 37 38177.1+25.0c−0.487−1.4816.20(0.42)15.43 ± 0.190.0544
8WX Lyn07 35 38.5+39 15 27179.8+24.9ab−0.257−1.7216.84(0.69)0.0494
9AS Lyn07 40 32.9+41 11 37178.0+26.3ab−0.298−1.2:(18.35)1.05)0.0491
10WZ Lyn07 40 45.7+39 18 51180.1+25.8ab−0.207−1.89(14.25)(0.95)13.11 ± 0.030.0492
11XZ Lyn07 44 48.4+40 12 44179.3+26.8c−0.549(16.32)(0.50)0.050
12TW Lyn07 45 06.3+43 06 42176.1+27.5ab−0.317−0.4311.991.0010.78 ± 0.020.0463,8
13YY Lyn07 45 30.1+37 22 59182.4+26.2c−0.476−1.8714.98(0.46)14.08 ± 0.110.0654
14YZ Lyn07 45 40.9+40 22 32179.2+27.0ab−0.304−0.6:(17.47)(0.80)0.0521
15AU Lyn07 49 35.3+41 42 57177.9+28.0ab−0.197−1.8:(17.82)(0.76)0.0481
16ZZ Lyn07 50 21.8+37 42 00182.3+27.3ab−0.313−1.4215.80(1.03)15.08 ± 0.140.0484
17RW Lyn07 50 39.2+38 27 15181.5+27.5ab−0.302−1.5312.90(1.20)11.66 ± 0.020.0404,9
18AV Lyn07 54 09.6+42 49 04176.9+29.1ab−0.233−1.7:(16.62)(0.76)0.0481
19AC Lyn07 54 42.1+38 54 20181.2+28.4ab−0.256−1.5016.38(0.85)0.0474
20AD Lyn07 56 23.0+39 22 58180.8+28.8c−0.450−1.4615.85(0.49)15.13 ± 0.150.0614
21AW Lyn07 57 24.5+43 12 29176.5+29.8ab−0.333−1.6:(16.13)(0.92)15.00 ± 0.110.0361
22AX Lyn07 59 46.4+39 16 30181.1+29.4ab−0.331(18.54)(0.76)0.048
23AY Lyn08 00 29.9+40 39 24179.6+29.8c−0.503(16.88)(0.47)0.045
24P 54-1308 01 56.2+41 01 18179.2+30.2ab−0.22615.200.9013.52 ± 0.040.0586
25AZ Lyn08 03 39.8+42 30 45177.6+30.7ab−0.324−2.2416.47(0.84)0.0465
26BB Lyn08 04 36.2+42 29 01177.6+30.9ab−0.253−1.36(16.86)(0.92)0.0485
27BC Lyn08 09 37.4+42 33 31177.7+31.9ab−0.281−1.6:(17.00)(1.07)0.0481
28AF 19408 12 00.6+40 39 20180.0+32.0ab−0.07515.840.4514.37 ± 0.080.0487
29AF 19708 13 46.4+38 03 02183.1+31.8c−0.41115.500.4014.35 ± 0.070.0387
30DQ Lyn08 23 41.0+37 28 11184.2+33.6c−0.30611.410.3710.44 ± 0.020.0446
31RR7 03208 30 41.8+40 24 24181.0+35.4ab−0.20114.580.6513.22 ± 0.030.0476
32RR7 03408 31 52.2+38 32 14183.3+35.4c−0.53915.320.2914.64 ± 0.090.0396
33P 81 12908 32 49.6+43 16 02177.5+36.2c−0.51014.460.5213.67 ± 0.040.0226
34AF Lyn08 35 57.4+41 01 11180.4+36.5ab−0.237−1.5616.12(0.76)14.87 ± 0.090.0394
35P 82 0608 43 56.7+43 22 13177.6+38.2c−0.54814.150.3013.45 ± 0.030.0246
36AI Lyn08 44 02.6+38 54 48183.2+37.8ab−0.250(17.10)(0.92)0.032
37AK Lyn08 45 55.1+39 14 55182.8+38.2ab−0.329−1.5616.00(1.07)14.86 ± 0.110.0304
38EN Lyn08 46 07.0+38 02 53184.4+38.1ab−0.20413.530.5212.18 ± 0.020.0356
39RR7-08608 48 26.2+36 20 08186.6+38.4c−0.45116.140.6315.51 ± 0.150.0297
40AL Lyn08 49 13.1+38 49 31183.5+38.8ab−0.293−1.9016.52(0.99)15.18 ± 0.110.0354
41AM Lyn08 49 50.2+36 56 00185.9+38.7ab−0.294(17.30)(1.31)0.033
42P 82-3208 50 39.5+43 40 03177.3+39.4ab−0.30415.071.1614.24 ± 0.060.0316
43AF 31608 50.46.3+41 18 54180.3+39.3c−0.46216.130.4615.09 ± 0.120.0277
44RR7-10108 51 40.2+40 17 11181.6+39.4c−0.48216.150.6015.14 ± 0.110.0227
45TT Lyn09 03 07.8+44 35 08176.1+41.7ab−0.224−1.3509.850.7008.61 ± 0.020.01810,11
46AF 40009 18 17.0+31 58 49193.5+43.9c−0.40314.100.4013.37 ± 0.030.0187
47AF 43009 30 23.3+33 53 11191.2+46.6c−0.51514.900.4014.21 ± 0.040.0167
48BS 16927-12309 44 36.4+41 08 39180.4+49.4c−0.44513.180.4612.36 ± 0.020.0176
49X LMi10 06 06.7+39 21 28182.5+53.7ab−0.165−1.4112.351.0211.06 ± 0.010.01812,13
50AG UMa10 48 56.3+42 40 14172.9+60.7ab−0.335(15.42)1.7114.53 ± 0.100.01214
51BK UMa10 50 18.9+42 34 08172.9+61.0ab−0.197−1.2912.910.5411.50 ± 0.020.01212,15
52AK UMa10 53 13.2+41 19 02174.9+61.9c−0.309(16.08)(0.46)15.00 ± 0.120.01216
53AO UMa11 07 39.8+40 33 58174.1+64.7ab−0.251(15.54)(1.22)14.62 ± 0.100.015
54BN UMa11 16 22.9+41 14 02170.9+65.9d−0.39813.500.5012.58 ± 0.030.0146,17
55CK UMa12 01 36.4+31 54 12186.2+78.2ab−0.21414.080.5312.72 ± 0.030.0246

Notes. (1) [Fe/H] from Saha & Oke (1984). (2) [Fe/H] from Suntzeff (1990, private communication). (3) [Fe/H] from Jurcsik et al. (2006). (4) [Fe/H] and 〈V〉 from Pier et al. (2003). (5) [Fe/H] and 〈V〉 from Kinman et al. (2004). (6) 〈V〉 from Kinman & Brown (2010). (7) 〈V〉 from this paper (Appendix). (8) 〈V〉 from Schmidt, Chab & Reiswig (1995). (9) 〈V〉 from Schmidt & Seth (1996). (10) 〈V〉 from Liu & Janes (1990). (11) [Fe/H] from Sodor, Jurcsik & Szeidl (2009). (12) 〈V〉 from Schmidt (2002). (13) [Fe/H] from Jurcsik & Kovacs (1996). (14) 〈V〉 from Kinemuchi et al. (2006). (15) [Fe/H] from Kemper (1982). (16) Bailey type and period uncertain. (17) McClusky (2008) showed that this star is an RRd. The period given is that of the first overtone.

The galactic distributions of our program stars are shown separately for the BHB and RR Lyrae stars in Fig. 1. Not only do our BHB and RR Lyrae stars cover somewhat different areas of the Anticentre sky, but they also cover different magnitude ranges so that the volumes of space that they occupy only partially overlap. Also, our selection of RR Lyrae stars favours the bluer (Bailey type c) and may miss some of the redder (Bailey type ab) RR Lyrae variables and so our sample may not be complete. This must be taken into account in comparing the properties of our two samples.

The distribution in galactic coordinates (expressed in degrees) of (left) the BHB candidates from Table 4 and (right) our program RR Lyrae stars (Table 5). Seven RR Lyrae stars with b > 50° are omitted from this figure.
Figure 1

The distribution in galactic coordinates (expressed in degrees) of (left) the BHB candidates from Table 4 and (right) our program RR Lyrae stars (Table 5). Seven RR Lyrae stars with b > 50° are omitted from this figure.

The period–amplitude distribution of our RR Lyrae sample is shown in Fig. 2 for the variables with galactic latitudes less than 50°. The solid and dotted curves show the loci of the Oosterhoff type I and II variables, respectively (these were taken from Cacciari, Corwin & Carney 2005). Most of our RR Lyrae stars lie close and to the left of the Oo I curve; this suggests that the majority are Oo I variables. The four stars that are most likely to be Oo II variables are indicated by their numbers in Fig. 2. This preponderance of Oo I variables in the Anticentre is compatible with the discovery by Miceli et al. (2008) that the Oo II variables are more concentrated towards the Galactic Centre than the Oo I variables. The ratio of Oo I to Oo II variables should therefore increase with galactocentric distance and so the Oo I variables should predominate towards the Anticentre.

The V amplitude versus log  Period plot for our RR Lyrae sample with galactic latitudes less than 50°. Filled circles indicate stars for which a V amplitude was available. Crosses indicate stars where the V amplitude was obtained by dividing the B amplitude by 1.31. Encircled filled circles and crosses show Bailey type c variables. The solid and dotted curves show the expected loci for Oo type I and Oo II variables of Bailey type ab, respectively, and were taken from Cacciari et al. (2005). The four likely Oo II variables are given their numbers in Table 5.
Figure 2

The V amplitude versus log  Period plot for our RR Lyrae sample with galactic latitudes less than 50°. Filled circles indicate stars for which a V amplitude was available. Crosses indicate stars where the V amplitude was obtained by dividing the B amplitude by 1.31. Encircled filled circles and crosses show Bailey type c variables. The solid and dotted curves show the expected loci for Oo type I and Oo II variables of Bailey type ab, respectively, and were taken from Cacciari et al. (2005). The four likely Oo II variables are given their numbers in Table 5.

3 THE BHB STARS

Our BHB stars were chosen from candidates in the sources given in Section 2. Table 4 gives the equatorial and galactic coordinates of these stars, together with photometric data (using the system used in Kinman et al. 1994). Details of the photometric observing are given in Kinman et al. (1994) for photoelectric observations and in Kinman & Brown (2011) for CCD observations. Table 4 also gives the GALEXNUV magnitude (effective wavelength 2267 Å) that was taken from MAST.1 We assumed that stars with V < 12.5 had saturated GALEXNUV magnitudes and should not be used. We also give the Two Micron All-Sky Survey (2MASS) K magnitude that was taken from the 2MASS Point Source Catalogue using the Vizier access tool.

The selection of BHB stars from the candidates is described in Appendix A. We show there how a weight W (Table 4, Column 13) was assigned to each star that depends on the probability that it is a BHB star. The stars were given a type (Table 4, Column 15) that depended on this weight. Stars with a high probability of being BHB stars were classified as BHB, those with a high probability of not being BHB were classified as A while intermediate types were classified as bhb. A comparison of our classifications with those obtained by methods based on SDSS photometry suggests that stars with both BHB and bhb classifications have a high probability of being BHB stars.

Appendix A also contains a discussion of five different methods of getting the absolute magnitudes (and hence distances) of BHB stars. These distances and the adopted distances are given in Table A1. The reddenings of both BHB and RR Lyrae stars were taken from Schlegel, Finkbeiner & Davis (1998).

Table A1

Distances in kpc for BHB and bhb stars. The distances D1, D2, D3, D4 and D5 and the corrected distances d1, d2, d3 and d5 are defined in the text. The adopted distance D and its rms error σ are given in Columns 14 and 15.

No (1)ID (2)Class (3)D1 (4)D2 (5)D3 (6)D4 (7)D5 (8)(BV)0 (9)d1 (10)d2 (11)d3 (12)d5 (13)D (14)σ (15)
024-32.5bhb8.2108.5677.7287.5348.0960.0768.3928.5678.3528.3588.4170.058
03AF-186BHB9.4509.6029.0818.9488.9720.1009.7429.6029.7239.2799.5910.119
04AF-189BHB7.5807.6066.8936.5836.7270.0377.6047.6067.6006.9037.4280.202
0554-111BHB5.9006.1375.6335.5445.7980.0976.0776.1376.0376.0056.0640.033
0654-122bhb7.3606.8136.2805.8466.486−0.0097.1706.8137.1456.6096.9340.156
0854-119BHB5.1665.1585.1340.1765.4435.3845.4130.042
0917444-25bhb0.6970.6820.7080.0840.7510.7320.7420.013
10AF-209BHB13.67013.82211.34310.6400.00513.44713.82212.77013.3460.377
11AF-210bhb8.7309.0938.4278.3990.1389.0809.0938.9279.0330.065
12AF-214BHB9.81010.2069.5149.5049.2090.16810.23110.20610.0319.64510.0280.156
13RR7-02BHB7.5307.9127.3267.3077.4020.1437.8377.9127.7537.7227.8060.050
1481-42BHB5.2905.3494.5984.3135.0800.0055.2045.3495.1775.1885.2300.046
15RR7-08BHB7.5107.8717.0936.9117.5590.0757.6737.8717.6697.8037.7540.058
16RR7-15BHB1.6061.6051.6080.1661.6941.6841.6890.007
1781-39BHB9.7109.3838.3617.8390.0049.5469.3839.4209.4500.060
18RR7-21bhb8.2108.5257.6377.3938.0270.0628.3418.5258.3088.2698.3610.065
1981-72bhb1.6781.6761.6330.1741.7681.7121.7400.040
21RR7-23BHB2.0571.9412.2350.0152.3002.2862.2930.010
22RR7-36BHB7.9408.4267.7727.7147.7660.1218.2328.4268.2678.0748.2500.083
2381-101bhb9.0509.3238.6528.5978.9800.1259.3909.3239.1949.3429.3120.048
2481-121BHB9.65011.3668.3937.9169.3040.0159.55511.3669.3839.5169.9550.545
25RR7-043BHB14.95014.22213.02812.2470.00914.74614.22214.62615.88014.8680.410
2628-45bhb5.0414.9675.1710.1005.3975.3595.3780.027
27RR7-053BHB7.3407.5937.1077.0507.2940.1197.6067.5937.5647.5817.5860.010
2881-162BHB11.58011.73510.61410.1760.04411.66111.73511.65611.6840.031
29RR7-058BHB8.4108.0517.5717.1748.2980.0238.3698.0518.4208.4978.3340.113
30RR7-60BHB5.5655.5305.6980.1255.9135.9285.9200.011
3182-04BHB10.39010.3459.3278.8630.02810.37010.34510.34010.3520.016
32RR7-64BHB1.1951.1691.2230.0831.2881.2641.2760.017
33RR7-66BHB8.2208.3727.9177.7858.1930.0958.4618.3728.4928.4848.4520.032
3481-167BHB5.1925.0575.4380.0745.6165.6135.6140.002
3511419-01BHB2.4162.3602.4860.0802.6072.5682.5880.028
37AF-293BHB13.09013.51312.86412.8520.16213.64813.51313.57213.5780.048
3811419-04BHB6.5806.2425.7725.3716.0610.0066.4776.2426.4946.1906.3510.091
39RR7-84BHB10.25010.5099.9909.89110.3000.11310.60610.50910.65110.69510.6150.046
40RR7-91BHB4.2574.0174.6290.0164.7564.7354.7460.015
41RR7-90BHB9.54010.0429.1138.8369.4860.0659.70510.0429.8999.7779.8560.085
4282-49BHB8.7808.7988.4978.2968.9070.0798.9858.7989.1729.2009.0390.108
4416473-102BHB4.2234.1294.3730.0824.5534.5194.5360.024
4517139-69BHB5.6505.8475.5235.4825.6350.1215.8575.8475.8755.8595.8670.011
46TON 384bhb7.9208.0897.1576.8018.0110.0287.9048.0897.9348.2108.0340.082
4716468-26BHB6.4365.9135.7096.4100.0576.4366.4486.5986.4940.064
48AF-379BHB8.2008.3107.4737.1687.4760.0458.2628.3108.2027.6818.1140.168
49AF-386BHB7.2807.3246.8486.6507.0680.0687.4167.3247.4287.2887.3640.040
50AF-390BHB8.4708.5337.5997.2008.2040.0238.4288.5338.4518.4018.4530.033
5116468-78BHB1.3611.2801.4980.0101.5271.5311.5290.003
5230-16bhb5.6505.8305.3695.2985.5310.1045.8325.8305.7415.7355.7840.018
5316468-80bhb4.0433.7864.2970.0024.5624.3864.4740.124
5430-28BHB0.80.7930.8310.1010.8610.8610.8610.000
5516468-90BHB4.7434.7004.7710.1165.0524.9565.0040.068
56CHSS 608BHB6.7286.2376.0576.5930.0686.7286.7656.7986.7640.025
5711424-28BHB5.4705.3455.7270.0815.8995.9175.9080.013
5830-038BHB5.5705.6555.4405.4045.4660.1245.7785.6555.7825.6855.7250.037
5957-121BHB8.2208.3816.6416.146−0.0207.9448.3817.6227.9820.269
60AF-419BHB7.9308.4167.6557.5248.0170.0948.1608.4168.2148.3008.2720.157
6111424-070BHB5.9205.8965.4835.2805.7760.0525.9865.8965.9955.9415.9540.026
6216927-22bhb1.2021.1771.2510.0861.2941.2941.2940.000
63CHSS 663BHB7.6807.4467.1406.8227.4690.0387.7097.4467.8687.6667.6720.100
6411424-82BHB7.2807.5587.1227.0607.3380.1177.5407.5587.5847.6247.5760.021
6516940-45BHB3.2173.0213.5510.0073.6173.6273.6220.007
6616927-55BHB5.7705.1414.9024.5635.659−0.0095.6215.1415.5775.7675.5260.156
6716940-70bhb7.1606.8646.2165.8316.8100.0057.0436.8646.9986.9546.9650.044
6816940.72BHB4.4334.3564.5860.0934.7584.7474.7520.008
No (1)ID (2)Class (3)D1 (4)D2 (5)D3 (6)D4 (7)D5 (8)(BV)0 (9)d1 (10)d2 (11)d3 (12)d5 (13)D (14)σ (15)
024-32.5bhb8.2108.5677.7287.5348.0960.0768.3928.5678.3528.3588.4170.058
03AF-186BHB9.4509.6029.0818.9488.9720.1009.7429.6029.7239.2799.5910.119
04AF-189BHB7.5807.6066.8936.5836.7270.0377.6047.6067.6006.9037.4280.202
0554-111BHB5.9006.1375.6335.5445.7980.0976.0776.1376.0376.0056.0640.033
0654-122bhb7.3606.8136.2805.8466.486−0.0097.1706.8137.1456.6096.9340.156
0854-119BHB5.1665.1585.1340.1765.4435.3845.4130.042
0917444-25bhb0.6970.6820.7080.0840.7510.7320.7420.013
10AF-209BHB13.67013.82211.34310.6400.00513.44713.82212.77013.3460.377
11AF-210bhb8.7309.0938.4278.3990.1389.0809.0938.9279.0330.065
12AF-214BHB9.81010.2069.5149.5049.2090.16810.23110.20610.0319.64510.0280.156
13RR7-02BHB7.5307.9127.3267.3077.4020.1437.8377.9127.7537.7227.8060.050
1481-42BHB5.2905.3494.5984.3135.0800.0055.2045.3495.1775.1885.2300.046
15RR7-08BHB7.5107.8717.0936.9117.5590.0757.6737.8717.6697.8037.7540.058
16RR7-15BHB1.6061.6051.6080.1661.6941.6841.6890.007
1781-39BHB9.7109.3838.3617.8390.0049.5469.3839.4209.4500.060
18RR7-21bhb8.2108.5257.6377.3938.0270.0628.3418.5258.3088.2698.3610.065
1981-72bhb1.6781.6761.6330.1741.7681.7121.7400.040
21RR7-23BHB2.0571.9412.2350.0152.3002.2862.2930.010
22RR7-36BHB7.9408.4267.7727.7147.7660.1218.2328.4268.2678.0748.2500.083
2381-101bhb9.0509.3238.6528.5978.9800.1259.3909.3239.1949.3429.3120.048
2481-121BHB9.65011.3668.3937.9169.3040.0159.55511.3669.3839.5169.9550.545
25RR7-043BHB14.95014.22213.02812.2470.00914.74614.22214.62615.88014.8680.410
2628-45bhb5.0414.9675.1710.1005.3975.3595.3780.027
27RR7-053BHB7.3407.5937.1077.0507.2940.1197.6067.5937.5647.5817.5860.010
2881-162BHB11.58011.73510.61410.1760.04411.66111.73511.65611.6840.031
29RR7-058BHB8.4108.0517.5717.1748.2980.0238.3698.0518.4208.4978.3340.113
30RR7-60BHB5.5655.5305.6980.1255.9135.9285.9200.011
3182-04BHB10.39010.3459.3278.8630.02810.37010.34510.34010.3520.016
32RR7-64BHB1.1951.1691.2230.0831.2881.2641.2760.017
33RR7-66BHB8.2208.3727.9177.7858.1930.0958.4618.3728.4928.4848.4520.032
3481-167BHB5.1925.0575.4380.0745.6165.6135.6140.002
3511419-01BHB2.4162.3602.4860.0802.6072.5682.5880.028
37AF-293BHB13.09013.51312.86412.8520.16213.64813.51313.57213.5780.048
3811419-04BHB6.5806.2425.7725.3716.0610.0066.4776.2426.4946.1906.3510.091
39RR7-84BHB10.25010.5099.9909.89110.3000.11310.60610.50910.65110.69510.6150.046
40RR7-91BHB4.2574.0174.6290.0164.7564.7354.7460.015
41RR7-90BHB9.54010.0429.1138.8369.4860.0659.70510.0429.8999.7779.8560.085
4282-49BHB8.7808.7988.4978.2968.9070.0798.9858.7989.1729.2009.0390.108
4416473-102BHB4.2234.1294.3730.0824.5534.5194.5360.024
4517139-69BHB5.6505.8475.5235.4825.6350.1215.8575.8475.8755.8595.8670.011
46TON 384bhb7.9208.0897.1576.8018.0110.0287.9048.0897.9348.2108.0340.082
4716468-26BHB6.4365.9135.7096.4100.0576.4366.4486.5986.4940.064
48AF-379BHB8.2008.3107.4737.1687.4760.0458.2628.3108.2027.6818.1140.168
49AF-386BHB7.2807.3246.8486.6507.0680.0687.4167.3247.4287.2887.3640.040
50AF-390BHB8.4708.5337.5997.2008.2040.0238.4288.5338.4518.4018.4530.033
5116468-78BHB1.3611.2801.4980.0101.5271.5311.5290.003
5230-16bhb5.6505.8305.3695.2985.5310.1045.8325.8305.7415.7355.7840.018
5316468-80bhb4.0433.7864.2970.0024.5624.3864.4740.124
5430-28BHB0.80.7930.8310.1010.8610.8610.8610.000
5516468-90BHB4.7434.7004.7710.1165.0524.9565.0040.068
56CHSS 608BHB6.7286.2376.0576.5930.0686.7286.7656.7986.7640.025
5711424-28BHB5.4705.3455.7270.0815.8995.9175.9080.013
5830-038BHB5.5705.6555.4405.4045.4660.1245.7785.6555.7825.6855.7250.037
5957-121BHB8.2208.3816.6416.146−0.0207.9448.3817.6227.9820.269
60AF-419BHB7.9308.4167.6557.5248.0170.0948.1608.4168.2148.3008.2720.157
6111424-070BHB5.9205.8965.4835.2805.7760.0525.9865.8965.9955.9415.9540.026
6216927-22bhb1.2021.1771.2510.0861.2941.2941.2940.000
63CHSS 663BHB7.6807.4467.1406.8227.4690.0387.7097.4467.8687.6667.6720.100
6411424-82BHB7.2807.5587.1227.0607.3380.1177.5407.5587.5847.6247.5760.021
6516940-45BHB3.2173.0213.5510.0073.6173.6273.6220.007
6616927-55BHB5.7705.1414.9024.5635.659−0.0095.6215.1415.5775.7675.5260.156
6716940-70bhb7.1606.8646.2165.8316.8100.0057.0436.8646.9986.9546.9650.044
6816940.72BHB4.4334.3564.5860.0934.7584.7474.7520.008
Table A1

Distances in kpc for BHB and bhb stars. The distances D1, D2, D3, D4 and D5 and the corrected distances d1, d2, d3 and d5 are defined in the text. The adopted distance D and its rms error σ are given in Columns 14 and 15.

No (1)ID (2)Class (3)D1 (4)D2 (5)D3 (6)D4 (7)D5 (8)(BV)0 (9)d1 (10)d2 (11)d3 (12)d5 (13)D (14)σ (15)
024-32.5bhb8.2108.5677.7287.5348.0960.0768.3928.5678.3528.3588.4170.058
03AF-186BHB9.4509.6029.0818.9488.9720.1009.7429.6029.7239.2799.5910.119
04AF-189BHB7.5807.6066.8936.5836.7270.0377.6047.6067.6006.9037.4280.202
0554-111BHB5.9006.1375.6335.5445.7980.0976.0776.1376.0376.0056.0640.033
0654-122bhb7.3606.8136.2805.8466.486−0.0097.1706.8137.1456.6096.9340.156
0854-119BHB5.1665.1585.1340.1765.4435.3845.4130.042
0917444-25bhb0.6970.6820.7080.0840.7510.7320.7420.013
10AF-209BHB13.67013.82211.34310.6400.00513.44713.82212.77013.3460.377
11AF-210bhb8.7309.0938.4278.3990.1389.0809.0938.9279.0330.065
12AF-214BHB9.81010.2069.5149.5049.2090.16810.23110.20610.0319.64510.0280.156
13RR7-02BHB7.5307.9127.3267.3077.4020.1437.8377.9127.7537.7227.8060.050
1481-42BHB5.2905.3494.5984.3135.0800.0055.2045.3495.1775.1885.2300.046
15RR7-08BHB7.5107.8717.0936.9117.5590.0757.6737.8717.6697.8037.7540.058
16RR7-15BHB1.6061.6051.6080.1661.6941.6841.6890.007
1781-39BHB9.7109.3838.3617.8390.0049.5469.3839.4209.4500.060
18RR7-21bhb8.2108.5257.6377.3938.0270.0628.3418.5258.3088.2698.3610.065
1981-72bhb1.6781.6761.6330.1741.7681.7121.7400.040
21RR7-23BHB2.0571.9412.2350.0152.3002.2862.2930.010
22RR7-36BHB7.9408.4267.7727.7147.7660.1218.2328.4268.2678.0748.2500.083
2381-101bhb9.0509.3238.6528.5978.9800.1259.3909.3239.1949.3429.3120.048
2481-121BHB9.65011.3668.3937.9169.3040.0159.55511.3669.3839.5169.9550.545
25RR7-043BHB14.95014.22213.02812.2470.00914.74614.22214.62615.88014.8680.410
2628-45bhb5.0414.9675.1710.1005.3975.3595.3780.027
27RR7-053BHB7.3407.5937.1077.0507.2940.1197.6067.5937.5647.5817.5860.010
2881-162BHB11.58011.73510.61410.1760.04411.66111.73511.65611.6840.031
29RR7-058BHB8.4108.0517.5717.1748.2980.0238.3698.0518.4208.4978.3340.113
30RR7-60BHB5.5655.5305.6980.1255.9135.9285.9200.011
3182-04BHB10.39010.3459.3278.8630.02810.37010.34510.34010.3520.016
32RR7-64BHB1.1951.1691.2230.0831.2881.2641.2760.017
33RR7-66BHB8.2208.3727.9177.7858.1930.0958.4618.3728.4928.4848.4520.032
3481-167BHB5.1925.0575.4380.0745.6165.6135.6140.002
3511419-01BHB2.4162.3602.4860.0802.6072.5682.5880.028
37AF-293BHB13.09013.51312.86412.8520.16213.64813.51313.57213.5780.048
3811419-04BHB6.5806.2425.7725.3716.0610.0066.4776.2426.4946.1906.3510.091
39RR7-84BHB10.25010.5099.9909.89110.3000.11310.60610.50910.65110.69510.6150.046
40RR7-91BHB4.2574.0174.6290.0164.7564.7354.7460.015
41RR7-90BHB9.54010.0429.1138.8369.4860.0659.70510.0429.8999.7779.8560.085
4282-49BHB8.7808.7988.4978.2968.9070.0798.9858.7989.1729.2009.0390.108
4416473-102BHB4.2234.1294.3730.0824.5534.5194.5360.024
4517139-69BHB5.6505.8475.5235.4825.6350.1215.8575.8475.8755.8595.8670.011
46TON 384bhb7.9208.0897.1576.8018.0110.0287.9048.0897.9348.2108.0340.082
4716468-26BHB6.4365.9135.7096.4100.0576.4366.4486.5986.4940.064
48AF-379BHB8.2008.3107.4737.1687.4760.0458.2628.3108.2027.6818.1140.168
49AF-386BHB7.2807.3246.8486.6507.0680.0687.4167.3247.4287.2887.3640.040
50AF-390BHB8.4708.5337.5997.2008.2040.0238.4288.5338.4518.4018.4530.033
5116468-78BHB1.3611.2801.4980.0101.5271.5311.5290.003
5230-16bhb5.6505.8305.3695.2985.5310.1045.8325.8305.7415.7355.7840.018
5316468-80bhb4.0433.7864.2970.0024.5624.3864.4740.124
5430-28BHB0.80.7930.8310.1010.8610.8610.8610.000
5516468-90BHB4.7434.7004.7710.1165.0524.9565.0040.068
56CHSS 608BHB6.7286.2376.0576.5930.0686.7286.7656.7986.7640.025
5711424-28BHB5.4705.3455.7270.0815.8995.9175.9080.013
5830-038BHB5.5705.6555.4405.4045.4660.1245.7785.6555.7825.6855.7250.037
5957-121BHB8.2208.3816.6416.146−0.0207.9448.3817.6227.9820.269
60AF-419BHB7.9308.4167.6557.5248.0170.0948.1608.4168.2148.3008.2720.157
6111424-070BHB5.9205.8965.4835.2805.7760.0525.9865.8965.9955.9415.9540.026
6216927-22bhb1.2021.1771.2510.0861.2941.2941.2940.000
63CHSS 663BHB7.6807.4467.1406.8227.4690.0387.7097.4467.8687.6667.6720.100
6411424-82BHB7.2807.5587.1227.0607.3380.1177.5407.5587.5847.6247.5760.021
6516940-45BHB3.2173.0213.5510.0073.6173.6273.6220.007
6616927-55BHB5.7705.1414.9024.5635.659−0.0095.6215.1415.5775.7675.5260.156
6716940-70bhb7.1606.8646.2165.8316.8100.0057.0436.8646.9986.9546.9650.044
6816940.72BHB4.4334.3564.5860.0934.7584.7474.7520.008
No (1)ID (2)Class (3)D1 (4)D2 (5)D3 (6)D4 (7)D5 (8)(BV)0 (9)d1 (10)d2 (11)d3 (12)d5 (13)D (14)σ (15)
024-32.5bhb8.2108.5677.7287.5348.0960.0768.3928.5678.3528.3588.4170.058
03AF-186BHB9.4509.6029.0818.9488.9720.1009.7429.6029.7239.2799.5910.119
04AF-189BHB7.5807.6066.8936.5836.7270.0377.6047.6067.6006.9037.4280.202
0554-111BHB5.9006.1375.6335.5445.7980.0976.0776.1376.0376.0056.0640.033
0654-122bhb7.3606.8136.2805.8466.486−0.0097.1706.8137.1456.6096.9340.156
0854-119BHB5.1665.1585.1340.1765.4435.3845.4130.042
0917444-25bhb0.6970.6820.7080.0840.7510.7320.7420.013
10AF-209BHB13.67013.82211.34310.6400.00513.44713.82212.77013.3460.377
11AF-210bhb8.7309.0938.4278.3990.1389.0809.0938.9279.0330.065
12AF-214BHB9.81010.2069.5149.5049.2090.16810.23110.20610.0319.64510.0280.156
13RR7-02BHB7.5307.9127.3267.3077.4020.1437.8377.9127.7537.7227.8060.050
1481-42BHB5.2905.3494.5984.3135.0800.0055.2045.3495.1775.1885.2300.046
15RR7-08BHB7.5107.8717.0936.9117.5590.0757.6737.8717.6697.8037.7540.058
16RR7-15BHB1.6061.6051.6080.1661.6941.6841.6890.007
1781-39BHB9.7109.3838.3617.8390.0049.5469.3839.4209.4500.060
18RR7-21bhb8.2108.5257.6377.3938.0270.0628.3418.5258.3088.2698.3610.065
1981-72bhb1.6781.6761.6330.1741.7681.7121.7400.040
21RR7-23BHB2.0571.9412.2350.0152.3002.2862.2930.010
22RR7-36BHB7.9408.4267.7727.7147.7660.1218.2328.4268.2678.0748.2500.083
2381-101bhb9.0509.3238.6528.5978.9800.1259.3909.3239.1949.3429.3120.048
2481-121BHB9.65011.3668.3937.9169.3040.0159.55511.3669.3839.5169.9550.545
25RR7-043BHB14.95014.22213.02812.2470.00914.74614.22214.62615.88014.8680.410
2628-45bhb5.0414.9675.1710.1005.3975.3595.3780.027
27RR7-053BHB7.3407.5937.1077.0507.2940.1197.6067.5937.5647.5817.5860.010
2881-162BHB11.58011.73510.61410.1760.04411.66111.73511.65611.6840.031
29RR7-058BHB8.4108.0517.5717.1748.2980.0238.3698.0518.4208.4978.3340.113
30RR7-60BHB5.5655.5305.6980.1255.9135.9285.9200.011
3182-04BHB10.39010.3459.3278.8630.02810.37010.34510.34010.3520.016
32RR7-64BHB1.1951.1691.2230.0831.2881.2641.2760.017
33RR7-66BHB8.2208.3727.9177.7858.1930.0958.4618.3728.4928.4848.4520.032
3481-167BHB5.1925.0575.4380.0745.6165.6135.6140.002
3511419-01BHB2.4162.3602.4860.0802.6072.5682.5880.028
37AF-293BHB13.09013.51312.86412.8520.16213.64813.51313.57213.5780.048
3811419-04BHB6.5806.2425.7725.3716.0610.0066.4776.2426.4946.1906.3510.091
39RR7-84BHB10.25010.5099.9909.89110.3000.11310.60610.50910.65110.69510.6150.046
40RR7-91BHB4.2574.0174.6290.0164.7564.7354.7460.015
41RR7-90BHB9.54010.0429.1138.8369.4860.0659.70510.0429.8999.7779.8560.085
4282-49BHB8.7808.7988.4978.2968.9070.0798.9858.7989.1729.2009.0390.108
4416473-102BHB4.2234.1294.3730.0824.5534.5194.5360.024
4517139-69BHB5.6505.8475.5235.4825.6350.1215.8575.8475.8755.8595.8670.011
46TON 384bhb7.9208.0897.1576.8018.0110.0287.9048.0897.9348.2108.0340.082
4716468-26BHB6.4365.9135.7096.4100.0576.4366.4486.5986.4940.064
48AF-379BHB8.2008.3107.4737.1687.4760.0458.2628.3108.2027.6818.1140.168
49AF-386BHB7.2807.3246.8486.6507.0680.0687.4167.3247.4287.2887.3640.040
50AF-390BHB8.4708.5337.5997.2008.2040.0238.4288.5338.4518.4018.4530.033
5116468-78BHB1.3611.2801.4980.0101.5271.5311.5290.003
5230-16bhb5.6505.8305.3695.2985.5310.1045.8325.8305.7415.7355.7840.018
5316468-80bhb4.0433.7864.2970.0024.5624.3864.4740.124
5430-28BHB0.80.7930.8310.1010.8610.8610.8610.000
5516468-90BHB4.7434.7004.7710.1165.0524.9565.0040.068
56CHSS 608BHB6.7286.2376.0576.5930.0686.7286.7656.7986.7640.025
5711424-28BHB5.4705.3455.7270.0815.8995.9175.9080.013
5830-038BHB5.5705.6555.4405.4045.4660.1245.7785.6555.7825.6855.7250.037
5957-121BHB8.2208.3816.6416.146−0.0207.9448.3817.6227.9820.269
60AF-419BHB7.9308.4167.6557.5248.0170.0948.1608.4168.2148.3008.2720.157
6111424-070BHB5.9205.8965.4835.2805.7760.0525.9865.8965.9955.9415.9540.026
6216927-22bhb1.2021.1771.2510.0861.2941.2941.2940.000
63CHSS 663BHB7.6807.4467.1406.8227.4690.0387.7097.4467.8687.6667.6720.100
6411424-82BHB7.2807.5587.1227.0607.3380.1177.5407.5587.5847.6247.5760.021
6516940-45BHB3.2173.0213.5510.0073.6173.6273.6220.007
6616927-55BHB5.7705.1414.9024.5635.659−0.0095.6215.1415.5775.7675.5260.156
6716940-70bhb7.1606.8646.2165.8316.8100.0057.0436.8646.9986.9546.9650.044
6816940.72BHB4.4334.3564.5860.0934.7584.7474.7520.008

4 THE RR LYRAE STARS

Most of the RR Lyrae stars in Table 5 are listed in the General Catalogue of Variable Stars (GCVS; Kholopov et al. 1985) and subsequent Name Lists and have the traditional identification by constellation; those without GCVS names are taken from Pier, Saha & Kinman (2003), Kinman, Saha & Pier (2004) and Kinman & Brown (2010). Seven of the stars in Table 5 have not been previously identified as RR Lyrae stars; their light curves and ephemerides are given in Appendix B. The mean K magnitudes (〈K〉) in Table 5 were derived from the 2MASS K magnitudes using the method given in Feast et al. (2008). We follow the methods given in Kinman et al. (2007b) to derive distances for the RR Lyraes. These are briefly restated in Appendix B where we give distances by three separate methods together with adopted distances (D) that are adjusted to be on the same scale as those adopted for the BHB stars (Appendix A).

4.1 Oosterhoff types of the RR Lyrae stars

The globular clusters with Oosterhoff type I RR Lyrae stars are known to have different kinematics (more retrograde orbits) than those containing Oosterhoff type II RR Lyrae stars (van den Bergh 1993; Lee & Carney 1999).2 The Oosterhoff type is determined from the period–amplitude diagram and this is shown in Fig. 2 for our RR Lyrae sample with b≤ 50°. In this figure, the loci for the Oosterhoff type I and II variables are shown by solid and dotted curves, respectively (these curves were taken from Cacciari et al. 2005). Most of our RR Lyrae stars lie close and to the left of the Oo I curve. Type ab stars that lie to the left of the Oo I curve may either be metal-rich or have smaller mean amplitudes because of the Blazhko effect. This suggests that the majority of our stars are Oo I variables. Four stars that are most likely to be Oo II variables are indicated by their numbers in Fig. 2. Stars 29, 30 and 46 are type c variables while 28 is type ab. These four stars have 〈Z〉= 3.9 kpc and 〈Rgal〉= 14.3 kpc compared with 〈Z〉= 6.6 kpc and 〈Rgal〉= 19.6 kpc for the whole sample. The preponderance of Oo I variables in our Anticentre fields and the smaller 〈Rgal〉 of our Oo II variables is to be expected if the Oo II variables are more concentrated towards the Galactic Centre than the Oo I variables (Miceli et al. 2008). The smaller 〈Z〉 of our Oo II variables also agrees with the preponderance of Oo I variables at high Z that was found by De Lee (2008). This suggests that the Oo II variables are not only more concentrated to the Galactic Centre but also form a more flattened system than the Oo I variables.

5 THE GALACTIC SPACE MOTIONS OF THE PROGRAM STARS

Tables 6 and 7 give the parallaxes, proper motions, radial velocities and the Galactic Space Motions (U,V,W) with respect to the local standard of rest (LSR) for the BHB and bhb stars and the RR Lyrae stars, respectively. The parallaxes are derived from the adopted distances (D) given in Tables A1 and B2 in Appendices A and B, respectively. The error in the parallax is derived from the rms scatter given in the last columns of Tables A1 and B2 and does not include any systematic error in the case of the BHB stars. In the case of the RR Lyrae stars, a small distance-dependent error has been added in quadrature to the rms scatter to derive the error of the parallax as explained in the Section B2. Heliocentric space–velocity components U, VandW were derived from the data listed in these tables. We used the program by Johnson & Soderblom (1987) (updated for the J2000 reference frame and further updated with the transformation matrix derived from the Vol. 1 of the Hipparcos data catalogue). This program gives a right-handed system for U, V and W in which these vectors are positive towards the directions of the Galactic Centre, but we here use the left-handed system so as to be comparable with most other recent work. These heliocentric velocities were then corrected to velocities relative to the LSR using the solar motion relative to the LSR formula km s−1 (Dehnen & Binney 1998).

Table 6

Parallaxes, proper motions, radial velocities, Galactic distances and Galactic space velocities for the BHB stars.

No (1)ID (2)Π (mas) (3)μα (mas yr−1) (4)μδ (mas yr−1) (5)Sμ (6)RV (km s−1) (7)SRV (8)D (kpc) (9)Z (kpc) (10)Rgal (kpc) (11)U (km s−1) (12)V (km s−1) (13)W (km s−1) (14)L (kpc km s−1) (15)Lz (kpc km s−1) (16)
2P 54-32.50.119 ± 0.002−1.3 ± 0.6−0.2 ± 1.61−017.4 ± 418.44.315.8+002 ± 015+007 ± 061−047 ± 024+1299 ± 264+3445 ± 929
3AF 1860.104 ± 0.0020.0 ± 3.0−10.0 ± 3.039.64.917.0
4AF 1890.135 ± 0.004+4.0 ± 3.0−5.0 ± 3.037.43.814.8
5P 54-1110.165 ± 0.003+4.1 ± 1.4−19.6 ± 2.41−054.5 ± 416.13.213.5−081 ± 022−570 ± 067−016 ± 036+1258 ± 255−4615 ± 884
6P 54-1220.144 ± 0.004+3.9 ± 0.5−7.1 ± 0.81−128.7 ± 416.93.714.3−168 ± 009−244 ± 027+011 ± 014+0808 ± 225−0348 ± 374
8P 54-1190.185 ± 0.003+1.7 ± 1.2−20.5 ± 0.91−194.2 ± 415.42.912.9−166 ± 017−513 ± 025−139 ± 026+1554 ± 297−3697 ± 320
9BS 17444-00251.348 ± 0.031+5.9 ± 0.6−27.0 ± 0.620.70.48.6
10AF 2090.075 ± 0.002+2.5 ± 3.0−4.0 ± 3.0313.37.520.5
11AF 2100.111 ± 0.002+9.0 ± 3.80.8 ± 1.31−084.9 ± 419.05.016.3−295 ± 091−015 ± 060+277 ± 135+5938 ± 2401+3204 ± 925
12AF 2140.100 ± 0.002−1.0 ± 2.0−1.0 ± 2.0310.05.517.2
13RR7 0020.128 ± 0.002−5.6 ± 2.2−8.9 ± 1.71+249.0 ± 417.84.315.1+322 ± 047−308 ± 066−081 ± 069+2655 ± 1139−1091 ± 957
14P 81-420.191 ± 0.003−3.0 ± 3.0−10.0 ± 3.035.23.012.7
15RR7 0080.129 ± 0.002−1.2 ± 0.7−13.6 ± 1.01−005.8 ± 417.84.415.0+054 ± 016−487 ± 038−085 ± 023+1905 ± 329−3838 ± 548
16RR7 0150.592 ± 0.009−20.2 ± 1.0−35.0 ± 0.72+238.4 ± 411.71.09.4+287 ± 006−263 ± 006−028 ± 007+0544 ± 075−0380 ± 066
17P 81-390.106 ± 0.002−2.0 ± 3.0−2.0 ± 3.039.45.516.6
18RR7 0210.120 ± 0.002−1.9 ± 0.9−8.3 ± 1.21+092.9 ± 418.34.815.6+129 ± 019−310 ± 046−037 ± 027+1287 ± 454−1318 ± 686
19P 81-720.575 ± 0.016−2.5 ± 0.9−2.8 ± 0.621.71.09.5
21RR7 0230.436 ± 0.007+7.7 ± 1.6−22.6 ± 0.72−059.3 ± 412.31.310.0−091 ± 010−248 ± 009+014 ± 014+0267 ± 140−0281 ± 087
22RR7 0360.121 ± 0.002−1.5 ± 3.0−7.5 ± 3.03+160.0 ± 4038.34.815.5+171 ± 074−284 ± 120+017 ± 099+1650 ± 1048−894 ± 1765
23P 81-1010.107 ± 0.002+1.0 ± 3.0−2.0 ± 3.039.35.616.5
24P 81-1210.100 ± 0.0060.0 ± 3.0−8.0 ± 3.0310.06.017.1
25RR7 0430.067 ± 0.002+1.0 ± 3.0−3.0 ± 3.0314.98.921.9
26P 28-0450.186 ± 0.003−5.0 ± 1.6−12.2 ± 0.81−356.6 ± 415.43.212.7−225 ± 025−257 ± 021−345 ± 034+3528 ± 498−0568 ± 265
27RR7 0530.132 ± 0.002−2.9 ± 2.0−16.0 ± 2.51−241.0 ± 527.64.614.8−111 ± 43−555 ± 090−266 ± 057+3626 ± 916−4700 ± 1258
28P 81-1620.086 ± 0.001+1.0 ± 3.0−1.0 ± 3.0311.67.118.6
29RR7 0580.120 ± 0.002+1.0 ± 0.9−7.1 ± 1.51+030.0 ± 528.35.015.5−006 ± 023−279 ± 060+027 ± 029+0709 ± 374−0866 ± 871
30RR7 0600.169 ± 0.003+0.3 ± 1.5−6.1 ± 1.11+063.2 ± 415.93.613.2+033 ± 025−168 ± 031+033 ± 032+0534 ± 314+0668 ± 391
31P 82-040.097 ± 0.001+2.0 ± 3.0−3.0 ± 3.0310.36.317.3
32RR7 0640.784 ± 0.016−5.1 ± 0.7−5.4 ± 0.72+034.8 ± 411.30.89.0+038 ± 004−024 ± 004+002 ± 004+0159 ± 007+1758 ± 038
33RR7 0660.118 ± 0.002−1.9 ± 2.1−8.5 ± 1.11−055.0 ± 528.55.215.6+003 ± 054−325 ± 044−114 ± 069+1960 ± 1028−1533 ± 645
34P 81-1670.178 ± 0.003−10.0 ± 3.0−2.0 ± 3.035.63.512.9
35P 11419-010.386 ± 0.007+6.1 ± 2.2−18.3 ± 0.91+287.1 ± 412.61.610.1+141 ± 017−277 ± 012+196 ± 021+1734 ± 238−0494 ± 124
37AF 2930.074 ± 0.001−5.0 ± 3.0−6.0 ± 3.0313.58.420.4
38P 11419-040.157 ± 0.003−0.8 ± 1.2−7.1 ± 0.31+170.7 ± 416.43.913.5+116 ± 023−233 ± 010+059 ± 028+0444 ± 319−0040 ± 139
39RR7 0840.094 ± 0.0010.0 ± 3.0−7.0 ± 3.03−065.0 ± 40310.66.717.6−057 ± 099−344 ± 151−050 ± 120+2533 ± 1425−2029 ± 2446
40RR7 0910.211 ± 0.003−0.7 ± 1.4−15.3 ± 0.91−041.0 ± 414.73.012.1−027 ± 020−335 ± 020−054 ± 024+0696 ± 256−1349 ± 235
41RR7 0900.101 ± 0.002+3.0 ± 3.0−4.0 ± 3.03−112.0 ± 4039.96.216.9−180 ± 095−185 ± 143+032 ± 111+2525 ± 1525+0502 ± 2242
42P 82-490.111 ± 0.002−2.0 ± 3.0−4.0 ± 3.039.05.816.0
44BS 16473-01020.220 ± 0.004+8.0 ± 3.0−12.0 ± 3.034.53.011.8
45BS 17139-690.170 ± 0.003−3.3 ± 0.7−9.2 ± 1.01+105.4 ± 415.93.912.9+096 ± 014−265 ± 027−027 ± 015+0740 ± 231−0446 ± 331
46TON 3840.124 ± 0.002−0.7 ± 1.3−3.6 ± 1.11−174.7 ± 418.15.314.9−140 ± 035−094 ± 044−146 ± 039+1415 ± 582+1510 ± 610
47BS 16468-00260.154 ± 0.003−1.8 ± 1.2−13.4 ± 1.01+211.2 ± 416.54.413.5+181 ± 024−412 ± 032+098 ± 027+1031 ± 231−2418 ± 418
48AF 3790.123 ± 0.003+3.5 ± 3.0−9.5 ± 3.038.15.515.0
49AF 3860.136 ± 0.002+2.2 ± 0.9−8.4 ± 1.21+009.6 ± 417.45.114.2−075 ± 022−286 ± 042+053 ± 023+1164 ± 379−0925 ± 557
50AF 3900.118 ± 0.002−2.0 ± 3.0−5.0 ± 3.038.55.915.3
51BS 16468-00780.654 ± 0.010−19.8 ± 0.6−29.1 ± 0.721.51.19.2
52P 30-160.173 ± 0.003+1.0 ± 3.0−4.7 ± 3.035.84.012.8
53BS 16468-00800.224 ± 0.007+1.4 ± 1.2−17.9 ± 1.61−001.7 ± 414.53.111.6−037 ± 017−372 ± 036+030 ± 018+0691 ± 184−1700 ± 405
54P 30-281.161 ± 0.017+9.5 ± 0.7−20.6 ± 0.720.90.68.6
55BS 16468-00900.200 ± 0.004−0.4 ± 1.6−8.0 ± 1.61+221.6 ± 45.03.512.1+145 ± 027−193 ± 039+155 ± 027+1287 ± 404+0345 ± 446
56CHSS 6080.148 ± 0.002−3.4 ± 1.2−12.5 ± 1.61+029.0 ± 46.84.713.6+023 ± 029−393 ± 051−104 ± 029+1742 ± 452−2152 ± 657
57P 11424-280.169 ± 0.003+1.3 ± 1.4−7.9 ± 1.61+011.6 ± 415.94.112.8−061 ± 030−217 ± 043+017 ± 030+0589 ± 363−0030 ± 527
58P 30-380.175 ± 0.003+2.0 ± 3.0−11.0 ± 3.03−179.3 ± 415.74.012.7−204 ± 059−269 ± 079−096 ± 059+0911 ± 568−0716 ± 946
5957-1210.125 ± 0.005−1.8 ± 1.2−8.6 ± 1.41+066.1 ± 528.05.714.7+066 ± 032−329 ± 056+005 ± 031+0912 ± 391−1451 ± 760
60AF 4190.121 ± 0.003+3.3 ± 1.0−6.2 ± 2.21+072.7 ± 418.35.814.9−098 ± 033−242 ± 086+116 ± 030+2213 ± 539−0479 ± 1186
61P 11424-700.168 ± 0.003+3.3 ± 1.2−13.8 ± 2.91+152.7 ± 416.04.312.8−035 ± 028−397 ± 080+148 ± 024+2057 ± 372−2154 ± 970
62BS 16927-220.773 ± 0.012+6.8 ± 0.8−29.8 ± 0.62+082.2 ± 411.31.08.9+003 ± 004−177 ± 005+098 ± 004+0872 ± 039+0378 ± 041
63CHSS 6630.130 ± 0.003−9.0 ± 2.0−11.0 ± 2.037.75.614.3
64P 11424-820.132 ± 0.002−6.6 ± 1.4−14.7 ± 1.31+030.7 ± 417.65.514.2+087 ± 038−533 ± 047−187 ± 035+3559 ± 605−3896 ± 620
65BS 16940-450.276 ± 0.004−3.7 ± 1.8−16.7 ± 1.51−101.0 ± 413.62.710.7−0063 ± 023−275 ± 025−116 ± 021+1050 ± 278−0594 ± 258
66BS 16927-550.181 ± 0.006−2.5 ± 0.9−12.3 ± 1.81+043.1 ± 415.54.112.4+050 ± 018−323 ± 047+015 ± 016+0513 ± 193−1204 ± 548
67BS 16940-00700.144 ± 0.002+2.6 ± 1.2−3.5 ± 1.31−082.3 ± 416.95.313.6−146 ± 030−091 ± 043−001 ± 025+1080 ± 374+1473 ± 538
68BS 16940-00720.210 ± 0.003+5.2 ± 1.2−11.5 ± 1.01−135.1 ± 414.83.611.6−225 ± 020−223 ± 024−029 ± 018+0525 ± 246−0175 ± 265
No (1)ID (2)Π (mas) (3)μα (mas yr−1) (4)μδ (mas yr−1) (5)Sμ (6)RV (km s−1) (7)SRV (8)D (kpc) (9)Z (kpc) (10)Rgal (kpc) (11)U (km s−1) (12)V (km s−1) (13)W (km s−1) (14)L (kpc km s−1) (15)Lz (kpc km s−1) (16)
2P 54-32.50.119 ± 0.002−1.3 ± 0.6−0.2 ± 1.61−017.4 ± 418.44.315.8+002 ± 015+007 ± 061−047 ± 024+1299 ± 264+3445 ± 929
3AF 1860.104 ± 0.0020.0 ± 3.0−10.0 ± 3.039.64.917.0
4AF 1890.135 ± 0.004+4.0 ± 3.0−5.0 ± 3.037.43.814.8
5P 54-1110.165 ± 0.003+4.1 ± 1.4−19.6 ± 2.41−054.5 ± 416.13.213.5−081 ± 022−570 ± 067−016 ± 036+1258 ± 255−4615 ± 884
6P 54-1220.144 ± 0.004+3.9 ± 0.5−7.1 ± 0.81−128.7 ± 416.93.714.3−168 ± 009−244 ± 027+011 ± 014+0808 ± 225−0348 ± 374
8P 54-1190.185 ± 0.003+1.7 ± 1.2−20.5 ± 0.91−194.2 ± 415.42.912.9−166 ± 017−513 ± 025−139 ± 026+1554 ± 297−3697 ± 320
9BS 17444-00251.348 ± 0.031+5.9 ± 0.6−27.0 ± 0.620.70.48.6
10AF 2090.075 ± 0.002+2.5 ± 3.0−4.0 ± 3.0313.37.520.5
11AF 2100.111 ± 0.002+9.0 ± 3.80.8 ± 1.31−084.9 ± 419.05.016.3−295 ± 091−015 ± 060+277 ± 135+5938 ± 2401+3204 ± 925
12AF 2140.100 ± 0.002−1.0 ± 2.0−1.0 ± 2.0310.05.517.2
13RR7 0020.128 ± 0.002−5.6 ± 2.2−8.9 ± 1.71+249.0 ± 417.84.315.1+322 ± 047−308 ± 066−081 ± 069+2655 ± 1139−1091 ± 957
14P 81-420.191 ± 0.003−3.0 ± 3.0−10.0 ± 3.035.23.012.7
15RR7 0080.129 ± 0.002−1.2 ± 0.7−13.6 ± 1.01−005.8 ± 417.84.415.0+054 ± 016−487 ± 038−085 ± 023+1905 ± 329−3838 ± 548
16RR7 0150.592 ± 0.009−20.2 ± 1.0−35.0 ± 0.72+238.4 ± 411.71.09.4+287 ± 006−263 ± 006−028 ± 007+0544 ± 075−0380 ± 066
17P 81-390.106 ± 0.002−2.0 ± 3.0−2.0 ± 3.039.45.516.6
18RR7 0210.120 ± 0.002−1.9 ± 0.9−8.3 ± 1.21+092.9 ± 418.34.815.6+129 ± 019−310 ± 046−037 ± 027+1287 ± 454−1318 ± 686
19P 81-720.575 ± 0.016−2.5 ± 0.9−2.8 ± 0.621.71.09.5
21RR7 0230.436 ± 0.007+7.7 ± 1.6−22.6 ± 0.72−059.3 ± 412.31.310.0−091 ± 010−248 ± 009+014 ± 014+0267 ± 140−0281 ± 087
22RR7 0360.121 ± 0.002−1.5 ± 3.0−7.5 ± 3.03+160.0 ± 4038.34.815.5+171 ± 074−284 ± 120+017 ± 099+1650 ± 1048−894 ± 1765
23P 81-1010.107 ± 0.002+1.0 ± 3.0−2.0 ± 3.039.35.616.5
24P 81-1210.100 ± 0.0060.0 ± 3.0−8.0 ± 3.0310.06.017.1
25RR7 0430.067 ± 0.002+1.0 ± 3.0−3.0 ± 3.0314.98.921.9
26P 28-0450.186 ± 0.003−5.0 ± 1.6−12.2 ± 0.81−356.6 ± 415.43.212.7−225 ± 025−257 ± 021−345 ± 034+3528 ± 498−0568 ± 265
27RR7 0530.132 ± 0.002−2.9 ± 2.0−16.0 ± 2.51−241.0 ± 527.64.614.8−111 ± 43−555 ± 090−266 ± 057+3626 ± 916−4700 ± 1258
28P 81-1620.086 ± 0.001+1.0 ± 3.0−1.0 ± 3.0311.67.118.6
29RR7 0580.120 ± 0.002+1.0 ± 0.9−7.1 ± 1.51+030.0 ± 528.35.015.5−006 ± 023−279 ± 060+027 ± 029+0709 ± 374−0866 ± 871
30RR7 0600.169 ± 0.003+0.3 ± 1.5−6.1 ± 1.11+063.2 ± 415.93.613.2+033 ± 025−168 ± 031+033 ± 032+0534 ± 314+0668 ± 391
31P 82-040.097 ± 0.001+2.0 ± 3.0−3.0 ± 3.0310.36.317.3
32RR7 0640.784 ± 0.016−5.1 ± 0.7−5.4 ± 0.72+034.8 ± 411.30.89.0+038 ± 004−024 ± 004+002 ± 004+0159 ± 007+1758 ± 038
33RR7 0660.118 ± 0.002−1.9 ± 2.1−8.5 ± 1.11−055.0 ± 528.55.215.6+003 ± 054−325 ± 044−114 ± 069+1960 ± 1028−1533 ± 645
34P 81-1670.178 ± 0.003−10.0 ± 3.0−2.0 ± 3.035.63.512.9
35P 11419-010.386 ± 0.007+6.1 ± 2.2−18.3 ± 0.91+287.1 ± 412.61.610.1+141 ± 017−277 ± 012+196 ± 021+1734 ± 238−0494 ± 124
37AF 2930.074 ± 0.001−5.0 ± 3.0−6.0 ± 3.0313.58.420.4
38P 11419-040.157 ± 0.003−0.8 ± 1.2−7.1 ± 0.31+170.7 ± 416.43.913.5+116 ± 023−233 ± 010+059 ± 028+0444 ± 319−0040 ± 139
39RR7 0840.094 ± 0.0010.0 ± 3.0−7.0 ± 3.03−065.0 ± 40310.66.717.6−057 ± 099−344 ± 151−050 ± 120+2533 ± 1425−2029 ± 2446
40RR7 0910.211 ± 0.003−0.7 ± 1.4−15.3 ± 0.91−041.0 ± 414.73.012.1−027 ± 020−335 ± 020−054 ± 024+0696 ± 256−1349 ± 235
41RR7 0900.101 ± 0.002+3.0 ± 3.0−4.0 ± 3.03−112.0 ± 4039.96.216.9−180 ± 095−185 ± 143+032 ± 111+2525 ± 1525+0502 ± 2242
42P 82-490.111 ± 0.002−2.0 ± 3.0−4.0 ± 3.039.05.816.0
44BS 16473-01020.220 ± 0.004+8.0 ± 3.0−12.0 ± 3.034.53.011.8
45BS 17139-690.170 ± 0.003−3.3 ± 0.7−9.2 ± 1.01+105.4 ± 415.93.912.9+096 ± 014−265 ± 027−027 ± 015+0740 ± 231−0446 ± 331
46TON 3840.124 ± 0.002−0.7 ± 1.3−3.6 ± 1.11−174.7 ± 418.15.314.9−140 ± 035−094 ± 044−146 ± 039+1415 ± 582+1510 ± 610
47BS 16468-00260.154 ± 0.003−1.8 ± 1.2−13.4 ± 1.01+211.2 ± 416.54.413.5+181 ± 024−412 ± 032+098 ± 027+1031 ± 231−2418 ± 418
48AF 3790.123 ± 0.003+3.5 ± 3.0−9.5 ± 3.038.15.515.0
49AF 3860.136 ± 0.002+2.2 ± 0.9−8.4 ± 1.21+009.6 ± 417.45.114.2−075 ± 022−286 ± 042+053 ± 023+1164 ± 379−0925 ± 557
50AF 3900.118 ± 0.002−2.0 ± 3.0−5.0 ± 3.038.55.915.3
51BS 16468-00780.654 ± 0.010−19.8 ± 0.6−29.1 ± 0.721.51.19.2
52P 30-160.173 ± 0.003+1.0 ± 3.0−4.7 ± 3.035.84.012.8
53BS 16468-00800.224 ± 0.007+1.4 ± 1.2−17.9 ± 1.61−001.7 ± 414.53.111.6−037 ± 017−372 ± 036+030 ± 018+0691 ± 184−1700 ± 405
54P 30-281.161 ± 0.017+9.5 ± 0.7−20.6 ± 0.720.90.68.6
55BS 16468-00900.200 ± 0.004−0.4 ± 1.6−8.0 ± 1.61+221.6 ± 45.03.512.1+145 ± 027−193 ± 039+155 ± 027+1287 ± 404+0345 ± 446
56CHSS 6080.148 ± 0.002−3.4 ± 1.2−12.5 ± 1.61+029.0 ± 46.84.713.6+023 ± 029−393 ± 051−104 ± 029+1742 ± 452−2152 ± 657
57P 11424-280.169 ± 0.003+1.3 ± 1.4−7.9 ± 1.61+011.6 ± 415.94.112.8−061 ± 030−217 ± 043+017 ± 030+0589 ± 363−0030 ± 527
58P 30-380.175 ± 0.003+2.0 ± 3.0−11.0 ± 3.03−179.3 ± 415.74.012.7−204 ± 059−269 ± 079−096 ± 059+0911 ± 568−0716 ± 946
5957-1210.125 ± 0.005−1.8 ± 1.2−8.6 ± 1.41+066.1 ± 528.05.714.7+066 ± 032−329 ± 056+005 ± 031+0912 ± 391−1451 ± 760
60AF 4190.121 ± 0.003+3.3 ± 1.0−6.2 ± 2.21+072.7 ± 418.35.814.9−098 ± 033−242 ± 086+116 ± 030+2213 ± 539−0479 ± 1186
61P 11424-700.168 ± 0.003+3.3 ± 1.2−13.8 ± 2.91+152.7 ± 416.04.312.8−035 ± 028−397 ± 080+148 ± 024+2057 ± 372−2154 ± 970
62BS 16927-220.773 ± 0.012+6.8 ± 0.8−29.8 ± 0.62+082.2 ± 411.31.08.9+003 ± 004−177 ± 005+098 ± 004+0872 ± 039+0378 ± 041
63CHSS 6630.130 ± 0.003−9.0 ± 2.0−11.0 ± 2.037.75.614.3
64P 11424-820.132 ± 0.002−6.6 ± 1.4−14.7 ± 1.31+030.7 ± 417.65.514.2+087 ± 038−533 ± 047−187 ± 035+3559 ± 605−3896 ± 620
65BS 16940-450.276 ± 0.004−3.7 ± 1.8−16.7 ± 1.51−101.0 ± 413.62.710.7−0063 ± 023−275 ± 025−116 ± 021+1050 ± 278−0594 ± 258
66BS 16927-550.181 ± 0.006−2.5 ± 0.9−12.3 ± 1.81+043.1 ± 415.54.112.4+050 ± 018−323 ± 047+015 ± 016+0513 ± 193−1204 ± 548
67BS 16940-00700.144 ± 0.002+2.6 ± 1.2−3.5 ± 1.31−082.3 ± 416.95.313.6−146 ± 030−091 ± 043−001 ± 025+1080 ± 374+1473 ± 538
68BS 16940-00720.210 ± 0.003+5.2 ± 1.2−11.5 ± 1.01−135.1 ± 414.83.611.6−225 ± 020−223 ± 024−029 ± 018+0525 ± 246−0175 ± 265

Notes.

(1) Sources of proper motions (Sμ): (1) GSCII-SDSS; (2) NOMAD; (3) SDSS (DR7).

(2) Sources of radial velocities (SRV): (1) Bologna (2) Kitt Peak 4-m (3) Kinman et al. (1994).

(3) Distances: (D) Heliocentric distance; (Z) height above plane; Rgal Galactocentric distance assuming solar Galactocentric distance = 8.0 kpc.

Table 6

Parallaxes, proper motions, radial velocities, Galactic distances and Galactic space velocities for the BHB stars.

No (1)ID (2)Π (mas) (3)μα (mas yr−1) (4)μδ (mas yr−1) (5)Sμ (6)RV (km s−1) (7)SRV (8)D (kpc) (9)Z (kpc) (10)Rgal (kpc) (11)U (km s−1) (12)V (km s−1) (13)W (km s−1) (14)L (kpc km s−1) (15)Lz (kpc km s−1) (16)
2P 54-32.50.119 ± 0.002−1.3 ± 0.6−0.2 ± 1.61−017.4 ± 418.44.315.8+002 ± 015+007 ± 061−047 ± 024+1299 ± 264+3445 ± 929
3AF 1860.104 ± 0.0020.0 ± 3.0−10.0 ± 3.039.64.917.0
4AF 1890.135 ± 0.004+4.0 ± 3.0−5.0 ± 3.037.43.814.8
5P 54-1110.165 ± 0.003+4.1 ± 1.4−19.6 ± 2.41−054.5 ± 416.13.213.5−081 ± 022−570 ± 067−016 ± 036+1258 ± 255−4615 ± 884
6P 54-1220.144 ± 0.004+3.9 ± 0.5−7.1 ± 0.81−128.7 ± 416.93.714.3−168 ± 009−244 ± 027+011 ± 014+0808 ± 225−0348 ± 374
8P 54-1190.185 ± 0.003+1.7 ± 1.2−20.5 ± 0.91−194.2 ± 415.42.912.9−166 ± 017−513 ± 025−139 ± 026+1554 ± 297−3697 ± 320
9BS 17444-00251.348 ± 0.031+5.9 ± 0.6−27.0 ± 0.620.70.48.6
10AF 2090.075 ± 0.002+2.5 ± 3.0−4.0 ± 3.0313.37.520.5
11AF 2100.111 ± 0.002+9.0 ± 3.80.8 ± 1.31−084.9 ± 419.05.016.3−295 ± 091−015 ± 060+277 ± 135+5938 ± 2401+3204 ± 925
12AF 2140.100 ± 0.002−1.0 ± 2.0−1.0 ± 2.0310.05.517.2
13RR7 0020.128 ± 0.002−5.6 ± 2.2−8.9 ± 1.71+249.0 ± 417.84.315.1+322 ± 047−308 ± 066−081 ± 069+2655 ± 1139−1091 ± 957
14P 81-420.191 ± 0.003−3.0 ± 3.0−10.0 ± 3.035.23.012.7
15RR7 0080.129 ± 0.002−1.2 ± 0.7−13.6 ± 1.01−005.8 ± 417.84.415.0+054 ± 016−487 ± 038−085 ± 023+1905 ± 329−3838 ± 548
16RR7 0150.592 ± 0.009−20.2 ± 1.0−35.0 ± 0.72+238.4 ± 411.71.09.4+287 ± 006−263 ± 006−028 ± 007+0544 ± 075−0380 ± 066
17P 81-390.106 ± 0.002−2.0 ± 3.0−2.0 ± 3.039.45.516.6
18RR7 0210.120 ± 0.002−1.9 ± 0.9−8.3 ± 1.21+092.9 ± 418.34.815.6+129 ± 019−310 ± 046−037 ± 027+1287 ± 454−1318 ± 686
19P 81-720.575 ± 0.016−2.5 ± 0.9−2.8 ± 0.621.71.09.5
21RR7 0230.436 ± 0.007+7.7 ± 1.6−22.6 ± 0.72−059.3 ± 412.31.310.0−091 ± 010−248 ± 009+014 ± 014+0267 ± 140−0281 ± 087
22RR7 0360.121 ± 0.002−1.5 ± 3.0−7.5 ± 3.03+160.0 ± 4038.34.815.5+171 ± 074−284 ± 120+017 ± 099+1650 ± 1048−894 ± 1765
23P 81-1010.107 ± 0.002+1.0 ± 3.0−2.0 ± 3.039.35.616.5
24P 81-1210.100 ± 0.0060.0 ± 3.0−8.0 ± 3.0310.06.017.1
25RR7 0430.067 ± 0.002+1.0 ± 3.0−3.0 ± 3.0314.98.921.9
26P 28-0450.186 ± 0.003−5.0 ± 1.6−12.2 ± 0.81−356.6 ± 415.43.212.7−225 ± 025−257 ± 021−345 ± 034+3528 ± 498−0568 ± 265
27RR7 0530.132 ± 0.002−2.9 ± 2.0−16.0 ± 2.51−241.0 ± 527.64.614.8−111 ± 43−555 ± 090−266 ± 057+3626 ± 916−4700 ± 1258
28P 81-1620.086 ± 0.001+1.0 ± 3.0−1.0 ± 3.0311.67.118.6
29RR7 0580.120 ± 0.002+1.0 ± 0.9−7.1 ± 1.51+030.0 ± 528.35.015.5−006 ± 023−279 ± 060+027 ± 029+0709 ± 374−0866 ± 871
30RR7 0600.169 ± 0.003+0.3 ± 1.5−6.1 ± 1.11+063.2 ± 415.93.613.2+033 ± 025−168 ± 031+033 ± 032+0534 ± 314+0668 ± 391
31P 82-040.097 ± 0.001+2.0 ± 3.0−3.0 ± 3.0310.36.317.3
32RR7 0640.784 ± 0.016−5.1 ± 0.7−5.4 ± 0.72+034.8 ± 411.30.89.0+038 ± 004−024 ± 004+002 ± 004+0159 ± 007+1758 ± 038
33RR7 0660.118 ± 0.002−1.9 ± 2.1−8.5 ± 1.11−055.0 ± 528.55.215.6+003 ± 054−325 ± 044−114 ± 069+1960 ± 1028−1533 ± 645
34P 81-1670.178 ± 0.003−10.0 ± 3.0−2.0 ± 3.035.63.512.9
35P 11419-010.386 ± 0.007+6.1 ± 2.2−18.3 ± 0.91+287.1 ± 412.61.610.1+141 ± 017−277 ± 012+196 ± 021+1734 ± 238−0494 ± 124
37AF 2930.074 ± 0.001−5.0 ± 3.0−6.0 ± 3.0313.58.420.4
38P 11419-040.157 ± 0.003−0.8 ± 1.2−7.1 ± 0.31+170.7 ± 416.43.913.5+116 ± 023−233 ± 010+059 ± 028+0444 ± 319−0040 ± 139
39RR7 0840.094 ± 0.0010.0 ± 3.0−7.0 ± 3.03−065.0 ± 40310.66.717.6−057 ± 099−344 ± 151−050 ± 120+2533 ± 1425−2029 ± 2446
40RR7 0910.211 ± 0.003−0.7 ± 1.4−15.3 ± 0.91−041.0 ± 414.73.012.1−027 ± 020−335 ± 020−054 ± 024+0696 ± 256−1349 ± 235
41RR7 0900.101 ± 0.002+3.0 ± 3.0−4.0 ± 3.03−112.0 ± 4039.96.216.9−180 ± 095−185 ± 143+032 ± 111+2525 ± 1525+0502 ± 2242
42P 82-490.111 ± 0.002−2.0 ± 3.0−4.0 ± 3.039.05.816.0
44BS 16473-01020.220 ± 0.004+8.0 ± 3.0−12.0 ± 3.034.53.011.8
45BS 17139-690.170 ± 0.003−3.3 ± 0.7−9.2 ± 1.01+105.4 ± 415.93.912.9+096 ± 014−265 ± 027−027 ± 015+0740 ± 231−0446 ± 331
46TON 3840.124 ± 0.002−0.7 ± 1.3−3.6 ± 1.11−174.7 ± 418.15.314.9−140 ± 035−094 ± 044−146 ± 039+1415 ± 582+1510 ± 610
47BS 16468-00260.154 ± 0.003−1.8 ± 1.2−13.4 ± 1.01+211.2 ± 416.54.413.5+181 ± 024−412 ± 032+098 ± 027+1031 ± 231−2418 ± 418
48AF 3790.123 ± 0.003+3.5 ± 3.0−9.5 ± 3.038.15.515.0
49AF 3860.136 ± 0.002+2.2 ± 0.9−8.4 ± 1.21+009.6 ± 417.45.114.2−075 ± 022−286 ± 042+053 ± 023+1164 ± 379−0925 ± 557
50AF 3900.118 ± 0.002−2.0 ± 3.0−5.0 ± 3.038.55.915.3
51BS 16468-00780.654 ± 0.010−19.8 ± 0.6−29.1 ± 0.721.51.19.2
52P 30-160.173 ± 0.003+1.0 ± 3.0−4.7 ± 3.035.84.012.8
53BS 16468-00800.224 ± 0.007+1.4 ± 1.2−17.9 ± 1.61−001.7 ± 414.53.111.6−037 ± 017−372 ± 036+030 ± 018+0691 ± 184−1700 ± 405
54P 30-281.161 ± 0.017+9.5 ± 0.7−20.6 ± 0.720.90.68.6
55BS 16468-00900.200 ± 0.004−0.4 ± 1.6−8.0 ± 1.61+221.6 ± 45.03.512.1+145 ± 027−193 ± 039+155 ± 027+1287 ± 404+0345 ± 446
56CHSS 6080.148 ± 0.002−3.4 ± 1.2−12.5 ± 1.61+029.0 ± 46.84.713.6+023 ± 029−393 ± 051−104 ± 029+1742 ± 452−2152 ± 657
57P 11424-280.169 ± 0.003+1.3 ± 1.4−7.9 ± 1.61+011.6 ± 415.94.112.8−061 ± 030−217 ± 043+017 ± 030+0589 ± 363−0030 ± 527
58P 30-380.175 ± 0.003+2.0 ± 3.0−11.0 ± 3.03−179.3 ± 415.74.012.7−204 ± 059−269 ± 079−096 ± 059+0911 ± 568−0716 ± 946
5957-1210.125 ± 0.005−1.8 ± 1.2−8.6 ± 1.41+066.1 ± 528.05.714.7+066 ± 032−329 ± 056+005 ± 031+0912 ± 391−1451 ± 760
60AF 4190.121 ± 0.003+3.3 ± 1.0−6.2 ± 2.21+072.7 ± 418.35.814.9−098 ± 033−242 ± 086+116 ± 030+2213 ± 539−0479 ± 1186
61P 11424-700.168 ± 0.003+3.3 ± 1.2−13.8 ± 2.91+152.7 ± 416.04.312.8−035 ± 028−397 ± 080+148 ± 024+2057 ± 372−2154 ± 970
62BS 16927-220.773 ± 0.012+6.8 ± 0.8−29.8 ± 0.62+082.2 ± 411.31.08.9+003 ± 004−177 ± 005+098 ± 004+0872 ± 039+0378 ± 041
63CHSS 6630.130 ± 0.003−9.0 ± 2.0−11.0 ± 2.037.75.614.3
64P 11424-820.132 ± 0.002−6.6 ± 1.4−14.7 ± 1.31+030.7 ± 417.65.514.2+087 ± 038−533 ± 047−187 ± 035+3559 ± 605−3896 ± 620
65BS 16940-450.276 ± 0.004−3.7 ± 1.8−16.7 ± 1.51−101.0 ± 413.62.710.7−0063 ± 023−275 ± 025−116 ± 021+1050 ± 278−0594 ± 258
66BS 16927-550.181 ± 0.006−2.5 ± 0.9−12.3 ± 1.81+043.1 ± 415.54.112.4+050 ± 018−323 ± 047+015 ± 016+0513 ± 193−1204 ± 548
67BS 16940-00700.144 ± 0.002+2.6 ± 1.2−3.5 ± 1.31−082.3 ± 416.95.313.6−146 ± 030−091 ± 043−001 ± 025+1080 ± 374+1473 ± 538
68BS 16940-00720.210 ± 0.003+5.2 ± 1.2−11.5 ± 1.01−135.1 ± 414.83.611.6−225 ± 020−223 ± 024−029 ± 018+0525 ± 246−0175 ± 265
No (1)ID (2)Π (mas) (3)μα (mas yr−1) (4)μδ (mas yr−1) (5)Sμ (6)RV (km s−1) (7)SRV (8)D (kpc) (9)Z (kpc) (10)Rgal (kpc) (11)U (km s−1) (12)V (km s−1) (13)W (km s−1) (14)L (kpc km s−1) (15)Lz (kpc km s−1) (16)
2P 54-32.50.119 ± 0.002−1.3 ± 0.6−0.2 ± 1.61−017.4 ± 418.44.315.8+002 ± 015+007 ± 061−047 ± 024+1299 ± 264+3445 ± 929
3AF 1860.104 ± 0.0020.0 ± 3.0−10.0 ± 3.039.64.917.0
4AF 1890.135 ± 0.004+4.0 ± 3.0−5.0 ± 3.037.43.814.8
5P 54-1110.165 ± 0.003+4.1 ± 1.4−19.6 ± 2.41−054.5 ± 416.13.213.5−081 ± 022−570 ± 067−016 ± 036+1258 ± 255−4615 ± 884
6P 54-1220.144 ± 0.004+3.9 ± 0.5−7.1 ± 0.81−128.7 ± 416.93.714.3−168 ± 009−244 ± 027+011 ± 014+0808 ± 225−0348 ± 374
8P 54-1190.185 ± 0.003+1.7 ± 1.2−20.5 ± 0.91−194.2 ± 415.42.912.9−166 ± 017−513 ± 025−139 ± 026+1554 ± 297−3697 ± 320
9BS 17444-00251.348 ± 0.031+5.9 ± 0.6−27.0 ± 0.620.70.48.6
10AF 2090.075 ± 0.002+2.5 ± 3.0−4.0 ± 3.0313.37.520.5
11AF 2100.111 ± 0.002+9.0 ± 3.80.8 ± 1.31−084.9 ± 419.05.016.3−295 ± 091−015 ± 060+277 ± 135+5938 ± 2401+3204 ± 925
12AF 2140.100 ± 0.002−1.0 ± 2.0−1.0 ± 2.0310.05.517.2
13RR7 0020.128 ± 0.002−5.6 ± 2.2−8.9 ± 1.71+249.0 ± 417.84.315.1+322 ± 047−308 ± 066−081 ± 069+2655 ± 1139−1091 ± 957
14P 81-420.191 ± 0.003−3.0 ± 3.0−10.0 ± 3.035.23.012.7
15RR7 0080.129 ± 0.002−1.2 ± 0.7−13.6 ± 1.01−005.8 ± 417.84.415.0+054 ± 016−487 ± 038−085 ± 023+1905 ± 329−3838 ± 548
16RR7 0150.592 ± 0.009−20.2 ± 1.0−35.0 ± 0.72+238.4 ± 411.71.09.4+287 ± 006−263 ± 006−028 ± 007+0544 ± 075−0380 ± 066
17P 81-390.106 ± 0.002−2.0 ± 3.0−2.0 ± 3.039.45.516.6
18RR7 0210.120 ± 0.002−1.9 ± 0.9−8.3 ± 1.21+092.9 ± 418.34.815.6+129 ± 019−310 ± 046−037 ± 027+1287 ± 454−1318 ± 686
19P 81-720.575 ± 0.016−2.5 ± 0.9−2.8 ± 0.621.71.09.5
21RR7 0230.436 ± 0.007+7.7 ± 1.6−22.6 ± 0.72−059.3 ± 412.31.310.0−091 ± 010−248 ± 009+014 ± 014+0267 ± 140−0281 ± 087
22RR7 0360.121 ± 0.002−1.5 ± 3.0−7.5 ± 3.03+160.0 ± 4038.34.815.5+171 ± 074−284 ± 120+017 ± 099+1650 ± 1048−894 ± 1765
23P 81-1010.107 ± 0.002+1.0 ± 3.0−2.0 ± 3.039.35.616.5
24P 81-1210.100 ± 0.0060.0 ± 3.0−8.0 ± 3.0310.06.017.1
25RR7 0430.067 ± 0.002+1.0 ± 3.0−3.0 ± 3.0314.98.921.9
26P 28-0450.186 ± 0.003−5.0 ± 1.6−12.2 ± 0.81−356.6 ± 415.43.212.7−225 ± 025−257 ± 021−345 ± 034+3528 ± 498−0568 ± 265
27RR7 0530.132 ± 0.002−2.9 ± 2.0−16.0 ± 2.51−241.0 ± 527.64.614.8−111 ± 43−555 ± 090−266 ± 057+3626 ± 916−4700 ± 1258
28P 81-1620.086 ± 0.001+1.0 ± 3.0−1.0 ± 3.0311.67.118.6
29RR7 0580.120 ± 0.002+1.0 ± 0.9−7.1 ± 1.51+030.0 ± 528.35.015.5−006 ± 023−279 ± 060+027 ± 029+0709 ± 374−0866 ± 871
30RR7 0600.169 ± 0.003+0.3 ± 1.5−6.1 ± 1.11+063.2 ± 415.93.613.2+033 ± 025−168 ± 031+033 ± 032+0534 ± 314+0668 ± 391
31P 82-040.097 ± 0.001+2.0 ± 3.0−3.0 ± 3.0310.36.317.3
32RR7 0640.784 ± 0.016−5.1 ± 0.7−5.4 ± 0.72+034.8 ± 411.30.89.0+038 ± 004−024 ± 004+002 ± 004+0159 ± 007+1758 ± 038
33RR7 0660.118 ± 0.002−1.9 ± 2.1−8.5 ± 1.11−055.0 ± 528.55.215.6+003 ± 054−325 ± 044−114 ± 069+1960 ± 1028−1533 ± 645
34P 81-1670.178 ± 0.003−10.0 ± 3.0−2.0 ± 3.035.63.512.9
35P 11419-010.386 ± 0.007+6.1 ± 2.2−18.3 ± 0.91+287.1 ± 412.61.610.1+141 ± 017−277 ± 012+196 ± 021+1734 ± 238−0494 ± 124
37AF 2930.074 ± 0.001−5.0 ± 3.0−6.0 ± 3.0313.58.420.4
38P 11419-040.157 ± 0.003−0.8 ± 1.2−7.1 ± 0.31+170.7 ± 416.43.913.5+116 ± 023−233 ± 010+059 ± 028+0444 ± 319−0040 ± 139
39RR7 0840.094 ± 0.0010.0 ± 3.0−7.0 ± 3.03−065.0 ± 40310.66.717.6−057 ± 099−344 ± 151−050 ± 120+2533 ± 1425−2029 ± 2446
40RR7 0910.211 ± 0.003−0.7 ± 1.4−15.3 ± 0.91−041.0 ± 414.73.012.1−027 ± 020−335 ± 020−054 ± 024+0696 ± 256−1349 ± 235
41RR7 0900.101 ± 0.002+3.0 ± 3.0−4.0 ± 3.03−112.0 ± 4039.96.216.9−180 ± 095−185 ± 143+032 ± 111+2525 ± 1525+0502 ± 2242
42P 82-490.111 ± 0.002−2.0 ± 3.0−4.0 ± 3.039.05.816.0
44BS 16473-01020.220 ± 0.004+8.0 ± 3.0−12.0 ± 3.034.53.011.8
45BS 17139-690.170 ± 0.003−3.3 ± 0.7−9.2 ± 1.01+105.4 ± 415.93.912.9+096 ± 014−265 ± 027−027 ± 015+0740 ± 231−0446 ± 331
46TON 3840.124 ± 0.002−0.7 ± 1.3−3.6 ± 1.11−174.7 ± 418.15.314.9−140 ± 035−094 ± 044−146 ± 039+1415 ± 582+1510 ± 610
47BS 16468-00260.154 ± 0.003−1.8 ± 1.2−13.4 ± 1.01+211.2 ± 416.54.413.5+181 ± 024−412 ± 032+098 ± 027+1031 ± 231−2418 ± 418
48AF 3790.123 ± 0.003+3.5 ± 3.0−9.5 ± 3.038.15.515.0
49AF 3860.136 ± 0.002+2.2 ± 0.9−8.4 ± 1.21+009.6 ± 417.45.114.2−075 ± 022−286 ± 042+053 ± 023+1164 ± 379−0925 ± 557
50AF 3900.118 ± 0.002−2.0 ± 3.0−5.0 ± 3.038.55.915.3
51BS 16468-00780.654 ± 0.010−19.8 ± 0.6−29.1 ± 0.721.51.19.2
52P 30-160.173 ± 0.003+1.0 ± 3.0−4.7 ± 3.035.84.012.8
53BS 16468-00800.224 ± 0.007+1.4 ± 1.2−17.9 ± 1.61−001.7 ± 414.53.111.6−037 ± 017−372 ± 036+030 ± 018+0691 ± 184−1700 ± 405
54P 30-281.161 ± 0.017+9.5 ± 0.7−20.6 ± 0.720.90.68.6
55BS 16468-00900.200 ± 0.004−0.4 ± 1.6−8.0 ± 1.61+221.6 ± 45.03.512.1+145 ± 027−193 ± 039+155 ± 027+1287 ± 404+0345 ± 446
56CHSS 6080.148 ± 0.002−3.4 ± 1.2−12.5 ± 1.61+029.0 ± 46.84.713.6+023 ± 029−393 ± 051−104 ± 029+1742 ± 452−2152 ± 657
57P 11424-280.169 ± 0.003+1.3 ± 1.4−7.9 ± 1.61+011.6 ± 415.94.112.8−061 ± 030−217 ± 043+017 ± 030+0589 ± 363−0030 ± 527
58P 30-380.175 ± 0.003+2.0 ± 3.0−11.0 ± 3.03−179.3 ± 415.74.012.7−204 ± 059−269 ± 079−096 ± 059+0911 ± 568−0716 ± 946
5957-1210.125 ± 0.005−1.8 ± 1.2−8.6 ± 1.41+066.1 ± 528.05.714.7+066 ± 032−329 ± 056+005 ± 031+0912 ± 391−1451 ± 760
60AF 4190.121 ± 0.003+3.3 ± 1.0−6.2 ± 2.21+072.7 ± 418.35.814.9−098 ± 033−242 ± 086+116 ± 030+2213 ± 539−0479 ± 1186
61P 11424-700.168 ± 0.003+3.3 ± 1.2−13.8 ± 2.91+152.7 ± 416.04.312.8−035 ± 028−397 ± 080+148 ± 024+2057 ± 372−2154 ± 970
62BS 16927-220.773 ± 0.012+6.8 ± 0.8−29.8 ± 0.62+082.2 ± 411.31.08.9+003 ± 004−177 ± 005+098 ± 004+0872 ± 039+0378 ± 041
63CHSS 6630.130 ± 0.003−9.0 ± 2.0−11.0 ± 2.037.75.614.3
64P 11424-820.132 ± 0.002−6.6 ± 1.4−14.7 ± 1.31+030.7 ± 417.65.514.2+087 ± 038−533 ± 047−187 ± 035+3559 ± 605−3896 ± 620
65BS 16940-450.276 ± 0.004−3.7 ± 1.8−16.7 ± 1.51−101.0 ± 413.62.710.7−0063 ± 023−275 ± 025−116 ± 021+1050 ± 278−0594 ± 258
66BS 16927-550.181 ± 0.006−2.5 ± 0.9−12.3 ± 1.81+043.1 ± 415.54.112.4+050 ± 018−323 ± 047+015 ± 016+0513 ± 193−1204 ± 548
67BS 16940-00700.144 ± 0.002+2.6 ± 1.2−3.5 ± 1.31−082.3 ± 416.95.313.6−146 ± 030−091 ± 043−001 ± 025+1080 ± 374+1473 ± 538
68BS 16940-00720.210 ± 0.003+5.2 ± 1.2−11.5 ± 1.01−135.1 ± 414.83.611.6−225 ± 020−223 ± 024−029 ± 018+0525 ± 246−0175 ± 265

Notes.

(1) Sources of proper motions (Sμ): (1) GSCII-SDSS; (2) NOMAD; (3) SDSS (DR7).

(2) Sources of radial velocities (SRV): (1) Bologna (2) Kitt Peak 4-m (3) Kinman et al. (1994).

(3) Distances: (D) Heliocentric distance; (Z) height above plane; Rgal Galactocentric distance assuming solar Galactocentric distance = 8.0 kpc.

Table 7

Parallaxes, proper motions, radial velocities, Galactic distances and Galactic space velocities for the RR Lyrae stars.

No (1)ID (2)Π (mas) (3)μα (mas yr−1) (4)μδ (mas yr−1) (5)Sμ (6)RV (km s−1) (7)SRV (8)D (kpc) (9)Z (kpc) (10)Rgal (kpc) (11)U (km s−1) (12)V (km s−1) (13)W (km s−1) (14)L (kpc km s−1) (15)Lz (kpc km s−1) 16
1V385 Aur0.044 ± 0.002−3.4 ± 3.3+0.6 ± 3.2122.78.830.3
2V386 Aur0.060 ± 0.003+2.1 ± 2.1−5.0 ± 1.71+116.0 ± 30.0316.76.724.2+091 ± 071−412 ± 135+106 ± 152+3982 ± 2474−4534 ± 3191
3V387 Aur0.057 ± 0.003+1.4 ± 1.2−0.6 ± 0.91−003.0 ± 30.0317.56.725.1−050 ± 046−074 ± 080+092 ± 087+3223 ± 1794+3486 ± 1954
4V389 Aur0.042 ± 0.002−1.2 ± 3.03.3 ± 0.8123.89.531.3
5VX Lyn0.053 ± 0.003−1.8 ± 1.2−4.1 ± 1.91+001.3 ± 15.0118.97.726.4+099 ± 049−296 ± 168−228 ± 103+6730 ± 2927−1919 ± 4259
6VY Lyn0.098 ± 0.003+2.2 ± 1.0−1.6 ± 2.11+114.5 ± 15.0110.24.217.8+061 ± 026−095 ± 101129 ± 050+2097 ± 931+2160 ± 1743
7VZ Lyn0.078 ± 0.004−1.9 ± 1.4−2.2 ± 2.21−182.1 ± 15.0112.85.420.3−109 ± 044−095 ± 129−200 ± 086+3604 ± 1684+2498 ± 2548
8WX Lyn0.056 ± 0.003−2.1 ± 1.1−3.3 ± 1.01+026.3 ± 15.0117.97.525.3+121 ± 042−214 ± 087−211 ± 086+6093 ± 2401+148 ± 2131
9AS Lyn0.030 ± 0.002+1.1 ± 0.7−3.1 ± 2.01−179.0 ± 46.0333.314.840.7−175 ± 078−502 ± 309−026 ± 119+7604 ± 3882−10531 ± 11848
10WZ Lyn0.180 ± 0.004+1.3 ± 0.6−13.0 ± 1.21+197.0 ± 20.045.62.413.2+193 ± 020−337 ± 031+043 ± 018+371 ± 107−1511 ± 411
11XZ Lyn0.072 ± 0.004+2.1 ± 1.6−1.5 ± 1.01−032.0 ± 20.0413.96.321.3−086 ± 051−125 ± 073+087 ± 096+2885 ± 1689+1926 ± 1482
12TW Lyn0.592 ± 0.011+0.6 ± 3.82.6 ± 2.91−039.0 ± 05.051.70.89.5−050 ± 015+021 ± 022−002 ± 027+307 ± 121+2294 ± 213
13YY Lyn0.133 ± 0.002+5.7 ± 0.7−5.9 ± 1.41−093.1 ± 15.017.53.315.1−165 ± 018−249 ± 049+092 ± 026+1932 ± 412−478 ± 723
14YZ Lyn0.047 ± 0.002−0.5 ± 0.7−3.7 ± 1.31+033.0 ± 40.0321.39.728.6+087 ± 051−349 ± 133−098 ± 070+4038 ± 2027−3482 ± 3594
15AU Lyn0.035 ± 0.002−0.8 ± 1.7−0.8 ± 2.11+096.0 ± 45.0328.613.435.8+139 ± 120−056 ± 283−060 ± 209+8978 ± 5151+5307 ± 9477
16ZZ Lyn0.089 ± 0.001−1.4 ± 1.4−1.4 ± 0.91+147.2 ± 15.0111.25.118.7+160 ± 034−054 ± 048−006 ± 061+1636 ± 775+3045 ± 872
17RW Lyn0.358 ± 0.016+7.3 ± 1.7−15.7 ± 2.51−149.8 ± 15.012.81.310.6−169 ± 016−216 ± 034−023 ± 022+197 ± 139+32 ± 354
18AV Lyn0.062 ± 0.003+0.5 ± 0.8−4.9 ± 1.11−126.0 ± 30.0316.17.823.4−081 ± 041−373 ± 084−87 ± 056+2114 ± 1030−3311 ± 1887
19AC Lyn0.071 ± 0.004+1.1 ± 0.9−5.9 ± 1.21−025.8 ± 15.0114.16.721.5−030 ± 031−395 ± 085−024 ± 054+1733 ± 766−3581 ± 1761
20AD Lyn0.088 ± 0.006+1.2 ± 1.1−8.0 ± 2.61+123.6 ± 15.0111.45.518.8+108 ± 033−435 ± 143+037 ± 058+1724 ± 805−3855 ± 2606
21AW Lyn0.080 ± 0.003−1.2 ± 1.1−4.2 ± 1.91+93.0 ± 30.0312.56.219.8+142 ± 044−217 ± 111−047 ± 060+2048 ± 1087−41 ± 2092
22AX Lyn0.026 ± 0.001+3.4 ± 1.4−2.0 ± 2.8138.518.945.6
23AY Lyn0.055 ± 0.003+1.2 ± 1.4−6.0 ± 1.2118.29.025.4
24P 54-130.130 ± 0.011+2.6 ± 1.0−10.1 ± 1.11+069.0 ± 10.027.73.915.2+044 ± 021−374 ± 051+061 ± 032+1046 ± 404−2273 ± 801
25AZ Lyn0.063 ± 0.003+3.3 ± 1.0−4.6 ± 1.51+087.0 ± 33.0315.98.123.1−012 ± 050−374 ± 114207 ± 070+4933 ± 1673−3328 ± 2492
26BB Lyn0.058 ± 0.003−0.6 ± 0.7−6.5 ± 1.41+058.0 ± 33.0317.28.924.4+136 ± 044−505 ± 118−083 ± 054+4183 ± 1429−6557 ± 2752
27BC Lyn0.053 ± 0.003+3.3 ± 1.2−3.1 ± 0.71+239.0 ± 45.0318.910.026.0+075 ± 068−308 ± 067+345 ± 091+7628 ± 2718−2159 ± 1627
28AF 1940.088 ± 0.002+0.5 ± 0.8−4.7 ± 1.3111.46.018.6
29AF 1970.105 ± 0.003−1.0 ± 3.9−8.2 ± 1.819.55.016.9
30DQ Lyn0.649 ± 0.043−1.9 ± 0.8−28.7 ± 1.02+053.0 ± 10.021.50.99.3+047 ± 009−202 ± 016−006 ± 008+106 ± 61+167 ± 144
31RR7 0320.163 ± 0.004−1.4 ± 1.1−11.9 ± 1.11+42.0 ± 10.026.13.613.5+069 ± 020−334 ± 033−039 ± 026+902 ± 330−1470 ± 432
32RR7 0340.112 ± 0.002+0.1 ± 0.7−2.9 ± 0.71+316.0 ± 10.028.95.216.1+249 ± 019−130 ± 030+178 ± 025+1519 ± 427+1474 ± 459
33P 81 1290.164 ± 0.003−0.5 ± 2.0−7.3 ± 0.91+003.0 ± 10.026.13.613.4+022 ± 035−204 ± 026−019 ± 047+648 ± 477+198 ± 336
34AF Lyn0.079 ± 0.002+1.2 ± 0.9−5.9 ± 1.01−121.7 ± 15.0112.77.519.7−132 ± 034−354 ± 061−036 ± 044+1462 ± 557−2444 ± 1102
35P 82 060.190 ± 0.003+4.0 ± 3.0−3.0 ± 3.03−211.0 ± 10.025.33.312.6−234 ± 047−84 ± 075−045 ± 059+919 ± 470+1684 ± 903
36AI Lyn0.049 ± 0.003−1.5 ± 1.2−0.2 ± 2.01..20.412.527.2
37AK Lyn0.084 ± 0.004+0.8 ± 1.2−8.7 ± 1.11+237.6 ± 15.0111.97.418.8+157 ± 044−495 ± 067148 ± 054+2656 ± 783−4686 ± 1203
38RR7-0790.260 ± 0.007+1.0 ± 1.1−13.5 ± 1.21−032.0 ± 10.023.82.411.3−047 ± 015−238 ± 023−021 ± 017+209 ± 137−212 ± 253
39RR7-0860.073 ± 0.005−0.7 ± 1.1−4.0 ± 0.7113.78.520.6
40AL Lyn0.066 ± 0.005+1.0 ± 0.8−5.6 ± 1.21−065.8 ± 15.0115.29.522.0−105 ± 038−398 ± 087−011 ± 046+2273 ± 932−3595 ± 1789
41AM Lyn0.045 ± 0.002+2.7 ± 1.0−3.7 ± 1.3122.213.928.9
42P 82-320.122 ± 0.004+5.9 ± 0.7−9.5 ± 1.61+060.0 ± 10.028.25.215.2−084 ± 019−377 ± 065+213 ± 022+3615 ± 414−2219 ± 931
43AF 3160.078 ± 0.002+1.9 ± 1.1−4.8 ± 1.5112.88.119.7
44RR7-1010.077 ± 0.003+0.5 ± 1.0−4.8 ± 1.2113.08.219.8
45TT Lyn1.408 ± 0.029−81.9 ± 1.5−41.8 ± 0.92−065.0 ± 05.050.70.58.5+132 ± 006−131 ± 004−240 ± 007+2108 ± 62+751 ± 36
46AF 4000.184 ± 0.011+0.2 ± 1.3−8.5 ± 1.415.43.812.4
47AF 4300.132 ± 0.003−1.4 ± 1.1−8.2 ± 0.817.65.514.3
48BS 16927-1230.289 ± 0.007−15.6 ± 2.4−4.6 ± 1.31+070.0 ± 10.023.52.610.6+223 ± 029−094 ± 022−100 ± 026+1654 ± 327+1295 ± 220
49X LMi0.437 ± 0.007+7.8 ± 1.3−17.3 ± 0.72−082 ± 20.062.31.89.5−152 ± 016−165 ± 008+004 ± 018+345 ± 144+507 ± 78
50AG UMa0.104 ± 0.002−1.6 ± 1.0−8.4 ± 1.919.68.415.2
51BK UMa0.348 ± 0.013−13.0 ± 1.5−16.9 ± 2.21+171.4 ± 05.072.92.59.7+174 ± 019−253 ± 031+120 ± 012+692 ± 159−341 ± 292
52AK UMa0.075 ± 0.002−3.7 ± 6.1−3.3 ± 6.3113.311.818.5
53AO UMa0.096 ± 0.003−2.8 ± 1.3−6.3 ± 1.3110.49.415.6
54BN UMa0.248 ± 0.006+12.5 ± 1.3−17.3 ± 1.71+019.0 ± 10.024.03.710.3−306 ± 024−223 ± 033+175 ± 014+2810 ± 223+45 ± 316
55CK UMa0.201 ± 0.003−3.8 ± 1.3+0.8 ± 2.41+016.0 ± 10.025.04.910.2+080 ± 037−018 ± 053+004 ± 013+1073 ± 285+1817 ± 479
No (1)ID (2)Π (mas) (3)μα (mas yr−1) (4)μδ (mas yr−1) (5)Sμ (6)RV (km s−1) (7)SRV (8)D (kpc) (9)Z (kpc) (10)Rgal (kpc) (11)U (km s−1) (12)V (km s−1) (13)W (km s−1) (14)L (kpc km s−1) (15)Lz (kpc km s−1) 16
1V385 Aur0.044 ± 0.002−3.4 ± 3.3+0.6 ± 3.2122.78.830.3
2V386 Aur0.060 ± 0.003+2.1 ± 2.1−5.0 ± 1.71+116.0 ± 30.0316.76.724.2+091 ± 071−412 ± 135+106 ± 152+3982 ± 2474−4534 ± 3191
3V387 Aur0.057 ± 0.003+1.4 ± 1.2−0.6 ± 0.91−003.0 ± 30.0317.56.725.1−050 ± 046−074 ± 080+092 ± 087+3223 ± 1794+3486 ± 1954
4V389 Aur0.042 ± 0.002−1.2 ± 3.03.3 ± 0.8123.89.531.3
5VX Lyn0.053 ± 0.003−1.8 ± 1.2−4.1 ± 1.91+001.3 ± 15.0118.97.726.4+099 ± 049−296 ± 168−228 ± 103+6730 ± 2927−1919 ± 4259
6VY Lyn0.098 ± 0.003+2.2 ± 1.0−1.6 ± 2.11+114.5 ± 15.0110.24.217.8+061 ± 026−095 ± 101129 ± 050+2097 ± 931+2160 ± 1743
7VZ Lyn0.078 ± 0.004−1.9 ± 1.4−2.2 ± 2.21−182.1 ± 15.0112.85.420.3−109 ± 044−095 ± 129−200 ± 086+3604 ± 1684+2498 ± 2548
8WX Lyn0.056 ± 0.003−2.1 ± 1.1−3.3 ± 1.01+026.3 ± 15.0117.97.525.3+121 ± 042−214 ± 087−211 ± 086+6093 ± 2401+148 ± 2131
9AS Lyn0.030 ± 0.002+1.1 ± 0.7−3.1 ± 2.01−179.0 ± 46.0333.314.840.7−175 ± 078−502 ± 309−026 ± 119+7604 ± 3882−10531 ± 11848
10WZ Lyn0.180 ± 0.004+1.3 ± 0.6−13.0 ± 1.21+197.0 ± 20.045.62.413.2+193 ± 020−337 ± 031+043 ± 018+371 ± 107−1511 ± 411
11XZ Lyn0.072 ± 0.004+2.1 ± 1.6−1.5 ± 1.01−032.0 ± 20.0413.96.321.3−086 ± 051−125 ± 073+087 ± 096+2885 ± 1689+1926 ± 1482
12TW Lyn0.592 ± 0.011+0.6 ± 3.82.6 ± 2.91−039.0 ± 05.051.70.89.5−050 ± 015+021 ± 022−002 ± 027+307 ± 121+2294 ± 213
13YY Lyn0.133 ± 0.002+5.7 ± 0.7−5.9 ± 1.41−093.1 ± 15.017.53.315.1−165 ± 018−249 ± 049+092 ± 026+1932 ± 412−478 ± 723
14YZ Lyn0.047 ± 0.002−0.5 ± 0.7−3.7 ± 1.31+033.0 ± 40.0321.39.728.6+087 ± 051−349 ± 133−098 ± 070+4038 ± 2027−3482 ± 3594
15AU Lyn0.035 ± 0.002−0.8 ± 1.7−0.8 ± 2.11+096.0 ± 45.0328.613.435.8+139 ± 120−056 ± 283−060 ± 209+8978 ± 5151+5307 ± 9477
16ZZ Lyn0.089 ± 0.001−1.4 ± 1.4−1.4 ± 0.91+147.2 ± 15.0111.25.118.7+160 ± 034−054 ± 048−006 ± 061+1636 ± 775+3045 ± 872
17RW Lyn0.358 ± 0.016+7.3 ± 1.7−15.7 ± 2.51−149.8 ± 15.012.81.310.6−169 ± 016−216 ± 034−023 ± 022+197 ± 139+32 ± 354
18AV Lyn0.062 ± 0.003+0.5 ± 0.8−4.9 ± 1.11−126.0 ± 30.0316.17.823.4−081 ± 041−373 ± 084−87 ± 056+2114 ± 1030−3311 ± 1887
19AC Lyn0.071 ± 0.004+1.1 ± 0.9−5.9 ± 1.21−025.8 ± 15.0114.16.721.5−030 ± 031−395 ± 085−024 ± 054+1733 ± 766−3581 ± 1761
20AD Lyn0.088 ± 0.006+1.2 ± 1.1−8.0 ± 2.61+123.6 ± 15.0111.45.518.8+108 ± 033−435 ± 143+037 ± 058+1724 ± 805−3855 ± 2606
21AW Lyn0.080 ± 0.003−1.2 ± 1.1−4.2 ± 1.91+93.0 ± 30.0312.56.219.8+142 ± 044−217 ± 111−047 ± 060+2048 ± 1087−41 ± 2092
22AX Lyn0.026 ± 0.001+3.4 ± 1.4−2.0 ± 2.8138.518.945.6
23AY Lyn0.055 ± 0.003+1.2 ± 1.4−6.0 ± 1.2118.29.025.4
24P 54-130.130 ± 0.011+2.6 ± 1.0−10.1 ± 1.11+069.0 ± 10.027.73.915.2+044 ± 021−374 ± 051+061 ± 032+1046 ± 404−2273 ± 801
25AZ Lyn0.063 ± 0.003+3.3 ± 1.0−4.6 ± 1.51+087.0 ± 33.0315.98.123.1−012 ± 050−374 ± 114207 ± 070+4933 ± 1673−3328 ± 2492
26BB Lyn0.058 ± 0.003−0.6 ± 0.7−6.5 ± 1.41+058.0 ± 33.0317.28.924.4+136 ± 044−505 ± 118−083 ± 054+4183 ± 1429−6557 ± 2752
27BC Lyn0.053 ± 0.003+3.3 ± 1.2−3.1 ± 0.71+239.0 ± 45.0318.910.026.0+075 ± 068−308 ± 067+345 ± 091+7628 ± 2718−2159 ± 1627
28AF 1940.088 ± 0.002+0.5 ± 0.8−4.7 ± 1.3111.46.018.6
29AF 1970.105 ± 0.003−1.0 ± 3.9−8.2 ± 1.819.55.016.9
30DQ Lyn0.649 ± 0.043−1.9 ± 0.8−28.7 ± 1.02+053.0 ± 10.021.50.99.3+047 ± 009−202 ± 016−006 ± 008+106 ± 61+167 ± 144
31RR7 0320.163 ± 0.004−1.4 ± 1.1−11.9 ± 1.11+42.0 ± 10.026.13.613.5+069 ± 020−334 ± 033−039 ± 026+902 ± 330−1470 ± 432
32RR7 0340.112 ± 0.002+0.1 ± 0.7−2.9 ± 0.71+316.0 ± 10.028.95.216.1+249 ± 019−130 ± 030+178 ± 025+1519 ± 427+1474 ± 459
33P 81 1290.164 ± 0.003−0.5 ± 2.0−7.3 ± 0.91+003.0 ± 10.026.13.613.4+022 ± 035−204 ± 026−019 ± 047+648 ± 477+198 ± 336
34AF Lyn0.079 ± 0.002+1.2 ± 0.9−5.9 ± 1.01−121.7 ± 15.0112.77.519.7−132 ± 034−354 ± 061−036 ± 044+1462 ± 557−2444 ± 1102
35P 82 060.190 ± 0.003+4.0 ± 3.0−3.0 ± 3.03−211.0 ± 10.025.33.312.6−234 ± 047−84 ± 075−045 ± 059+919 ± 470+1684 ± 903
36AI Lyn0.049 ± 0.003−1.5 ± 1.2−0.2 ± 2.01..20.412.527.2
37AK Lyn0.084 ± 0.004+0.8 ± 1.2−8.7 ± 1.11+237.6 ± 15.0111.97.418.8+157 ± 044−495 ± 067148 ± 054+2656 ± 783−4686 ± 1203
38RR7-0790.260 ± 0.007+1.0 ± 1.1−13.5 ± 1.21−032.0 ± 10.023.82.411.3−047 ± 015−238 ± 023−021 ± 017+209 ± 137−212 ± 253
39RR7-0860.073 ± 0.005−0.7 ± 1.1−4.0 ± 0.7113.78.520.6
40AL Lyn0.066 ± 0.005+1.0 ± 0.8−5.6 ± 1.21−065.8 ± 15.0115.29.522.0−105 ± 038−398 ± 087−011 ± 046+2273 ± 932−3595 ± 1789
41AM Lyn0.045 ± 0.002+2.7 ± 1.0−3.7 ± 1.3122.213.928.9
42P 82-320.122 ± 0.004+5.9 ± 0.7−9.5 ± 1.61+060.0 ± 10.028.25.215.2−084 ± 019−377 ± 065+213 ± 022+3615 ± 414−2219 ± 931
43AF 3160.078 ± 0.002+1.9 ± 1.1−4.8 ± 1.5112.88.119.7
44RR7-1010.077 ± 0.003+0.5 ± 1.0−4.8 ± 1.2113.08.219.8
45TT Lyn1.408 ± 0.029−81.9 ± 1.5−41.8 ± 0.92−065.0 ± 05.050.70.58.5+132 ± 006−131 ± 004−240 ± 007+2108 ± 62+751 ± 36
46AF 4000.184 ± 0.011+0.2 ± 1.3−8.5 ± 1.415.43.812.4
47AF 4300.132 ± 0.003−1.4 ± 1.1−8.2 ± 0.817.65.514.3
48BS 16927-1230.289 ± 0.007−15.6 ± 2.4−4.6 ± 1.31+070.0 ± 10.023.52.610.6+223 ± 029−094 ± 022−100 ± 026+1654 ± 327+1295 ± 220
49X LMi0.437 ± 0.007+7.8 ± 1.3−17.3 ± 0.72−082 ± 20.062.31.89.5−152 ± 016−165 ± 008+004 ± 018+345 ± 144+507 ± 78
50AG UMa0.104 ± 0.002−1.6 ± 1.0−8.4 ± 1.919.68.415.2
51BK UMa0.348 ± 0.013−13.0 ± 1.5−16.9 ± 2.21+171.4 ± 05.072.92.59.7+174 ± 019−253 ± 031+120 ± 012+692 ± 159−341 ± 292
52AK UMa0.075 ± 0.002−3.7 ± 6.1−3.3 ± 6.3113.311.818.5
53AO UMa0.096 ± 0.003−2.8 ± 1.3−6.3 ± 1.3110.49.415.6
54BN UMa0.248 ± 0.006+12.5 ± 1.3−17.3 ± 1.71+019.0 ± 10.024.03.710.3−306 ± 024−223 ± 033+175 ± 014+2810 ± 223+45 ± 316
55CK UMa0.201 ± 0.003−3.8 ± 1.3+0.8 ± 2.41+016.0 ± 10.025.04.910.2+080 ± 037−018 ± 053+004 ± 013+1073 ± 285+1817 ± 479

Notes.

(1) Sources of proper motions (Sμ): (1) GSCII-SDSS; (2) NOMAD; (3) SDSS (DR7).

(2) Sources of Radial Velocities (SRV): (1) Pier et al. (2003); (2) Kinman & Brown (2010); (3) Saha & Oke (1984); (4) Pier (unpublished); (5) Fernley & Barnes (1997); (6) Layden (1994); (7) Jeffery et al. (2007).

(3) Distances: (D) Heliocentric distance; (Z) height above plane; Rgal Galactocentric distance assuming solar Galactocentric distance = 8.0 kpc.

Table 7

Parallaxes, proper motions, radial velocities, Galactic distances and Galactic space velocities for the RR Lyrae stars.

No (1)ID (2)Π (mas) (3)μα (mas yr−1) (4)μδ (mas yr−1) (5)Sμ (6)RV (km s−1) (7)SRV (8)D (kpc) (9)Z (kpc) (10)Rgal (kpc) (11)U (km s−1) (12)V (km s−1) (13)W (km s−1) (14)L (kpc km s−1) (15)Lz (kpc km s−1) 16
1V385 Aur0.044 ± 0.002−3.4 ± 3.3+0.6 ± 3.2122.78.830.3
2V386 Aur0.060 ± 0.003+2.1 ± 2.1−5.0 ± 1.71+116.0 ± 30.0316.76.724.2+091 ± 071−412 ± 135+106 ± 152+3982 ± 2474−4534 ± 3191
3V387 Aur0.057 ± 0.003+1.4 ± 1.2−0.6 ± 0.91−003.0 ± 30.0317.56.725.1−050 ± 046−074 ± 080+092 ± 087+3223 ± 1794+3486 ± 1954
4V389 Aur0.042 ± 0.002−1.2 ± 3.03.3 ± 0.8123.89.531.3
5VX Lyn0.053 ± 0.003−1.8 ± 1.2−4.1 ± 1.91+001.3 ± 15.0118.97.726.4+099 ± 049−296 ± 168−228 ± 103+6730 ± 2927−1919 ± 4259
6VY Lyn0.098 ± 0.003+2.2 ± 1.0−1.6 ± 2.11+114.5 ± 15.0110.24.217.8+061 ± 026−095 ± 101129 ± 050+2097 ± 931+2160 ± 1743
7VZ Lyn0.078 ± 0.004−1.9 ± 1.4−2.2 ± 2.21−182.1 ± 15.0112.85.420.3−109 ± 044−095 ± 129−200 ± 086+3604 ± 1684+2498 ± 2548
8WX Lyn0.056 ± 0.003−2.1 ± 1.1−3.3 ± 1.01+026.3 ± 15.0117.97.525.3+121 ± 042−214 ± 087−211 ± 086+6093 ± 2401+148 ± 2131
9AS Lyn0.030 ± 0.002+1.1 ± 0.7−3.1 ± 2.01−179.0 ± 46.0333.314.840.7−175 ± 078−502 ± 309−026 ± 119+7604 ± 3882−10531 ± 11848
10WZ Lyn0.180 ± 0.004+1.3 ± 0.6−13.0 ± 1.21+197.0 ± 20.045.62.413.2+193 ± 020−337 ± 031+043 ± 018+371 ± 107−1511 ± 411
11XZ Lyn0.072 ± 0.004+2.1 ± 1.6−1.5 ± 1.01−032.0 ± 20.0413.96.321.3−086 ± 051−125 ± 073+087 ± 096+2885 ± 1689+1926 ± 1482
12TW Lyn0.592 ± 0.011+0.6 ± 3.82.6 ± 2.91−039.0 ± 05.051.70.89.5−050 ± 015+021 ± 022−002 ± 027+307 ± 121+2294 ± 213
13YY Lyn0.133 ± 0.002+5.7 ± 0.7−5.9 ± 1.41−093.1 ± 15.017.53.315.1−165 ± 018−249 ± 049+092 ± 026+1932 ± 412−478 ± 723
14YZ Lyn0.047 ± 0.002−0.5 ± 0.7−3.7 ± 1.31+033.0 ± 40.0321.39.728.6+087 ± 051−349 ± 133−098 ± 070+4038 ± 2027−3482 ± 3594
15AU Lyn0.035 ± 0.002−0.8 ± 1.7−0.8 ± 2.11+096.0 ± 45.0328.613.435.8+139 ± 120−056 ± 283−060 ± 209+8978 ± 5151+5307 ± 9477
16ZZ Lyn0.089 ± 0.001−1.4 ± 1.4−1.4 ± 0.91+147.2 ± 15.0111.25.118.7+160 ± 034−054 ± 048−006 ± 061+1636 ± 775+3045 ± 872
17RW Lyn0.358 ± 0.016+7.3 ± 1.7−15.7 ± 2.51−149.8 ± 15.012.81.310.6−169 ± 016−216 ± 034−023 ± 022+197 ± 139+32 ± 354
18AV Lyn0.062 ± 0.003+0.5 ± 0.8−4.9 ± 1.11−126.0 ± 30.0316.17.823.4−081 ± 041−373 ± 084−87 ± 056+2114 ± 1030−3311 ± 1887
19AC Lyn0.071 ± 0.004+1.1 ± 0.9−5.9 ± 1.21−025.8 ± 15.0114.16.721.5−030 ± 031−395 ± 085−024 ± 054+1733 ± 766−3581 ± 1761
20AD Lyn0.088 ± 0.006+1.2 ± 1.1−8.0 ± 2.61+123.6 ± 15.0111.45.518.8+108 ± 033−435 ± 143+037 ± 058+1724 ± 805−3855 ± 2606
21AW Lyn0.080 ± 0.003−1.2 ± 1.1−4.2 ± 1.91+93.0 ± 30.0312.56.219.8+142 ± 044−217 ± 111−047 ± 060+2048 ± 1087−41 ± 2092
22AX Lyn0.026 ± 0.001+3.4 ± 1.4−2.0 ± 2.8138.518.945.6
23AY Lyn0.055 ± 0.003+1.2 ± 1.4−6.0 ± 1.2118.29.025.4
24P 54-130.130 ± 0.011+2.6 ± 1.0−10.1 ± 1.11+069.0 ± 10.027.73.915.2+044 ± 021−374 ± 051+061 ± 032+1046 ± 404−2273 ± 801
25AZ Lyn0.063 ± 0.003+3.3 ± 1.0−4.6 ± 1.51+087.0 ± 33.0315.98.123.1−012 ± 050−374 ± 114207 ± 070+4933 ± 1673−3328 ± 2492
26BB Lyn0.058 ± 0.003−0.6 ± 0.7−6.5 ± 1.41+058.0 ± 33.0317.28.924.4+136 ± 044−505 ± 118−083 ± 054+4183 ± 1429−6557 ± 2752
27BC Lyn0.053 ± 0.003+3.3 ± 1.2−3.1 ± 0.71+239.0 ± 45.0318.910.026.0+075 ± 068−308 ± 067+345 ± 091+7628 ± 2718−2159 ± 1627
28AF 1940.088 ± 0.002+0.5 ± 0.8−4.7 ± 1.3111.46.018.6
29AF 1970.105 ± 0.003−1.0 ± 3.9−8.2 ± 1.819.55.016.9
30DQ Lyn0.649 ± 0.043−1.9 ± 0.8−28.7 ± 1.02+053.0 ± 10.021.50.99.3+047 ± 009−202 ± 016−006 ± 008+106 ± 61+167 ± 144
31RR7 0320.163 ± 0.004−1.4 ± 1.1−11.9 ± 1.11+42.0 ± 10.026.13.613.5+069 ± 020−334 ± 033−039 ± 026+902 ± 330−1470 ± 432
32RR7 0340.112 ± 0.002+0.1 ± 0.7−2.9 ± 0.71+316.0 ± 10.028.95.216.1+249 ± 019−130 ± 030+178 ± 025+1519 ± 427+1474 ± 459
33P 81 1290.164 ± 0.003−0.5 ± 2.0−7.3 ± 0.91+003.0 ± 10.026.13.613.4+022 ± 035−204 ± 026−019 ± 047+648 ± 477+198 ± 336
34AF Lyn0.079 ± 0.002+1.2 ± 0.9−5.9 ± 1.01−121.7 ± 15.0112.77.519.7−132 ± 034−354 ± 061−036 ± 044+1462 ± 557−2444 ± 1102
35P 82 060.190 ± 0.003+4.0 ± 3.0−3.0 ± 3.03−211.0 ± 10.025.33.312.6−234 ± 047−84 ± 075−045 ± 059+919 ± 470+1684 ± 903
36AI Lyn0.049 ± 0.003−1.5 ± 1.2−0.2 ± 2.01..20.412.527.2
37AK Lyn0.084 ± 0.004+0.8 ± 1.2−8.7 ± 1.11+237.6 ± 15.0111.97.418.8+157 ± 044−495 ± 067148 ± 054+2656 ± 783−4686 ± 1203
38RR7-0790.260 ± 0.007+1.0 ± 1.1−13.5 ± 1.21−032.0 ± 10.023.82.411.3−047 ± 015−238 ± 023−021 ± 017+209 ± 137−212 ± 253
39RR7-0860.073 ± 0.005−0.7 ± 1.1−4.0 ± 0.7113.78.520.6
40AL Lyn0.066 ± 0.005+1.0 ± 0.8−5.6 ± 1.21−065.8 ± 15.0115.29.522.0−105 ± 038−398 ± 087−011 ± 046+2273 ± 932−3595 ± 1789
41AM Lyn0.045 ± 0.002+2.7 ± 1.0−3.7 ± 1.3122.213.928.9
42P 82-320.122 ± 0.004+5.9 ± 0.7−9.5 ± 1.61+060.0 ± 10.028.25.215.2−084 ± 019−377 ± 065+213 ± 022+3615 ± 414−2219 ± 931
43AF 3160.078 ± 0.002+1.9 ± 1.1−4.8 ± 1.5112.88.119.7
44RR7-1010.077 ± 0.003+0.5 ± 1.0−4.8 ± 1.2113.08.219.8
45TT Lyn1.408 ± 0.029−81.9 ± 1.5−41.8 ± 0.92−065.0 ± 05.050.70.58.5+132 ± 006−131 ± 004−240 ± 007+2108 ± 62+751 ± 36
46AF 4000.184 ± 0.011+0.2 ± 1.3−8.5 ± 1.415.43.812.4
47AF 4300.132 ± 0.003−1.4 ± 1.1−8.2 ± 0.817.65.514.3
48BS 16927-1230.289 ± 0.007−15.6 ± 2.4−4.6 ± 1.31+070.0 ± 10.023.52.610.6+223 ± 029−094 ± 022−100 ± 026+1654 ± 327+1295 ± 220
49X LMi0.437 ± 0.007+7.8 ± 1.3−17.3 ± 0.72−082 ± 20.062.31.89.5−152 ± 016−165 ± 008+004 ± 018+345 ± 144+507 ± 78
50AG UMa0.104 ± 0.002−1.6 ± 1.0−8.4 ± 1.919.68.415.2
51BK UMa0.348 ± 0.013−13.0 ± 1.5−16.9 ± 2.21+171.4 ± 05.072.92.59.7+174 ± 019−253 ± 031+120 ± 012+692 ± 159−341 ± 292
52AK UMa0.075 ± 0.002−3.7 ± 6.1−3.3 ± 6.3113.311.818.5
53AO UMa0.096 ± 0.003−2.8 ± 1.3−6.3 ± 1.3110.49.415.6
54BN UMa0.248 ± 0.006+12.5 ± 1.3−17.3 ± 1.71+019.0 ± 10.024.03.710.3−306 ± 024−223 ± 033+175 ± 014+2810 ± 223+45 ± 316
55CK UMa0.201 ± 0.003−3.8 ± 1.3+0.8 ± 2.41+016.0 ± 10.025.04.910.2+080 ± 037−018 ± 053+004 ± 013+1073 ± 285+1817 ± 479
No (1)ID (2)Π (mas) (3)μα (mas yr−1) (4)μδ (mas yr−1) (5)Sμ (6)RV (km s−1) (7)SRV (8)D (kpc) (9)Z (kpc) (10)Rgal (kpc) (11)U (km s−1) (12)V (km s−1) (13)W (km s−1) (14)L (kpc km s−1) (15)Lz (kpc km s−1) 16
1V385 Aur0.044 ± 0.002−3.4 ± 3.3+0.6 ± 3.2122.78.830.3
2V386 Aur0.060 ± 0.003+2.1 ± 2.1−5.0 ± 1.71+116.0 ± 30.0316.76.724.2+091 ± 071−412 ± 135+106 ± 152+3982 ± 2474−4534 ± 3191
3V387 Aur0.057 ± 0.003+1.4 ± 1.2−0.6 ± 0.91−003.0 ± 30.0317.56.725.1−050 ± 046−074 ± 080+092 ± 087+3223 ± 1794+3486 ± 1954
4V389 Aur0.042 ± 0.002−1.2 ± 3.03.3 ± 0.8123.89.531.3
5VX Lyn0.053 ± 0.003−1.8 ± 1.2−4.1 ± 1.91+001.3 ± 15.0118.97.726.4+099 ± 049−296 ± 168−228 ± 103+6730 ± 2927−1919 ± 4259
6VY Lyn0.098 ± 0.003+2.2 ± 1.0−1.6 ± 2.11+114.5 ± 15.0110.24.217.8+061 ± 026−095 ± 101129 ± 050+2097 ± 931+2160 ± 1743
7VZ Lyn0.078 ± 0.004−1.9 ± 1.4−2.2 ± 2.21−182.1 ± 15.0112.85.420.3−109 ± 044−095 ± 129−200 ± 086+3604 ± 1684+2498 ± 2548
8WX Lyn0.056 ± 0.003−2.1 ± 1.1−3.3 ± 1.01+026.3 ± 15.0117.97.525.3+121 ± 042−214 ± 087−211 ± 086+6093 ± 2401+148 ± 2131
9AS Lyn0.030 ± 0.002+1.1 ± 0.7−3.1 ± 2.01−179.0 ± 46.0333.314.840.7−175 ± 078−502 ± 309−026 ± 119+7604 ± 3882−10531 ± 11848
10WZ Lyn0.180 ± 0.004+1.3 ± 0.6−13.0 ± 1.21+197.0 ± 20.045.62.413.2+193 ± 020−337 ± 031+043 ± 018+371 ± 107−1511 ± 411
11XZ Lyn0.072 ± 0.004+2.1 ± 1.6−1.5 ± 1.01−032.0 ± 20.0413.96.321.3−086 ± 051−125 ± 073+087 ± 096+2885 ± 1689+1926 ± 1482
12TW Lyn0.592 ± 0.011+0.6 ± 3.82.6 ± 2.91−039.0 ± 05.051.70.89.5−050 ± 015+021 ± 022−002 ± 027+307 ± 121+2294 ± 213
13YY Lyn0.133 ± 0.002+5.7 ± 0.7−5.9 ± 1.41−093.1 ± 15.017.53.315.1−165 ± 018−249 ± 049+092 ± 026+1932 ± 412−478 ± 723
14YZ Lyn0.047 ± 0.002−0.5 ± 0.7−3.7 ± 1.31+033.0 ± 40.0321.39.728.6+087 ± 051−349 ± 133−098 ± 070+4038 ± 2027−3482 ± 3594
15AU Lyn0.035 ± 0.002−0.8 ± 1.7−0.8 ± 2.11+096.0 ± 45.0328.613.435.8+139 ± 120−056 ± 283−060 ± 209+8978 ± 5151+5307 ± 9477
16ZZ Lyn0.089 ± 0.001−1.4 ± 1.4−1.4 ± 0.91+147.2 ± 15.0111.25.118.7+160 ± 034−054 ± 048−006 ± 061+1636 ± 775+3045 ± 872
17RW Lyn0.358 ± 0.016+7.3 ± 1.7−15.7 ± 2.51−149.8 ± 15.012.81.310.6−169 ± 016−216 ± 034−023 ± 022+197 ± 139+32 ± 354
18AV Lyn0.062 ± 0.003+0.5 ± 0.8−4.9 ± 1.11−126.0 ± 30.0316.17.823.4−081 ± 041−373 ± 084−87 ± 056+2114 ± 1030−3311 ± 1887
19AC Lyn0.071 ± 0.004+1.1 ± 0.9−5.9 ± 1.21−025.8 ± 15.0114.16.721.5−030 ± 031−395 ± 085−024 ± 054+1733 ± 766−3581 ± 1761
20AD Lyn0.088 ± 0.006+1.2 ± 1.1−8.0 ± 2.61+123.6 ± 15.0111.45.518.8+108 ± 033−435 ± 143+037 ± 058+1724 ± 805−3855 ± 2606
21AW Lyn0.080 ± 0.003−1.2 ± 1.1−4.2 ± 1.91+93.0 ± 30.0312.56.219.8+142 ± 044−217 ± 111−047 ± 060+2048 ± 1087−41 ± 2092
22AX Lyn0.026 ± 0.001+3.4 ± 1.4−2.0 ± 2.8138.518.945.6
23AY Lyn0.055 ± 0.003+1.2 ± 1.4−6.0 ± 1.2118.29.025.4
24P 54-130.130 ± 0.011+2.6 ± 1.0−10.1 ± 1.11+069.0 ± 10.027.73.915.2+044 ± 021−374 ± 051+061 ± 032+1046 ± 404−2273 ± 801
25AZ Lyn0.063 ± 0.003+3.3 ± 1.0−4.6 ± 1.51+087.0 ± 33.0315.98.123.1−012 ± 050−374 ± 114207 ± 070+4933 ± 1673−3328 ± 2492
26BB Lyn0.058 ± 0.003−0.6 ± 0.7−6.5 ± 1.41+058.0 ± 33.0317.28.924.4+136 ± 044−505 ± 118−083 ± 054+4183 ± 1429−6557 ± 2752
27BC Lyn0.053 ± 0.003+3.3 ± 1.2−3.1 ± 0.71+239.0 ± 45.0318.910.026.0+075 ± 068−308 ± 067+345 ± 091+7628 ± 2718−2159 ± 1627
28AF 1940.088 ± 0.002+0.5 ± 0.8−4.7 ± 1.3111.46.018.6
29AF 1970.105 ± 0.003−1.0 ± 3.9−8.2 ± 1.819.55.016.9
30DQ Lyn0.649 ± 0.043−1.9 ± 0.8−28.7 ± 1.02+053.0 ± 10.021.50.99.3+047 ± 009−202 ± 016−006 ± 008+106 ± 61+167 ± 144
31RR7 0320.163 ± 0.004−1.4 ± 1.1−11.9 ± 1.11+42.0 ± 10.026.13.613.5+069 ± 020−334 ± 033−039 ± 026+902 ± 330−1470 ± 432
32RR7 0340.112 ± 0.002+0.1 ± 0.7−2.9 ± 0.71+316.0 ± 10.028.95.216.1+249 ± 019−130 ± 030+178 ± 025+1519 ± 427+1474 ± 459
33P 81 1290.164 ± 0.003−0.5 ± 2.0−7.3 ± 0.91+003.0 ± 10.026.13.613.4+022 ± 035−204 ± 026−019 ± 047+648 ± 477+198 ± 336
34AF Lyn0.079 ± 0.002+1.2 ± 0.9−5.9 ± 1.01−121.7 ± 15.0112.77.519.7−132 ± 034−354 ± 061−036 ± 044+1462 ± 557−2444 ± 1102
35P 82 060.190 ± 0.003+4.0 ± 3.0−3.0 ± 3.03−211.0 ± 10.025.33.312.6−234 ± 047−84 ± 075−045 ± 059+919 ± 470+1684 ± 903
36AI Lyn0.049 ± 0.003−1.5 ± 1.2−0.2 ± 2.01..20.412.527.2
37AK Lyn0.084 ± 0.004+0.8 ± 1.2−8.7 ± 1.11+237.6 ± 15.0111.97.418.8+157 ± 044−495 ± 067148 ± 054+2656 ± 783−4686 ± 1203
38RR7-0790.260 ± 0.007+1.0 ± 1.1−13.5 ± 1.21−032.0 ± 10.023.82.411.3−047 ± 015−238 ± 023−021 ± 017+209 ± 137−212 ± 253
39RR7-0860.073 ± 0.005−0.7 ± 1.1−4.0 ± 0.7113.78.520.6
40AL Lyn0.066 ± 0.005+1.0 ± 0.8−5.6 ± 1.21−065.8 ± 15.0115.29.522.0−105 ± 038−398 ± 087−011 ± 046+2273 ± 932−3595 ± 1789
41AM Lyn0.045 ± 0.002+2.7 ± 1.0−3.7 ± 1.3122.213.928.9
42P 82-320.122 ± 0.004+5.9 ± 0.7−9.5 ± 1.61+060.0 ± 10.028.25.215.2−084 ± 019−377 ± 065+213 ± 022+3615 ± 414−2219 ± 931
43AF 3160.078 ± 0.002+1.9 ± 1.1−4.8 ± 1.5112.88.119.7
44RR7-1010.077 ± 0.003+0.5 ± 1.0−4.8 ± 1.2113.08.219.8
45TT Lyn1.408 ± 0.029−81.9 ± 1.5−41.8 ± 0.92−065.0 ± 05.050.70.58.5+132 ± 006−131 ± 004−240 ± 007+2108 ± 62+751 ± 36
46AF 4000.184 ± 0.011+0.2 ± 1.3−8.5 ± 1.415.43.812.4
47AF 4300.132 ± 0.003−1.4 ± 1.1−8.2 ± 0.817.65.514.3
48BS 16927-1230.289 ± 0.007−15.6 ± 2.4−4.6 ± 1.31+070.0 ± 10.023.52.610.6+223 ± 029−094 ± 022−100 ± 026+1654 ± 327+1295 ± 220
49X LMi0.437 ± 0.007+7.8 ± 1.3−17.3 ± 0.72−082 ± 20.062.31.89.5−152 ± 016−165 ± 008+004 ± 018+345 ± 144+507 ± 78
50AG UMa0.104 ± 0.002−1.6 ± 1.0−8.4 ± 1.919.68.415.2
51BK UMa0.348 ± 0.013−13.0 ± 1.5−16.9 ± 2.21+171.4 ± 05.072.92.59.7+174 ± 019−253 ± 031+120 ± 012+692 ± 159−341 ± 292
52AK UMa0.075 ± 0.002−3.7 ± 6.1−3.3 ± 6.3113.311.818.5
53AO UMa0.096 ± 0.003−2.8 ± 1.3−6.3 ± 1.3110.49.415.6
54BN UMa0.248 ± 0.006+12.5 ± 1.3−17.3 ± 1.71+019.0 ± 10.024.03.710.3−306 ± 024−223 ± 033+175 ± 014+2810 ± 223+45 ± 316
55CK UMa0.201 ± 0.003−3.8 ± 1.3+0.8 ± 2.41+016.0 ± 10.025.04.910.2+080 ± 037−018 ± 053+004 ± 013+1073 ± 285+1817 ± 479

Notes.

(1) Sources of proper motions (Sμ): (1) GSCII-SDSS; (2) NOMAD; (3) SDSS (DR7).

(2) Sources of Radial Velocities (SRV): (1) Pier et al. (2003); (2) Kinman & Brown (2010); (3) Saha & Oke (1984); (4) Pier (unpublished); (5) Fernley & Barnes (1997); (6) Layden (1994); (7) Jeffery et al. (2007).

(3) Distances: (D) Heliocentric distance; (Z) height above plane; Rgal Galactocentric distance assuming solar Galactocentric distance = 8.0 kpc.

Table B1

Ephemerides and photometric data for the seven new RR Lyrae stars.

StarTypePeriod (d)JDmax 24000+V〉 (mag)Vamp (mag)〈(BV)〉 (mag)
AF-194ab0.841049736.74015.850.450.40
AF-197c0.388 0249416.65015.500.400.30
RR7-086c0.353 87847538.52516.140.630.29
AF-316c0.345 517849010.79316.130.460.28
RR7-101c0.329 83647538.68516.150.600.22
AF-400c0.403 11450503.42914.100.400.20
AF-430c0.305 1750503.72314.900.400.22
StarTypePeriod (d)JDmax 24000+V〉 (mag)Vamp (mag)〈(BV)〉 (mag)
AF-194ab0.841049736.74015.850.450.40
AF-197c0.388 0249416.65015.500.400.30
RR7-086c0.353 87847538.52516.140.630.29
AF-316c0.345 517849010.79316.130.460.28
RR7-101c0.329 83647538.68516.150.600.22
AF-400c0.403 11450503.42914.100.400.20
AF-430c0.305 1750503.72314.900.400.22
Table B1

Ephemerides and photometric data for the seven new RR Lyrae stars.

StarTypePeriod (d)JDmax 24000+V〉 (mag)Vamp (mag)〈(BV)〉 (mag)
AF-194ab0.841049736.74015.850.450.40
AF-197c0.388 0249416.65015.500.400.30
RR7-086c0.353 87847538.52516.140.630.29
AF-316c0.345 517849010.79316.130.460.28
RR7-101c0.329 83647538.68516.150.600.22
AF-400c0.403 11450503.42914.100.400.20
AF-430c0.305 1750503.72314.900.400.22
StarTypePeriod (d)JDmax 24000+V〉 (mag)Vamp (mag)〈(BV)〉 (mag)
AF-194ab0.841049736.74015.850.450.40
AF-197c0.388 0249416.65015.500.400.30
RR7-086c0.353 87847538.52516.140.630.29
AF-316c0.345 517849010.79316.130.460.28
RR7-101c0.329 83647538.68516.150.600.22
AF-400c0.403 11450503.42914.100.400.20
AF-430c0.305 1750503.72314.900.400.22

5.1 Radial velocities and proper motions

The sources of our radial velocities are given in Column 8 (SRV) of Tables 6 and 7. The Bologna velocities were derived from spectra taken with the 3.5-m LRS [Telescopio Nazionale Galileo (TNG)] spectrograph. The Kitt Peak velocities were derived from spectra taken with RC spectrograph on the 4-m Kitt Peak telescope and kindly made available to us by Nick Suntzeff (private communication). The remaining velocities were taken from the literature as given in the notes to Tables 6 and 7.

The absolute proper motions given in this paper come primarily from astrometric data assembled from the Second Guide Star Catalogue (GSC-II; Lasker et al. 2008), and the Seventh Data Release of the SDSS (DR7; Abazajian et al. 2009; Yanny et al. 2009). Details are given in Appendix C. In the case of a few of the brighter stars (V < 12.3) we have chosen the proper motions given in the NOMAD Catalogue (Zacharias et al. 2004). In the case of the BHB star P 30-38, we chose the proper motion given by the SDSS DR7 because the GSC-II-SDSS proper motion has unusually large errors. The SDSS DR7 proper motions have also been used for the stars (mostly BHB stars) for which GSC-II–SDSS proper motions were not available.

We have only used stars that have radial velocities to compute U, V and W, and since only four of the BHB stars that only have SDSS DR7 proper motions also have radial velocities, possible systematic differences between the SDSS DR7 and the GSC-II–SDSS proper motions should have little effect on our overall results.3 A comparison of the SDSS DR7 and the GSC-II–SDSS proper motions (Appendix C) shows good agreement at the 1 mas yr−1 level; this corresponds to a tangential velocity of 40 km s−1 at a distance of 8.5 kpc.

5.2 Discussion of the space motions U, V and W

Table 1 gives the space motions for various subgroups of our program stars; all velocities are with respect to the LSR. The possible BHB stars (type bhb) have a V motion and velocity dispersions (σu, σv and σw) that are similar to those of the local BHB stars. This suggests that the majority are BHB stars but, conservatively, we have not included them in any of the other samples.

We have used the angular momenta (L) and (Lz) to distinguish between disc and halo stars. These quantities are defined in the appendix of Kepley et al. (2007) and are given for our program stars in Columns 15 and 16 of Tables 6 and 7. Following the discussion given in our Appendix D2, we identify the BHB star RR7 064 and the RR Lyrae stars TW Lyn and P 82 06 as probable disc stars and have excluded them from further discussion.

We assume that 〈V〉=−Vlsr=−220 km s−1 for zero halo rotation although higher values are possible.4 We divide our program stars into samples according to distance: (A) those nearer than 8.5 kpc, and (B) those with distances between 8.5 and 17.0 kpc. At 17 kpc, an error of 1 mas in the proper motion will give an error of 80 km s−1 in the transverse velocity. With our relatively small samples, the inclusion of more distant stars would not add useful information. Our results are given in Table 1. The samples that contain an adequate number (N) of stars, namely BHB(A), RR (A) and RR (B), have mean U and W velocities that are essentially zero; this suggests that the systematic errors in our proper motions are not having a significant effect on the results for these samples. The velocity dispersions in Table 1 were corrected following Jones & Walker (1988); if the observed dispersion in U is Disp(U), and ξi is the error in U of star i, then the corrected dispersion σu is given by
1
 The corrected dispersions of U, V and W in our Anticentre samples are also comparable (within their errors) with those of the local samples.

Figs 3(a), (b) and (c) are plots of the galactic velocity components 〈Vlsr〉, 〈Ulsr〉 and 〈Wlsr〉, respectively, against galactocentric distance (Rgal) for both our Anticentre stars and those at the NGP (Kinman et al. 2007b). Although there is considerable scatter between the different samples, there is clearly a trend in 〈Vlsr〉 from zero galactic rotation in the solar neighbourhood to a strong retrograde rotation for Rgal greater than 12.5 kpc. On the other hand, both 〈Ulsr〉 and 〈Wlsr〉 are essentially zero at all Galactocentric distances. This supports our conclusion that the trend of 〈Vlsr〉 with galactocentric distance is real and not produced by systematic errors in the proper motions. If the outer halo has a significantly retrograde rotation, as originally found by Carollo et. al (2007, 2010), and confirmed by Beers et al. (2012), this suggests that the outer halo dominates beyond Rgal= 12.5 kpc.

In (a) the ordinate is 〈Vlsr〉 in km s−1. In (b) the ordinate is 〈Ulsr〉 in km s−1. In (c) the ordinate is 〈 Wlsr〉 in km s−1. The abscissa is the Galactocentric distance in kpc. NGP BHB stars (blue open circles); NGP RR Lyrae stars (red open circles); Anticentre BHB stars (blue full circles); Anticentre RR Lyrae stars (red full circles); Local BHB stars (blue full triangles); Local RR Lyrae (red full triangles). It is seen that 〈Vlsr〉 becomes more retrograde while 〈Ulsr〉 and 〈Wlsr〉 remain unchanged with increasing Galactocentric distance.
Figure 3

In (a) the ordinate is 〈Vlsr〉 in km s−1. In (b) the ordinate is 〈Ulsr〉 in km s−1. In (c) the ordinate is 〈 Wlsr〉 in km s−1. The abscissa is the Galactocentric distance in kpc. NGP BHB stars (blue open circles); NGP RR Lyrae stars (red open circles); Anticentre BHB stars (blue full circles); Anticentre RR Lyrae stars (red full circles); Local BHB stars (blue full triangles); Local RR Lyrae (red full triangles). It is seen that 〈Vlsr〉 becomes more retrograde while 〈Ulsr〉 and 〈Wlsr〉 remain unchanged with increasing Galactocentric distance.

6 STRUCTURE IN THE MOTIONS OF OUR HALO STARS

Plots of the angular momenta L and Lz can be used to demonstrate kinematic structure among halo stars (e.g. Helmi et al. 1999). We give a L versus Lz plot for our Anticentre BHB and RR Lyrae stars in Figs 4(a) and in (b) for our NGP sample of these stars (Kinman et al. 2007b). Similar plots are shown in Fig. 5 for local RR Lyrae and BHB stars and in Fig. 6 for the globular clusters within 10 kpc. Definitions of L and Lz are given by Kepley et al. (2007). We calculated these quantities and their errors with a program that was kindly made available by Heather Morrison and modified for our use by Carla Cacciari. The values of L and Lz for the NGP RR Lyrae stars and BHB stars, the local BHB stars and the globular clusters within 10 kpc are tabulated in Appendix E, where we also compare our L and Lz with those calculated by Re Fiorentin et al. (2005) and Morrison et al. (2009) for a small sample of halo stars.5

A plot of L⊥ against Lz for (a) stars in the Anticentre, and (b) stars at the NGP. The black dotted curve is the outer contour of the majority of stars studied by Morrison et al. (2009); the black full curve is the flattened distribution that they discovered. The black and green rectangles are the locations of the groups discovered by Helmi et al. (1999) and Kepley et al. (2007), respectively. The magenta box shows the location of the thick disc. BHB and RR Lyrae stars are shown by blue and red filled circles, respectively. Selected outliers from Kepley et al. are shown by green triangles and subdwarf outliers from Smith et al. (2009) by yellow open circles.
Figure 4

A plot of L against Lz for (a) stars in the Anticentre, and (b) stars at the NGP. The black dotted curve is the outer contour of the majority of stars studied by Morrison et al. (2009); the black full curve is the flattened distribution that they discovered. The black and green rectangles are the locations of the groups discovered by Helmi et al. (1999) and Kepley et al. (2007), respectively. The magenta box shows the location of the thick disc. BHB and RR Lyrae stars are shown by blue and red filled circles, respectively. Selected outliers from Kepley et al. are shown by green triangles and subdwarf outliers from Smith et al. (2009) by yellow open circles.

A plot of L⊥ against Lz for (a) stars within 1 kpc and (b) those with distances between 1 and 2 kpc. The red filled circles are RR Lyrae stars taken from the catalogue of Maintz & de Boer (2005). Local BHB stars are shown by blue open circles and the outliers from Kepley et al. (2007) are shown by green filled triangles. The black contours and black, green and magenta boxes are described in Fig. 4.
Figure 5

A plot of L against Lz for (a) stars within 1 kpc and (b) those with distances between 1 and 2 kpc. The red filled circles are RR Lyrae stars taken from the catalogue of Maintz & de Boer (2005). Local BHB stars are shown by blue open circles and the outliers from Kepley et al. (2007) are shown by green filled triangles. The black contours and black, green and magenta boxes are described in Fig. 4.

A plot of L⊥ against Lz for globular clusters that are within 10 kpc. The two outlying clusters NGC 3201 and NGC 6205 (M13) are indicated by their NGC numbers. Globular clusters with [Fe/H] > −1.0 are shown by black filled triangles and those with [Fe/H] < −1.0 by black open circles. The black curves and black, green and magenta boxes are described in Fig. 4.
Figure 6

A plot of L against Lz for globular clusters that are within 10 kpc. The two outlying clusters NGC 3201 and NGC 6205 (M13) are indicated by their NGC numbers. Globular clusters with [Fe/H] > −1.0 are shown by black filled triangles and those with [Fe/H] < −1.0 by black open circles. The black curves and black, green and magenta boxes are described in Fig. 4.

Lz correlates with galactic rotation: in the left-handed system of coordinates, objects with positive Lz are prograde (the Sun has Lz∼1760 kpc km s−1) and those with negative Lz are retrograde. L correlates with the maximum height of the orbit above the plane (Fig. 7).

Plots showing the correlation between (a) the galactic rotation V and Lz, and (b) the maximum height of the orbit above the plane (zmax) and L⊥. The V and zmax are from Maintz & de Boer (2005) for 56 halo RR Lyrae stars.
Figure 7

Plots showing the correlation between (a) the galactic rotation V and Lz, and (b) the maximum height of the orbit above the plane (zmax) and L. The V and zmax are from Maintz & de Boer (2005) for 56 halo RR Lyrae stars.

Morrison et al. (2009) investigated the L versus Lz plot for 246 local metal-poor stars. The majority (∼90 per cent) of their sample, which we will call the main concentration, are in the location bounded by the black dotted line in Figs 4, 5 and 6. This is taken from the outer contour of their fig. 3. They also discovered a flattened component whose location is shown by the full black contour in our Figs 4, 5 and 6. The remaining 10 per cent of their sample lie outside the black dotted contour and, following Kepley et al. (2007) and Smith et al. (2009), we call them outliers. About a third of these outliers in the Morrison et al. (2009) sample belong to the prograde group (H99) discovered by Helmi et al. (1999) and further investigated by Re Fiorentin et al. (2005); the location of the majority of stars in this group is shown by the black rectangle in Figs 4, 5 and 6. The green rectangle shows the location of another group suggested by Kepley et al. (2007). The magenta box in Figs 4, 5 and 6 shows the location of stars in the main concentration that have a high probability of belonging to the thick disc; this is discussed in Appendix D.

The review by Klement (2010) lists 16 halo ‘streams’ that have been identified among stars in the solar neighbourhood. All except the H99 and the Kapteyn Group lie within the main concentration in the L versus Lz plot. An example of structure within the main concentration is shown by the RR Lyrae stars at distances between 1 and 2 kpc (Fig. 5b) which are less evenly distributed than those at distances less than 1 kpc (Fig. 5a). In general, the identification of structure in this main concentration is only possible for stars with relatively large proper motions and well-determined distances. In discussing our program stars, we shall therefore largely confine ourselves to discussing the outliers and the ratio of the number of outliers to the number in the main concentration.

6.1 Ratio of the number of outliers to the number in the main concentration

The ratio of the number of outliers to the number in the main concentration is a simple measure of the spread of halo stars in the L versus Lz plot. Our sample of globular clusters within 10 kpc contains five (with [Fe/H] > −1.0) that belong to the disc or bulge. Among the remainder, 24 belong to the main concentration and two (or 8 per cent) are outliers. The two outliers are NGC 3201 and NGC 6205 (M13). Although these two clusters are listed as ‘young’ by Marín-Franch et al. (2009), Dotter et al. (2010) give ages of 12.00 ± 0.75 and 13.0 ± 0.50 Gyr for NGC 3201 and NGC 6205, respectively, which do not support this description. NGC 6205 (together with NGC 5466, NGC 6934 and NGC 7089) is one of a group of four globular clusters with similar L and Lz that are discussed by Smith et al. (2009) in connection with an overdensity in the subdwarfs that they studied. Smith et al. list the properties of 12 outlier subdwarfs that lie at heliocentric distances of up to 5 kpc. They are shown by yellow open circles in Figs 4(a) and (b). They show some tendency to occur in groups among themselves in their L versus Lz plot (as discussed by Smith et al.) but their locations in our plot [Figs 4(a) and (b)] show little in common with those of our RR Lyrae and BHB outliers.

The local BHB stars within 1 kpc all belong to the main concentration and have no outliers. The RR Lyrae stars within 1 kpc have four outliers that belong to the H99 group (RZ CEP, XZ CYG, CS ERI and TT LYN); MT TEL is a possible retrograde outlier that lies just outside the main concentration. The RR Lyrae stars at distances between 1 and 2 kpc have two outliers that belong to the H99 group (TT CNC and AR SER), two that belong to the Kepley retrograde group (AT VIR and RV CAP) and one prograde outlier (U CAE) besides several that are on the edge of the main concentration. Kepley et (2007) found that XZ CYG belongs to the H99 group and CS ERI is also likely to be a member of this group. The H99 and K07 outlier groups are discussed further in Appendix F.

Of the 188 RR Lyrae stars within 2 kpc for which we have data, 41 are likely to belong to the thick disc. Of the remaining 147 halo stars, there are five in Fig. 5(a) and 10 in Fig. 5(b) that formally lie outside the main concentration and so would formally be considered outliers. Five of those in Fig. 5(b), however, lie so close the boundary of the main concentration that (with reasonable assumptions as to their error bars) it seems likely that most belong to the main concentration. The 10 certain outliers comprise 7 ± 2 per cent of the total. If we include the five that lie close to the main concentration boundary, there are 15 outliers or 10 ± 3 per cent of the total. These percentages are comparable with those found (10 per cent) by both Helmi et al. (1999) and Morrison et al. (2009) among their local samples of metal-poor halo stars.

Table 2 gives the number of stars in the main concentration and the number of outliers for the BHB and RR Lyrae stars within 8.5 kpc in both the Anticentre and NGP (Kinman et al. 2007b) fields. The percentage of outliers and the L of the stars in these fields is shown plotted against galactocentric distance in Figs 8(a) and (b), respectively. It can be seen from Figs 4 and 8(b) that the majority of outliers have greater L and more negative Lz than the stars in the main concentration. This shows, according to the correlations shown in Fig. 7, that the orbits of the outliers tend to be more retrograde and reach larger ∣zmax∣ than the stars in the main concentration. The increase in the percentage of outliers with galactocentric distance shown in Fig. 8(a) therefore implies that as the galactocentric distance increases, the halo has an increasing contribution from stars that have more retrograde orbits and a more spherical distribution than the stars in the main concentration that predominate in the solar neighbourhood. This result is in general agreement with the observational results of Carollo et al. (2007, 2010) and Beers et al. (2012) and the simulations of Oser et al. (2010), Font et al. (2011) and McCarthy et al. (2012). Our observational support for the duality of the halo is important because (as the simulations have shown) dual haloes are a general property of the stellar spheroids of disc galaxies whose masses are comparable with that of the Milky Way. We are grateful to the referee for asking us to emphasize this point.

(a) The percentage of outliers in each sample of BHB stars (blue filled circles) and RR Lyrae stars (red filled circles) as a function of Galactocentric distance in kpc. The samples are described in Table 2. (b) The angular momentum L⊥ (in kpc km s−1) for the BHB stars (blue filled circles) and RR Lyrae stars (red filled circles) for the NGP and Anticentre samples within 8.5 kpc as a function of Galactocentric distance. Outliers have a more spherical distribution and more retrograde orbits than those in the main concentration and they constitute a larger fraction of the halo with increasing galactocentric distance.
Figure 8

(a) The percentage of outliers in each sample of BHB stars (blue filled circles) and RR Lyrae stars (red filled circles) as a function of Galactocentric distance in kpc. The samples are described in Table 2. (b) The angular momentum L (in kpc km s−1) for the BHB stars (blue filled circles) and RR Lyrae stars (red filled circles) for the NGP and Anticentre samples within 8.5 kpc as a function of Galactocentric distance. Outliers have a more spherical distribution and more retrograde orbits than those in the main concentration and they constitute a larger fraction of the halo with increasing galactocentric distance.

We note that a simulation of a ‘smooth halo’ with a Gaussian distribution of velocities (e.g. the right-handed L versus Lz plot of fig. 5 in Smith et al. 2009) gives a main concentration that is similar in shape but smoother than that shown by the observations. In this connection we note that Hattori & Yoshii (2011) conclude that violent relaxation has been effective for stars within a scale radius of 10 kpc from the Galactic Centre. We suggest that the stars of the main concentration are those where this relaxation has been most effective.

7 SUMMARY AND CONCLUSIONS

Fifty-one BHB stars and 12 possible BHB stars are identified in the Anticentre. Our selection criteria for these stars give results that agree with those used by Smith et al. (2010) and Ruhland et al. (2011). 58 RR Lyrae stars are identified in the Anticentre; seven of these are new and their light curves are given in Appendix B. Photometric data for the BHB and RR Lyrae stars are given in Tables 4 and 5, respectively. Five methods are used to get distances for the BHB stars and three methods for the RR Lyrae stars; these are compared and combined to give distances on a uniform scale. Absolute proper motions (largely derived from the GSCII and SDSS DR7 data bases) are given for all these stars and also radial velocities for 31 of the BHB and 37 of the RR Lyrae stars (Tables 6 and 7). Our conclusions are itemized below.

  • All but four of the 58 RR Lyrae stars in the Anticentre fields are of Oosterhoff type I; this agrees with the Oo II stars being more centrally concentrated in the Galaxy than those of Oo type I (Miceli et al. 2008). Oo I globular clusters tend to have retrograde orbits (van den Bergh 1993; Lee & Carney 1999); the field RR Lyrae stars in the Anticentre tend to have retrograde orbits.

  • We combined the kinematic data of our Anticentre stars with those of the stars in the NGP fields (Kinman et al. 2007b). In the combined data, the Galactic V motion (Fig. 3) is significantly retrograde for both BHB and RR Lyrae stars with Rgal > 10 kpc. This agrees with the findings of Carollo et al. (2007), Carollo et al. (2010) and Beers et al. (2012) that the outer halo shows retrograde rotation compared with the rotation of the stars in the solar neighbourhood where the inner halo predominates. The lack of any similar trend in the Galactic U and W motions makes it unlikely that the trend in the V motion is caused by a systematic error in the proper motions.

  • Angular momenta plots (L versus Lz) for the BHB and RR Lyrae stars in the Anticentre fields and the NGP fields are compared with similar plots for these stars in the solar neighbourhood and for the globular clusters nearer than 10 kpc. We suggest that halo stars belong to either of two groups – either the main concentration or the outliers– according to whether they lie inside or outside a contour in this plot which encloses the majority of metal-poor stars in the solar neighbourhood (as defined by Morrison et al. 2009). We suggest that the stars in the main concentration are those for which violent relaxation has been most effective (Hattori & Yoshii 2011). The ratio of outliers to main concentration stars increases with galactocentric distance (Fig. 8). The outliers primarily have retrograde orbits. Since L correlates with zmax (the orbit’s maximum height above the Galactic plane), this also implies that the halo becomes more spherical with increasing galactocentric distance (cf. Schmidt 1956; Kinman et al. 1966; Miceli et al. 2008, Table 2). It also agrees with the simulations (McCarthy et al. 2012) that predict that the inner halo should be more flattened than the outer halo.

  • A review of the RR Lyrae stars in the H99 group of outliers (Helmi et al. 1999) shows that there are six RR Lyrae stars that are likely members (all probably of Oo type I) and that their mean [Fe/H] is −1.59. Their mean rms scatter in [Fe/H] is 0.16 which is comparable with the likely errors in these metallicities. These RR Lyrae stars therefore form a more homogeneous set than the later-type stars in H99 (Roederer et al. 2010) and they could have originated from a single globular cluster. Another grouping with similar L and Lz (which we call K07) contains 15 BHB and RR Lyrae stars at distances in the range 1.1 to 8.5 kpc. K07 contains two pairs of RR Lyrae stars (AT VIR & RV CAP and IP COM & EO COM); the stars in each pair have similar properties. Better data are needed to verify membership of the other stars in K07.

We thank D.R. Soderblom for kindly making available the program to calculate the UVW space motions and Heather Morrison for allowing us to use her program for computing L and Lz and the referee for comments which helped improve the paper. This research has made use of 2MASS data provided by the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

The GSCII is a joint project of the STScI and the INAF-Osservatorio Astronomico di Torino (INAF-OATo).

This work is partly based on observations made with the Italian TNG operated on the island of La Palma by the Fundacion Galileo Galilei of the Istituto Nazionale di Astrofisica (INAF) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.

This work has been partly supported by the Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) under PRIN-2001-1028897 and PRIN-2005-1060802.

Footnotes

1

The Multimission Archive at the Space Telescope Science Institute (STSci), http://archive.stsci.edu/.

2

The simple division into two Oosterhoff types does not cover all cases (Smith, Catelan & Kuehn 2011) but is a good approximation for our own Galaxy.

3

In our discussion of halo stars at the NGP (Kinman et al. 2007b), the BHB and RR Lyrae stars were both closely grouped near the NGP and it seemed reasonable to adopt a zero radial velocity for stars whose radial velocity was not known in computing their galactic velocity V. This assumption has not been made for the more widely spread stars in the Anticentre.

4

For example, −236 ± 15 km s−1 (Reid & Brunthaler 2004); −246 ± 7 km s−1 (Brunthaler et al. 2011).

5

The data for the local RR Lyraes in Fig. 5 were either taken from Morrison et al. (2009) or calculated from the data given by Maintz & de Boer (2005); in this latter case no errors are given since Maintz & de Boer do not give errors for their data. The L and Lz for the globular clusters were calculated from data given in table 3 of Vande Putte & Cropper (2009).

6

The identifications [KSK94]RR 7 nnn, Case A-F nnn and BPS BS nnnnn-nnnn used by SIMBAD are abbreviated in this paper to RR7-nnn, AF-nnn and BS nnnnn-nnn, respectively.

7

This expression gives Mg∼ 0.44 at the blue edge of the instability gap; this corresponds to MV∼ 0.58.

8

The NOMAD catalogue was chosen because the proper motion that it gives for a given object is the one which is preferred from among a number of major catalogues (all of which are on the International Celestial Reference System).

9

Only one disc RR Lyrae (TW Lyn) is known to lie outside this location.

REFERENCES

Abazajian
K.
et al.,
2009
,
ApJS
,
182
,
543

An
D.
et al.,
2008
,
ApJS
,
179
,
326

Andrei
A.
et al.,
2009
,
A&A
,
505
,
385

Beers
T. C.
Wilhelm
R.
Dionidis
S. P.
Mattson
C. J.
,
1996
,
ApJS
,
103
,
433

Beers
T. C.
Chiba
M.
Yoshii
Y.
Platais
I.
Hanson
R.
Fuchs
B.
Rossi
S.
,
2000
,
AJ
,
119
,
2866

Beers
T.
et al.,
2012
,
ApJ
,
746
,
34

Behr
B.
,
2003
,
ApJS
,
149
,
101

Bell
E.
Xue
X.
Rix
H.-W.
Ruhland
C.
Hogg
D.
,
2010
,
AJ
,
140
,
1850

Benedict
G. F.
et al.,
2011
,
AJ
,
142
,
187

Bensby
T.
Alves-Brito
A.
Oey
M.
Yong
D.
Meléndez
J.
,
2011
,
ApJ
,
735
,
L46

Brown
W. R.
Allende Prieto
C.
Beers
T.
Wilhelm
R.
Geller
M.
Kenyon
S.
Kurtz
M.
,
2003
,
AJ
,
126
,
1362

Brunthaler
A.
et al.,
2011
,
AN
,
332
,
461

Cacciari
C.
Corwin
T.
Carney
B.
,
2005
,
AJ
,
129
,
267

Cardelli
J. A.
Clayton
G. C.
Mathis
J. S.
,
1989
,
ApJ
,
345
,
245

Carollo
D.
et al.,
2007
,
Nat
,
450
,
1020

Carollo
D.
et al.,
2010
,
ApJ
,
712
,
692

Carollo
D.
Beers
T.
Bovy
J.
Sivirani
T.
Norris
J.
Freeman
K.
Aoki
W.
Lee
Y.
,
2012
,
ApJ
,
744
,
195

Clement
C.
et al.,
2001
,
AJ
,
122
,
2587

Clementini
G.
Gratton
R.
Bragaglia
A.
Carretta
E.
Di Fabrizio
L.
Maio
M.
,
2003
,
AJ
,
125
,
1309

De Jong
J.
Yanny
B.
Rix
H.-W.
Dolphin
A.
Martin
N.
Beers
T.
,
2010
,
ApJ
,
714
,
663

De Lee
N.
,
2008
,
PhD thesis
,
Michigan State University
, Lansing, Michigan

Deason
A.
Belokurov
V.
Evans
N.
,
2011
,
MNRAS
,
416
,
2903

Dehnen
W.
Binney
J. J.
,
1998
,
MNRAS
,
298
,
387

Dorman
B.
Rood
R.
O’Connell
R.
,
1993
,
ApJ
,
419
,
596

Dotter
A.
et al.,
2010
,
ApJ
,
708
,
698

Feast
M.
,
2011
, in
McWilliam
A.
, ed., Carnegie Obser. Astrophys. Ser., Vol. 5,
RR Lyrae Stars, Metal-Poor Stars and the Galaxy
.
Carnegie Observatories
, Pasadena, p.
170

Feast
M.
Laney
C.
Kinman
T.
van Leeuwen
F.
Whitelock
P.
,
2008
,
MNRAS
,
386
,
2115

Fernley
J.
Barnes
T.
,
1997
,
A&AS
,
125
,
313

Ferraro
F. R.
Carretta
E.
Corsi
C. E.
Fusi Pecci
F.
Cacciari
C.
Buonanno
R.
Paltrinieri
B.
Hamilton
D.
,
1997
,
A&A
,
320
,
757

Font
A.
et al.,
2011
,
MNRAS
,
416
,
2802

Hattori
K.
Yoshii
Y.
,
2011
,
MNRAS
,
418
,
2418

Helmi
A.
,
2008
,
AA&R
,
15
,
145

Helmi
A.
White
S. D.
de Zeeuw
P. T.
Zhao
H.
,
1999
,
Nat
,
402
,
53

Holmberg
J.
Nordström
B.
Andersen
J.
,
2009
,
A&A
,
501
,
941

Jeffery
E.
Barnes
T.
Skillen
I.
Montemayor
T.
,
2007
,
ApJS
,
171
,
512

Johnson
D. R. H.
Soderblom
D. R.
,
1987
,
AJ
,
93
,
864

Jones
B. F.
Walker
M. F.
,
1988
,
AJ
,
95
,
1755

Jurcsik
J.
Kovacs
G.
,
1996
,
A&A
,
312
,
111

Jurcsik
J.
et al.,
2006
, IBVS 5709

Kemper
E.
,
1982
,
AJ
,
87
,
1395

Kepley
A.
et al.,
2007
,
AJ
,
134
,
1579

Kholopov
P.
et al.,
1985
,
Gen. Cat. of Variable Stars
.
NAUK Publ.
, Moscow(http://www.sai.msu.ru/gcvs/gcvs/)

Kinemuchi
K.
Smith
H.
Woźniak
P.
McKay
T.
,
2006
,
AJ
,
132
,
1202

Kinman
T.
Brown
W.
,
2010
, IBVS 5935

Kinman
T.
Brown
W.
,
2011
,
AJ
,
141
,
168

Kinman
T.
Wirtanen
C.
Janes
K.
,
1966
,
ApJS
,
13
,
379

Kinman
T.
Mahaffey
C.
Wirtanen
C.
,
1982
,
AJ
,
87
,
314

Kinman
T. D.
Suntzeff
N. B.
Kraft
R. P.
,
1994
,
AJ
,
108
,
1722

Kinman
T. D.
Castelli
F.
Cacciari
C.
Bragaglia
A.
Harmer
D.
Valdes
F.
,
2000
,
A&A
,
364
,
102

Kinman
T.
Saha
A.
Pier
J.
,
2004
,
ApJ
,
605
,
L25

Kinman
T.
Salim
S.
Clewley
L.
,
2007a
,
ApJ
,
662
,
L111

Kinman
T.
Cacciari
C.
Bragaglia
A.
Buzzoni
A.
Spagna
A.
,
2007b
,
MNRAS
,
375
,
1381

Kinman
T.
Morrison
H.
Brown
W.
,
2009
,
AJ
,
137
,
3198

Klement
R. J.
,
2010
,
AA&R
,
18
,
567

Lasker
B. M.
et al.,
2008
,
AJ
,
136
,
735

Layden
A.
,
1994
,
AJ
,
108
,
1016

Lee
J.-W.
Carney
B. W.
,
1999
,
AJ
,
118
,
1373

Liu
T.
Janes
K.
,
1990
,
ApJ
,
354
,
273

McCarthy
I.
et al.,
2012
,
MNRAS
,
420
,
2245

McClusky
J.
,
2008
, IBVS 5825

Maintz
G.
,
2005
,
A&A
,
442
,
381

Maintz
G.
de Boer
K. S.
,
2005
,
A&A
,
442
,
229

Marín-Franch
A.
et al.,
2009
,
ApJ
,
694
,
1498

Miceli
A.
et al.,
2008
,
ApJ
,
678
,
865

Morrison
H.
et al.,
2009
,
ApJ
,
694
,
130

Nemec
J.
Nemec
A.
Lutz
T.
,
1994
,
AJ
,
108
,
222

Oser
L.
Ostriker
J.
Naab
T.
Johansson
P.
Burkert
A.
,
2010
,
ApJ
,
725
,
2312

Paltrinieri
B.
Ferraro
F. R.
Fusi Pecci
F.
Carretta
E.
,
1998
,
MNRAS
,
293
,
434

Pesch
P.
Sanduleak
N.
,
1989
,
ApJS
,
71
,
549

Pier
J.
Saha
A.
Kinman
T.
,
2003
, IBVS 5459

Preston
G. W.
Shectman
S. A.
Beers
T. C.
,
1991
,
ApJ
,
375
,
121

Re Fiorentin
P.
Helmi
A.
Lattanzi
M.
Spagna
A.
,
2005
,
A&A
,
439
,
551

Reid
M.
Brunthaler
A.
,
2004
,
ApJ
,
616
,
872

Roederer
I.
Sneden
C.
Thompson
I.
Preston
G.
Shectman
S.
,
2010
,
ApJ
,
711
,
573

Ruhland
C.
Bell
E.
Rix
H.-W.
Xue
X.
,
2011
,
ApJ
,
731
,
119

Saha
A.
Oke
B.
,
1984
,
ApJ
,
285
,
688

Schlegel
D. J.
Finkbeiner
D. P.
Davis
M.
,
1998
,
ApJ
,
500
,
525

Schmidt
M.
,
1956
,
Bull. Astron. Inst. Netherlands
,
13
,
15

Schmidt
E.
,
2002
,
AJ
,
123
,
965

Schmidt
E.
Seth
A.
,
1996
,
AJ
,
112
,
2769

Schmidt
E.
Chab
J.
Reiswig
D.
,
1995
,
AJ
,
109
,
1239

Schönrich
R.
Asplund
M.
Casagrande
L.
,
2011
,
MNRAS
,
415
,
3807

Sesar
B.
et al.,
2010
,
ApJ
,
708
,
717

Sesar
B.
Jurić
M.
Ivezić
Z.
,
2011
,
ApJ
,
731
,
4

Sirko
E.
et al.,
2004
,
AJ
,
127
,
899

Smith
M.
et al.,
2009
,
MNRAS
,
399
,
1223

Smith
K.
Bailer-Jones
C.
Klement
R.
Xue
X.
,
2010
,
A&A
,
522
,
88

Smith
H.
Catelan
M.
Kuehn
C.
,
2011
, in
McWilliam
A.
, ed., Carnegie Obs. Astrophys. Ser. Vol. 5,
RR Lyrae Stars, Metal-Poor Stars and the Galaxy
.
Carnegie Obs.
, Pasadena, p.
17

Sodor
A.
Jurcsik
J.
Szeidl
B.
,
2009
,
MNRAS
,
394
,
261

Spagna
A.
Bucciarelli
B.
Lattanzi
M.
Re Fiorentin
P.
Smart
R.
,
2010a
,
Mem. Soc. Astron. Ital.
,
14
,
67

Spagna
A.
Lattanzi
M.
Re Fiorentin
P.
Smart
R.
,
2010b
,
A&A
,
510
,
L4

Usher
P.
Mitchell
K.
,
1982
,
ApJS
,
49
,
27

Valenti
E.
Ferraro
F. R.
Perina
S.
Origlia
L.
,
2004
,
A&A
,
419
,
139

van den Bergh
S.
,
1993
,
AJ
,
105
,
971

Vande Putte
D.
Cropper
M.
,
2009
,
MNRAS
,
392
,
113

Watkins
L.
et al.,
2009
,
MNRAS
,
398
,
1757

Xue
X. X.
et al.,
2011
,
ApJ
,
738
,
79

Yanny
B.
et al.,
2009
,
AJ
,
137
,
4377

Zacharias
N.
Monet
D.
Levine
S.
Urban
S.
Goume
R.
Wycoff
G.
,
2004
,
BAAS
,
36
,
1418

Zacharias
N.
et al.,
2009
,
AJ
,
139
,
2184

Zinn
R.
,
1993
, in
Smith
G.
Brodie
J.
, eds, ASP Conf. Ser. Vol. 48,
The Globular Cluster – Galaxy Connection
.
Astron. Soc. Pac.
, San Francisco, p.
38

Zolotov
A.
,
2011
,
BAAS
,
43
,
2011

Zolotov
A.
Willman
B.
Brooks
A.
Governato
F.
Brook
C.
Hogg
D.
Quinn
T.
Stinson
G.
,
2009
,
ApJ
,
702
,
1058

Zolotov
A.
Willman
B.
Brooks
A.
Governato
F.
Brook
C.
Hogg
D.
Shen
S.
Wadsley
J.
,
2010
,
ApJ
,
721
,
738

Appendices

APPENDIX A: THE BHB STARS

A1 Our selection methods

Kinman et al. (1994) used both photometric and spectroscopic criteria to identify 15 BHB stars in the Anticentre field RR VII (l= 183°, b=+37°) which Kinman et al. (1982) had previously searched for RR Lyrae stars. Brown et al. (2003) independently confirmed these classifications for nine stars in this field (six BHB and three non-BHB stars). The classification of these 15 stars (RR 7-02, -08, -15, -21, -23, -36, -43, -53, -58, -60, -64, -66, -84, -90, -91)6 is therefore considered to be secure.

Additional BHB star candidates with (170° < l < 207°) were taken from BHB candidates discovered in the objective prism surveys of Pesch & Sanduleak (1989) (AF-nnn) and Beers et al. (1996) (BS nnnnn-nnn). We also included unpublished BHB candidates from the Case Survey that were kindly made available to us by Dr Peter Pesch; we call these P nn.nn stars. All these stars are included in Table 4 (main section of this paper) with a running number which is also used as a means of identification in the figures.

Following Kinman & Brown (2011), BHB stars were selected from these candidates by three methods.

  • The (uB)K0 versus (BV)0 plot where u is a Strömgren magnitude and B and V are Johnson magnitudes. The plot is shown in Fig. A1 where the dotted lines enclose an area in which (BV)0≤ 0.18 and (uB)K0 is within ±0.075 mag of a curve defined by nearby BHB stars whose classification rests on high-resolution spectroscopy (Kinman et al. 2000; Behr 2003).

  • The (NUVV)0 versus (BV)0 plot where NUV is the near-UVGALEX magnitude (effective wavelength 2267Å) taken from the MAST (http://archive.stsci.edu/). The plot is shown in Fig. A2 where the dotted parallelogram (taken from Kinman, Salim & Clewley 2007a) shows the expected location of BHB stars. This method can only be used for stars fainter than about V= 12 because the GALEX magnitudes of brighter stars are affected by saturation.

  • The Strömgren β versus (BV)0 plot is shown in Fig. A3 which is taken from fig. 9(a) of Kinman & Brown (2011). The full curve shows the expected location of BHB stars and dashed curve shows the lower limit of β for non-BHB stars. This method was only used for eight of the brighter stars.

The ordinate (u−B)K0 is defined in Kinman et al. (1994). The abscissa is Johnson (B−V)0. The running numbers of stars in Table 1 are shown next to stars whose error bars lie outside the zone outlined by the dotted lines in which the BHB stars are located.
Figure A1

The ordinate (uB)K0 is defined in Kinman et al. (1994). The abscissa is Johnson (BV)0. The running numbers of stars in Table 1 are shown next to stars whose error bars lie outside the zone outlined by the dotted lines in which the BHB stars are located.

The ordinate is the de-reddened difference between the GALEXNUV magnitude (effective wavelength 2267 Å) and the Johnson V magnitude. The abscissa is the Johnson (B−V)0 colour. The dotted parallelogram is the expected location of BHB stars according to Kinman et al. (2007). The running numbers of stars in Table 1 whose error bars lie outside this parallelogram are shown next to these stars.
Figure A2

The ordinate is the de-reddened difference between the GALEXNUV magnitude (effective wavelength 2267 Å) and the Johnson V magnitude. The abscissa is the Johnson (BV)0 colour. The dotted parallelogram is the expected location of BHB stars according to Kinman et al. (2007). The running numbers of stars in Table 1 whose error bars lie outside this parallelogram are shown next to these stars.

The ordinate is Strömgren β and the abscissa is Johnson (B−V)0. The solid curve shows the location of BHB stars; the dashed curve shows the lower limit of β for non-BHB stars. Further details are given in Kinman & Brown (2011).
Figure A3

The ordinate is Strömgren β and the abscissa is Johnson (BV)0. The solid curve shows the location of BHB stars; the dashed curve shows the lower limit of β for non-BHB stars. Further details are given in Kinman & Brown (2011).

In these figures, a running number (from Table 1) is given against each star in Fig. A3 and for those stars whose error bars lie outside the defining boxes in Figs A1 and A2. For stars in (a) Fig. A1 and (b) Fig. A2, those whose colours fall within the defining box were given weight +4; those whose error bars intersected the defining box were given weight +2 and the rest were given weights of 0 or −3 according to their distance from the defining box. For the stars in (c) Fig. A3, those whose error bars intersect the full curve are given weight 3, those whose error bars lie above this line but below the dashed line are given weight 1 and those with larger β are given weight −3. The weights from the three methods were added to give a total weight (W) that is given in Column 14 of Table 1. Stars with W≥ 6 are taken to have a high probability of being BHB stars; those with zero or negative weights are taken to have a high probability of not being a BHB star (class A) while those with intermediate W are considered to be an intermediate class which we call ‘bhb’. The distribution of these three classes as a function of the weight (W) is shown in Fig. A4(a).

(a) Frequency distribution of the weights given to the program stars: the more positive the weight, the greater the probability that the star is a BHB star. Stars with weights greater or equal to 6 are classified as BHB stars. Star with weights of zero or less are classified as A stars. Stars of intermediate weight are given the intermediate classification of bhb. (b) Frequency distribution of the probability (Psvm) that a star classified as BHB is a BHB star. (c) Frequency distribution of the probability (Psvm) that a star classified as bhb is a BHB star. Psvm is described in the text.
Figure A4

(a) Frequency distribution of the weights given to the program stars: the more positive the weight, the greater the probability that the star is a BHB star. Stars with weights greater or equal to 6 are classified as BHB stars. Star with weights of zero or less are classified as A stars. Stars of intermediate weight are given the intermediate classification of bhb. (b) Frequency distribution of the probability (Psvm) that a star classified as BHB is a BHB star. (c) Frequency distribution of the probability (Psvm) that a star classified as bhb is a BHB star. Psvm is described in the text.

A2 Comparison with other selection methods

Smith et al. (2010) have used machine-learning methods to estimate the probability that a star is a BHB star from its SDSS photometry. Their preferred probability (Psvm) is derived from the support vector machine method and is available for those of our program stars whose SDSS magnitudes are unsaturated (roughly those with V > 14.5). The distribution of Psvm for the stars that we classify as BHB and bhb is shown in Figs A4(b) and A4(c), respectively. Most of the stars that we classify as BHB and bhb have a high probability of being BHB stars on the Smith et al. criterion. The only exception is our program star 47 (BS 16468-00260) which is missing from the Smith et al. (2010) catalogue although its (ug)0 and (gr)0 are similar to those of stars that are given a high value of Psvm. The stars that we classify as bhb all have Psvm greater than 0.6; this suggests that most are likely to be BHB stars.

Ruhland et al. (2011) have shown that the BHB stars lie in a relatively well-defined locus in the (ug)0 versus (gr)0 diagram; this is enclosed by the full magenta line in Fig. A5. All the stars with unsaturated SDSS magnitudes that we classify as BHB or bhb (shown by filled blue circles and blue open circles, respectively) lie within this line except for stars 56 and 61 for which we assigned weights +11 and +8, respectively. There are two discrepant u magnitudes for the object in the position of star 56 and this presumably explains the location of this star in Fig. A5. Star 61 has V= 14.57 which is close to the saturation limit of SDSS magnitudes. For these reasons we think that the anomalous locations of stars 56 and 61 are caused by errors in the SDSS magnitudes and that the high weights that we have assigned to these stars are trustworthy. Overall, there is satisfactory agreement between our selection criteria and the most recent selection criteria based on SDSS magnitudes.

The ordinate is SDSS (u−g)0 and the abscissa is (g−r)0. Stars classified as BHB are shown as blue filled circles. Stars classified as bhb are shown as blue open circles. RR Lyrae stars are shown as red filled circles. The area enclosed by the magenta line is the locus of the BHB stars according to Ruhland et al. (2011). The green dotted hexagon is the locus of the RR Lyrae stars according to Watkins et al. (2009). The red dotted lines show our colour limits for the RR Lyrae stars.
Figure A5

The ordinate is SDSS (ug)0 and the abscissa is (gr)0. Stars classified as BHB are shown as blue filled circles. Stars classified as bhb are shown as blue open circles. RR Lyrae stars are shown as red filled circles. The area enclosed by the magenta line is the locus of the BHB stars according to Ruhland et al. (2011). The green dotted hexagon is the locus of the RR Lyrae stars according to Watkins et al. (2009). The red dotted lines show our colour limits for the RR Lyrae stars.

A2.1 Reddenings

The reddenings E(BV) in this paper were taken from the total reddenings of Schlegel et al. (1998). All but five of our BHB and RR Lyrae stars are more than 1 kpc above the Galactic plane and so the reddenings to these stars will be close to the total reddenings in these sight-lines. The reddening corrections for other colours are derived from the relations E(VK) = 2.75E(BV), AV= 3.1E(BV) and AK= 0.35E(BV) (Cardelli, Clayton & Mathis 1989).

A3 Distances of the BHB stars

We have used five methods to determine absolute magnitudes (and hence distances) for our BHB stars.

  1. Sirko et al. (2004) gave absolute SDSS g magnitudes based on models by Dorman, Rood & O’Connell (1993) for various BHB properties including SDSS colours. Smith et al. (2010) used these data to derive distances for their sample of BHB stars which includes 40 of our BHB and bhb stars; these are given as D1 in Table A1.

  2. Deason et al. (2011) derived the absolute magnitudes of BHB stars using the SDSS photometry of 11 globular clusters by An et al. (2008). They expressed the absolute magnitude (Mg) in their equation (7) as a quartic in (gr)0. We used this expression to derive distances (D2 in Table A1) for the 43 stars for which unsaturated SDSS colours were available from SDSS DR7.7

  3. Preston et al. (1991) used the Johnson photometry of 15 globular clusters to derive the absolute V magnitude of BHB stars in terms of a cubic in (BV)0. A slightly adjusted version of this expression is given as their equation (5) by Kinman et al. (2007b). We used this expression to derive the distances (D3) in Table A1.

  4. Kinman et al. (2007b) attempted to improve on the cubic equation in (c) by deriving another cubic based on the photometry of the intermediate-metallicity globular clusters M3 (Ferraro et al. 1997) and M13 (Paltrinieri et al. 1998). This cubic is given as their equation (6) in Kinman et al. (2007b). The corresponding distances are given as (D4) in Table A1.

  5. Kinman et al. (2007b) gave a cubic expression for the infrared absolute magnitude MK in terms of the (VK)0 colours. The calibration was derived from the colour–magnitude diagrams of the globular clusters M3 and M13 given by Valenti et al. (2004). This cubic is given as their equation (3) by Kinman et al. (2007b). The corresponding distances are given as (D5) in Table A1.

Methods (1) and (2) are only available for the stars with unsaturated SDSS magnitudes (roughly V > 14.5). Methods (3) and (4) are possible for all stars in the sample while method (5) is only used for the brighter stars whose 2MASS K magnitudes have errors less than 0.15 mag. We assume that the distances D2 are the most reliable because they are based on the recent homogeneous photometry of 11 globular clusters that have well-established moduli. For each star, and for each method, we have computed a ratio F that equals the distance for that method divided by its distance D2. These ratios are plotted for each method as a function of (BV)0 in Fig. A6. The values of F for distances D4 (Fig. 6c) are always less than those for D3 (Fig. 6b). This shows that method (4) is inferior to method (3) in determining MV as a function of (BV)0; the distances D4 are therefore not considered further. Smoothed curves were fitted to the plots in Fig. A6(a), (b) and (c) and these have the following analytic expressions as a function of (BV)0:
 Here, for example, the expression F1 is the quantity by which the distance D1 must be divided to get it on to the scale of the distances called D2. There is no F4 because we do not use the distance called D4. The distances D1. D2, D3 and D5 were then divided, respectively, by F1, F2, F3 and F5 to give the corrected distances d1, d2, d3 and d5. The adopted distance (D) is the unweighted mean of these corrected distances. All these distances are given in Table A1.
The ordinate is the ratio of the distance of a star by a given method divided by the distance (D2) for the same star as a function of (B−V)0. (a) Distances D1 given by Smith et al. (2010). (b) Distances (D3) derived from the cubic in (B−V)0 given by Preston, Shectman & Beers (1991). (c) Distances D4 are derived from the cubic fit in (B−V)0 for M3 and M13. (d) Distances (D5) derived from a cubic fit in (V−K)0. For further details see text.
Figure A6

The ordinate is the ratio of the distance of a star by a given method divided by the distance (D2) for the same star as a function of (BV)0. (a) Distances D1 given by Smith et al. (2010). (b) Distances (D3) derived from the cubic in (BV)0 given by Preston, Shectman & Beers (1991). (c) Distances D4 are derived from the cubic fit in (BV)0 for M3 and M13. (d) Distances (D5) derived from a cubic fit in (VK)0. For further details see text.

We assume that the random error in these distances is given by the rms scatter among the distances d1, d2, d3 and d5. This is given (in kpc) in Column 15 in Table A1. We have used these errors in computing the error bars of the velocities and angular momenta (L, Lz) that are distant-dependent. It remains to consider the effect of possible systematic errors. The question is whether these systematic errors depend on distance. If they do, there would be systematic errors in our velocities and angular momenta that would produce errors in these quantities as a function of galactocentric distance. The most likely source of a distance-dependent error is in the absolute magnitudes and proper motions since neither the radial velocity, apparent magnitude nor extinction are likely to have distance-dependent errors. Such an error could arise if the mean colours of our BHB stars varied with distance. Using only the stars that we used in our velocity and angular momentum analyses, we find a mean (BV)0 of +0.61 ± 0.018, +0.075 ± 0.012 and +0.081 ± 0.012 mag at mean galactocentric distances of 10.6, 13.4 and 15.9 kpc, respectively. These data would be compatible with a difference of say 0.02 mag in the mean (BV)0 between galactocentric distances of 10.6 and 13.4 kpc. This corresponds to a difference in 0.05 mag in the absolute magnitude or 2.3 per cent in the distance. This error is far too small to account for the change in galactic rotation (V) of about 100 km s−1 between these two distances. Likewise, it would require a systematic difference of –1.6 mas yr−1 between the proper motions of the stars at V= 13.0 and those at V= 15.0 to produce the differences in galactic rotation (V) that we observe (Section 5.2). This seems unlikely since the galactic U and W velocities show no dependence on distance.

APPENDIX B: RR LYRAE STARS

B1 The new RR Lyrae stars

Seven of the stars listed in Table 4 (identified by the number 7 in the Notes column) have not previously bee identified as RR Lyrae stars. All are of low amplitude and all but one are of Bailey type c. Their V and BV light curves are given in Figs B1 and B2. The ephemerides and photometric data for these variables are given in Table B1. The observations were made in the same way as those described by Kinman & Brown (2010) but in general there are fewer observations than for the stars observed in that paper. This is particularly true of AF-194, AF-197, AF-400 and AF-430. Consequently, the periods of these stars are less reliable than we would wish. In assigning periods and Bailey types, however, we took into account the mean (BV) colours which are well determined and which can be used to distinguish between Bailey type c and Bailey type ab. These Bailey types are therefore more certain than would be inferred from the V light curves alone.

The V and (B−V) light curves for the RR Lyrae variable: (a) AF-194, (b) AF-197 and (c) AF-316. Further information on these stars is given in Table B1.
Figure B1

The V and (BV) light curves for the RR Lyrae variable: (a) AF-194, (b) AF-197 and (c) AF-316. Further information on these stars is given in Table B1.

The V and (B−V) light curves for the RR Lyrae variable: (a) RR7-101, (b) AF-400, (c) AF-430 and (d) RR7-086. Further information on these stars is given in Table B1.
Figure B2

The V and (BV) light curves for the RR Lyrae variable: (a) RR7-101, (b) AF-400, (c) AF-430 and (d) RR7-086. Further information on these stars is given in Table B1.

B2 The distances of the RR Lyrae stars

We use three methods to estimate the distances of our RR Lyrae stars; details of these methods are given in Kinman et al. (2007b).

  1. The absolute visual magnitude MV is derived in terms of the metallicity [Fe/H] using coefficients given by Clementini et al. (2003):
    If [Fe/H] is not known, it is assumed to be −1.6. An error of ±0.5 dex in [Fe/H] leads to an error of ±0.1 mag in the distance modulus and about 5 per cent in the parallax.
  2. The infrared absolute magnitude (MK) is derived from [Fe/H] and the period (P) (in days) in the form given by Nemec, Nemec & Lutz (1994):
    The periods of the Bailey type c stars must be ‘fundamentalized’. For this purpose, we assumed that the ratio of the period of the first overtone (c type) to that of the fundamental (ab type) is 0.745 (Clement et al. 2001).
  3. The infrared magnitude (MK) can be derived from (VK)0 and the metallicity [Fe/H]:
    If [Fe/H] is not known, it is assumed to be −1.6. In this case the relation is the same as that used in method (5) for the BHB stars.

In a recent review, Feast (2011) has shown that the current calibration of RR Lyrae absolute magnitudes is not satisfactory: there is a significant spread in the coefficients and zero-points derived from trigonometric parallaxes, statistical parallaxes and pulsation parallaxes. It is hoped that, in the future, new trigonometric parallaxes such as those recently given by Benedict et al. (2011) will eventually improve this situation. The expressions for the RR Lyrae absolute magnitudes given above are the best that we have available now but may well require some correction in the future.

Distances Da, Db and Dc were derived for our RR Lyrae stars using methods (1), (2) and (3), respectively, and are given in Table B2. There are 31 of these RR Lyrae stars that have both radial velocities and proper motions and that are closer than 17 kpc (the limit that we have taken for the proper motions to yield meaningful velocities). Of these 31 stars, 19 have known [Fe/H] and 26 have K magnitudes. As noted above, distances can be derived even if [Fe/H] is not known by assuming that it is −1.6, although this involves a loss of accuracy. We need the distances of the RR Lyrae stars to be as closely as possible on the same scale as that of the BHB stars. Now method (3) for the RR Lyraes (with [Fe/H] =−1.6) is the same as method (5) for the BHB stars [with (BV)0=+0.18]. We have therefore converted the distances Da and Db to the scale of the distances Dc by dividing them by the factors Ra and Rb, respectively. Ra is the mean value of Da/Dc and equals 1.0228 ± 0.0005. Rb is the mean value of Db/Dc and equals 1.0468 ± 0.0017. After we have divided the distances Da by 1.0228 and the distances Db by 1.0468, they will be on the scale of Dc which is the same as the BHB scale D5. Now the BHB stars were all adjusted to be on the scale of BHB distance D2. To get the RR Lyrae star’s distances on this scale, they must further be divided by the factor F5 (see Section A3). This factor (F5) must be evaluated at the blue edge of the instability gap [(BV)0=+0.18] where it has the value 0.953. We call the final values of these RR Lyrae distances da, db and dc. All these distances and our adopted distance (D) which is the unweighted mean of da, db and dc are given in Table B2.

Table B2

Distance estimates of RR Lyrae stars. Adopted distance is D.

No.StarDa (kpc)Db (kpc)Dc (kpc)da (kpc)db (kpc)dc (kpc)D (kpc)Error (kpc)
1V385 Aur22.16322.73822.741.14
2V386 Aur16.36216.78616.790.84
3V387 Aur17.13117.57517.580.88
4V389 Aur23.28823.89223.891.19
5VX Lyn18.29318.76718.770.94
6VY Lyn10.1579.8519.97210.4209.87510.46410.250.23
7VZ Lyn12.52712.85212.850.64
8WX Lyn17.34717.79717.800.89
9AS Lyn33.03533.89133.891.69
10WZ Lyn5.3525.6745.2305.4915.6885.48805.560.08
11XZ Lyn13.47313.82213.820.69
12TW Lyn1.6441.6511.6441.6871.6551.72501.690.02
13YY Lyn7.3077.5667.0877.4967.5847.43707.510.05
14YZ Lyn20.67521.21121.211.06
15AU Lyn27.49728.21028.211.41
16ZZ Lyn10.44812.34410.10210.71912.37410.60011.230.07
17RW Lyn2.8102.5982.7612.8832.6042.89702.790.12
18AV Lyn15.66816.07416.070.80
19AC Lyn13.77414.13114.130.71
20AD Lyn10.53612.49410.14410.80912.52410.64411.330.74
21AW Lyn12.59411.71812.36312.92111.74612.97312.550.49
22AX Lyn37.56038.53438.531.92
23AY Lyn17.56218.01718.020.90
24P 54-137.9536.6487.7978.1596.6648.18207.670.63
25AZ Lyn15.46515.86615.870.79
26BB Lyn16.92217.36117.360.87
27BC Lyn18.48118.96018.960.95
28AF 19410.83211.63710.61511.11311.66511.13911.310.22
29AF 1979.3969.1779.2239.6409.1999.67809.510.19
30DQ Lyn1.4161.7071.3871.4531.7111.45501.540.10
31RR7 0326.0725.9635.9556.2295.9776.24906.150.11
32RR7 0348.6369.1038.3148.8609.1258.72408.900.14
33P 81 1295.9546.0305.8026.1086.0456.08806.080.02
34AF Lyn12.43312.25312.20912.75512.28212.81112.620.21
35P 82 065.1485.2234.9845.2815.2365.23005.250.02
36AI Lyn19.79920.31220.311.02
37AK Lyn11.91711.03311.70612.22611.06012.28311.860.49
38RR7-0793.8093.6883.7353.9083.6973.91903.840.09
39RR7-08612.77915.00112.27413.11015.03712.87913.680.84
40AL Lyn15.54613.41915.17315.94913.45115.92115.111.01
41AM Lyn21.67822.24022.241.11
42P 82-327.7858.5437.5927.9878.5647.96608.170.24
43AF 31612.75712.21812.51913.08812.24713.13612.820.35
44RR7-10112.96712.23912.72313.30312.26813.35012.970.43
45TT Lyn0.6990.6940.6890.7170.6960.72300.710.01
46AF 4005.0745.9154.9295.2065.9295.17205.440.30
47AF 4307.3557.6977.1277.5467.7167.47807.580.09
4816927-1233.3263.5473.2483.4123.5563.40803.460.06
49X LMi2.2242.2932.1882.2822.2992.29602.290.01
50AG UMa9.3989.4539.2059.6429.4769.65909.590.07
51BK UMa2.8692.7042.8252.9432.7112.96402.870.10
52AK UMa12.73613.91512.50313.06613.94813.12013.380.35
53AO UMa9.89010.8069.69210.14610.83210.17010.380.28
54BN UMa3.8714.1363.7943.9714.1463.98104.030.07
55CK UMa4.9844.6864.8865.1134.6975.12704.980.17
No.StarDa (kpc)Db (kpc)Dc (kpc)da (kpc)db (kpc)dc (kpc)D (kpc)Error (kpc)
1V385 Aur22.16322.73822.741.14
2V386 Aur16.36216.78616.790.84
3V387 Aur17.13117.57517.580.88
4V389 Aur23.28823.89223.891.19
5VX Lyn18.29318.76718.770.94
6VY Lyn10.1579.8519.97210.4209.87510.46410.250.23
7VZ Lyn12.52712.85212.850.64
8WX Lyn17.34717.79717.800.89
9AS Lyn33.03533.89133.891.69
10WZ Lyn5.3525.6745.2305.4915.6885.48805.560.08
11XZ Lyn13.47313.82213.820.69
12TW Lyn1.6441.6511.6441.6871.6551.72501.690.02
13YY Lyn7.3077.5667.0877.4967.5847.43707.510.05
14YZ Lyn20.67521.21121.211.06
15AU Lyn27.49728.21028.211.41
16ZZ Lyn10.44812.34410.10210.71912.37410.60011.230.07
17RW Lyn2.8102.5982.7612.8832.6042.89702.790.12
18AV Lyn15.66816.07416.070.80
19AC Lyn13.77414.13114.130.71
20AD Lyn10.53612.49410.14410.80912.52410.64411.330.74
21AW Lyn12.59411.71812.36312.92111.74612.97312.550.49
22AX Lyn37.56038.53438.531.92
23AY Lyn17.56218.01718.020.90
24P 54-137.9536.6487.7978.1596.6648.18207.670.63
25AZ Lyn15.46515.86615.870.79
26BB Lyn16.92217.36117.360.87
27BC Lyn18.48118.96018.960.95
28AF 19410.83211.63710.61511.11311.66511.13911.310.22
29AF 1979.3969.1779.2239.6409.1999.67809.510.19
30DQ Lyn1.4161.7071.3871.4531.7111.45501.540.10
31RR7 0326.0725.9635.9556.2295.9776.24906.150.11
32RR7 0348.6369.1038.3148.8609.1258.72408.900.14
33P 81 1295.9546.0305.8026.1086.0456.08806.080.02
34AF Lyn12.43312.25312.20912.75512.28212.81112.620.21
35P 82 065.1485.2234.9845.2815.2365.23005.250.02
36AI Lyn19.79920.31220.311.02
37AK Lyn11.91711.03311.70612.22611.06012.28311.860.49
38RR7-0793.8093.6883.7353.9083.6973.91903.840.09
39RR7-08612.77915.00112.27413.11015.03712.87913.680.84
40AL Lyn15.54613.41915.17315.94913.45115.92115.111.01
41AM Lyn21.67822.24022.241.11
42P 82-327.7858.5437.5927.9878.5647.96608.170.24
43AF 31612.75712.21812.51913.08812.24713.13612.820.35
44RR7-10112.96712.23912.72313.30312.26813.35012.970.43
45TT Lyn0.6990.6940.6890.7170.6960.72300.710.01
46AF 4005.0745.9154.9295.2065.9295.17205.440.30
47AF 4307.3557.6977.1277.5467.7167.47807.580.09
4816927-1233.3263.5473.2483.4123.5563.40803.460.06
49X LMi2.2242.2932.1882.2822.2992.29602.290.01
50AG UMa9.3989.4539.2059.6429.4769.65909.590.07
51BK UMa2.8692.7042.8252.9432.7112.96402.870.10
52AK UMa12.73613.91512.50313.06613.94813.12013.380.35
53AO UMa9.89010.8069.69210.14610.83210.17010.380.28
54BN UMa3.8714.1363.7943.9714.1463.98104.030.07
55CK UMa4.9844.6864.8865.1134.6975.12704.980.17
Table B2

Distance estimates of RR Lyrae stars. Adopted distance is D.

No.StarDa (kpc)Db (kpc)Dc (kpc)da (kpc)db (kpc)dc (kpc)D (kpc)Error (kpc)
1V385 Aur22.16322.73822.741.14
2V386 Aur16.36216.78616.790.84
3V387 Aur17.13117.57517.580.88
4V389 Aur23.28823.89223.891.19
5VX Lyn18.29318.76718.770.94
6VY Lyn10.1579.8519.97210.4209.87510.46410.250.23
7VZ Lyn12.52712.85212.850.64
8WX Lyn17.34717.79717.800.89
9AS Lyn33.03533.89133.891.69
10WZ Lyn5.3525.6745.2305.4915.6885.48805.560.08
11XZ Lyn13.47313.82213.820.69
12TW Lyn1.6441.6511.6441.6871.6551.72501.690.02
13YY Lyn7.3077.5667.0877.4967.5847.43707.510.05
14YZ Lyn20.67521.21121.211.06
15AU Lyn27.49728.21028.211.41
16ZZ Lyn10.44812.34410.10210.71912.37410.60011.230.07
17RW Lyn2.8102.5982.7612.8832.6042.89702.790.12
18AV Lyn15.66816.07416.070.80
19AC Lyn13.77414.13114.130.71
20AD Lyn10.53612.49410.14410.80912.52410.64411.330.74
21AW Lyn12.59411.71812.36312.92111.74612.97312.550.49
22AX Lyn37.56038.53438.531.92
23AY Lyn17.56218.01718.020.90
24P 54-137.9536.6487.7978.1596.6648.18207.670.63
25AZ Lyn15.46515.86615.870.79
26BB Lyn16.92217.36117.360.87
27BC Lyn18.48118.96018.960.95
28AF 19410.83211.63710.61511.11311.66511.13911.310.22
29AF 1979.3969.1779.2239.6409.1999.67809.510.19
30DQ Lyn1.4161.7071.3871.4531.7111.45501.540.10
31RR7 0326.0725.9635.9556.2295.9776.24906.150.11
32RR7 0348.6369.1038.3148.8609.1258.72408.900.14
33P 81 1295.9546.0305.8026.1086.0456.08806.080.02
34AF Lyn12.43312.25312.20912.75512.28212.81112.620.21
35P 82 065.1485.2234.9845.2815.2365.23005.250.02
36AI Lyn19.79920.31220.311.02
37AK Lyn11.91711.03311.70612.22611.06012.28311.860.49
38RR7-0793.8093.6883.7353.9083.6973.91903.840.09
39RR7-08612.77915.00112.27413.11015.03712.87913.680.84
40AL Lyn15.54613.41915.17315.94913.45115.92115.111.01
41AM Lyn21.67822.24022.241.11
42P 82-327.7858.5437.5927.9878.5647.96608.170.24
43AF 31612.75712.21812.51913.08812.24713.13612.820.35
44RR7-10112.96712.23912.72313.30312.26813.35012.970.43
45TT Lyn0.6990.6940.6890.7170.6960.72300.710.01
46AF 4005.0745.9154.9295.2065.9295.17205.440.30
47AF 4307.3557.6977.1277.5467.7167.47807.580.09
4816927-1233.3263.5473.2483.4123.5563.40803.460.06
49X LMi2.2242.2932.1882.2822.2992.29602.290.01
50AG UMa9.3989.4539.2059.6429.4769.65909.590.07
51BK UMa2.8692.7042.8252.9432.7112.96402.870.10
52AK UMa12.73613.91512.50313.06613.94813.12013.380.35
53AO UMa9.89010.8069.69210.14610.83210.17010.380.28
54BN UMa3.8714.1363.7943.9714.1463.98104.030.07
55CK UMa4.9844.6864.8865.1134.6975.12704.980.17
No.StarDa (kpc)Db (kpc)Dc (kpc)da (kpc)db (kpc)dc (kpc)D (kpc)Error (kpc)
1V385 Aur22.16322.73822.741.14
2V386 Aur16.36216.78616.790.84
3V387 Aur17.13117.57517.580.88
4V389 Aur23.28823.89223.891.19
5VX Lyn18.29318.76718.770.94
6VY Lyn10.1579.8519.97210.4209.87510.46410.250.23
7VZ Lyn12.52712.85212.850.64
8WX Lyn17.34717.79717.800.89
9AS Lyn33.03533.89133.891.69
10WZ Lyn5.3525.6745.2305.4915.6885.48805.560.08
11XZ Lyn13.47313.82213.820.69
12TW Lyn1.6441.6511.6441.6871.6551.72501.690.02
13YY Lyn7.3077.5667.0877.4967.5847.43707.510.05
14YZ Lyn20.67521.21121.211.06
15AU Lyn27.49728.21028.211.41
16ZZ Lyn10.44812.34410.10210.71912.37410.60011.230.07
17RW Lyn2.8102.5982.7612.8832.6042.89702.790.12
18AV Lyn15.66816.07416.070.80
19AC Lyn13.77414.13114.130.71
20AD Lyn10.53612.49410.14410.80912.52410.64411.330.74
21AW Lyn12.59411.71812.36312.92111.74612.97312.550.49
22AX Lyn37.56038.53438.531.92
23AY Lyn17.56218.01718.020.90
24P 54-137.9536.6487.7978.1596.6648.18207.670.63
25AZ Lyn15.46515.86615.870.79
26BB Lyn16.92217.36117.360.87
27BC Lyn18.48118.96018.960.95
28AF 19410.83211.63710.61511.11311.66511.13911.310.22
29AF 1979.3969.1779.2239.6409.1999.67809.510.19
30DQ Lyn1.4161.7071.3871.4531.7111.45501.540.10
31RR7 0326.0725.9635.9556.2295.9776.24906.150.11
32RR7 0348.6369.1038.3148.8609.1258.72408.900.14
33P 81 1295.9546.0305.8026.1086.0456.08806.080.02
34AF Lyn12.43312.25312.20912.75512.28212.81112.620.21
35P 82 065.1485.2234.9845.2815.2365.23005.250.02
36AI Lyn19.79920.31220.311.02
37AK Lyn11.91711.03311.70612.22611.06012.28311.860.49
38RR7-0793.8093.6883.7353.9083.6973.91903.840.09
39RR7-08612.77915.00112.27413.11015.03712.87913.680.84
40AL Lyn15.54613.41915.17315.94913.45115.92115.111.01
41AM Lyn21.67822.24022.241.11
42P 82-327.7858.5437.5927.9878.5647.96608.170.24
43AF 31612.75712.21812.51913.08812.24713.13612.820.35
44RR7-10112.96712.23912.72313.30312.26813.35012.970.43
45TT Lyn0.6990.6940.6890.7170.6960.72300.710.01
46AF 4005.0745.9154.9295.2065.9295.17205.440.30
47AF 4307.3557.6977.1277.5467.7167.47807.580.09
4816927-1233.3263.5473.2483.4123.5563.40803.460.06
49X LMi2.2242.2932.1882.2822.2992.29602.290.01
50AG UMa9.3989.4539.2059.6429.4769.65909.590.07
51BK UMa2.8692.7042.8252.9432.7112.96402.870.10
52AK UMa12.73613.91512.50313.06613.94813.12013.380.35
53AO UMa9.89010.8069.69210.14610.83210.17010.380.28
54BN UMa3.8714.1363.7943.9714.1463.98104.030.07
55CK UMa4.9844.6864.8865.1134.6975.12704.980.17

For the 35 RR Lyrae stars where all three distances are available, our adopted distance is the arithmetic mean of the three distances and σ is the rms scatter of a single distance. In Fig. B3 we have plotted σ/D against D for (a) the nine stars for which [Fe/H] and 〈K〉 are best determined and (b) for the remaining 26 stars for which σ is available. We see that σ/D is roughly independent of distance and less than 0.06 except for the seven numbered stars in Fig. B3(b). It seems likely that the larger σ/D of these stars is produced by larger errors in 〈K〉. In the cases where only da is available we therefore conservatively adopted σ= 0.05 D for its error. Some allowance must be made for systematic errors in our distance scale and this can only be a rough estimate based on the spread amongst the various distance estimates that we have used. In calculating the space motions we have included a systematic error of 0.015 D in quadrature with the random errors given in Tables A1 and B2.

The rms scatter (σ) in distance estimates divided by the adopted distance (D) in kpc (ordinate) versus D (abscissa). (a) Nine stars with best determined [Fe/H] and 〈K〉. (b) 26 remaining stars for which σ is available. The numbers identify the stars in Table 2. For further information on these stars, see text.
Figure B3

The rms scatter (σ) in distance estimates divided by the adopted distance (D) in kpc (ordinate) versus D (abscissa). (a) Nine stars with best determined [Fe/H] and 〈K〉. (b) 26 remaining stars for which σ is available. The numbers identify the stars in Table 2. For further information on these stars, see text.

Our distances for TT Lyn, TW Lyn and X LMi (0.71 ± 0.01; 1.69 ± 0.02; 2.20 ± 0.01 kpc) are in satisfactory agreement with those given in the recent compilation of bright RR Lyrae stars by Maintz (2005) (0.71; 1.65; 2.20 kpc).

APPENDIX C: PROPER MOTIONS

The proper motions used in this paper come from astrometric data that were assembled from the GSC-II (Lasker et al. 2008) and the SDSS DR7 (Abazajian et al. 2009; Yanny et al. 2009). Absolute proper motions were obtained by correcting the relative proper motions to a reference frame provided by a Large Quasar Reference Frame assembled by Andrei et al. (2009). Proper motions were computed for 77 million sources by combining SDSS second-epoch positions with multi-epoch positions derived from the GSC-II data base and spanning a time baseline of 40 to 50 years. As described in Spagna et al. (2010a,b), proper motion formal errors are typically in the range 2 to 3 mas yr−1 at intermediate magnitudes (16 < r < 18.5). Comparisons against a sample of 80 000 quasars indicate that the random errors of the two catalogues are, on average, comparable but that the reference system of the SDSS proper motions is affected by a global systematic rotation Δμ≃−− 0.40 mas yr−1, which is not present in the GSC-II frame. Further details concerning the data base from which our proper motions were obtained may be found in Spagna et al. (2010a,b).

Overall, we consider these proper motions to be the most accurate available for the magnitude range, formula, covered by the bulk of our objects. It is important, however, to compare our proper motions with those from other catalogues because their proper motions may be preferable for the brightest stars or for a rare case where the GSC-II + SDSS DR7 error is unusually large.

C1 Proper motions for the brighter or anomalous stars

Table C1 gives the GSC-II–SDSS proper motions for our brighter program stars together with those given by the NOMAD catalogue (Zacharias et al. 2004), the UCAC3 catalogue (Zacharias et al. 2009) and the SDSS DR7 catalogue (Abazajian et al. 2009). Following this comparison, we have chosen to use the NOMAD proper motions for the brighter BHB stars RR7-15, RR7-64, BS 16473-09 and BS 16927-22 and for the brighter RR Lyrae stars TT Lyn, X LMi and DQ LYN.8 These are all stars whose V magnitudes are brighter than 12.3.

Table C1

A comparison of the proper motions from different sources for the brightest of our program stars.

StarV〉 (mag)SDSS (DR7)NOMADUCAC3GSCII–SDSS
μα (mas yr−1)μdec (mas yr−1)μα (mas yr−1)μdec (mas yr−1)μα (mas yr−1)μdec (mas yr−1)μα (mas yr−1)μdec (mas yr−1)
RR7-1511.75−20.2 ± 1.0−35.0 ± 0.7−19.1 ± 2.0−36.0 ± 0.8−12.0 ± 3.0−43.5 ± 1.7
RR7-2312.63+07.7 ± 1.6−22.6 ± 0.7+07.6 ± 1.3−22.0 ± 0.6+09.6 ± 1.7−25.0 ± 1.4
RR7-6411.23−05.1 ± 0.7−05.4 ± 0.7−06.0 ± 1.6−05.0 ± 1.0−02.4 ± 2.9−00.2 ± 1.6
11419-0112.79−02 ± 3−15 ± 3−08.0 ± 1.0−20.1 ± 0.7−08.3 ± 3.1−17.5 ± 1.4+06.1 ± 2.2−18.3 ± 0.9
16473-0910.91−01.7 ± 0.6−00.1 ± 0.7−02.2 ± 0.9−00.3 ± 0.6+10.7 ± 3.1−17.9 ± 5.5
P 30-3814.39+02 ± 3−11 ± 3+04.1 ± 5.9−11.7 ± 5.6+29.7 ± 7.0−14.0 ± 11.9
16927-2211.18+06.8 ± 0.8−29.8 ± 0.6+06.0 ± 0.9−30.3 ± 0.7+09.2 ± 0.6−30.0 ± 1.2
RW LYN12.91+03 ± 3−18 ± 3+06.3 ± 0.7−23.4 ± 1.2+07.5 ± 1.0−23.6 ± 0.8+07.3 ± 1.7−15.7 ± 2.5
TT LYN09.84−81.9 ± 1.5−41.8 ± 0.9−84.6 ± 0.8−42.4 ± 0.7−50.2 ± 13.6−25.6 ± 9.2
TW LYN12.07−06.6 ± 5.0−01.1 ± 3.2+03.2 ± 0.8+04.3 ± 0.7+00.6 ± 3.8+02.6 ± 2.9
X LMi12.30+07.8 ± 1.3−17.3 ± 0.7+06.6 ± 1.0−16.7 ± 1.0+12.4 ± 3.2−14.0 ± 5.1
DQ LYN11.46−01.9 ± 0.8−28.7 ± 1.0−01.0 ± 1.0−29.7 ± 2.7+02.9 ± 1.8−20.5 ± 2.8
RR7-07913.44−02 ± 3−12 ± 3−15.5 ± 3.8−18.7 ± 3.6−17.8 ± 4.3−18.9 ± 4.1+01.0 ± 1.1−13.5 ± 1.2
StarV〉 (mag)SDSS (DR7)NOMADUCAC3GSCII–SDSS
μα (mas yr−1)μdec (mas yr−1)μα (mas yr−1)μdec (mas yr−1)μα (mas yr−1)μdec (mas yr−1)μα (mas yr−1)μdec (mas yr−1)
RR7-1511.75−20.2 ± 1.0−35.0 ± 0.7−19.1 ± 2.0−36.0 ± 0.8−12.0 ± 3.0−43.5 ± 1.7
RR7-2312.63+07.7 ± 1.6−22.6 ± 0.7+07.6 ± 1.3−22.0 ± 0.6+09.6 ± 1.7−25.0 ± 1.4
RR7-6411.23−05.1 ± 0.7−05.4 ± 0.7−06.0 ± 1.6−05.0 ± 1.0−02.4 ± 2.9−00.2 ± 1.6
11419-0112.79−02 ± 3−15 ± 3−08.0 ± 1.0−20.1 ± 0.7−08.3 ± 3.1−17.5 ± 1.4+06.1 ± 2.2−18.3 ± 0.9
16473-0910.91−01.7 ± 0.6−00.1 ± 0.7−02.2 ± 0.9−00.3 ± 0.6+10.7 ± 3.1−17.9 ± 5.5
P 30-3814.39+02 ± 3−11 ± 3+04.1 ± 5.9−11.7 ± 5.6+29.7 ± 7.0−14.0 ± 11.9
16927-2211.18+06.8 ± 0.8−29.8 ± 0.6+06.0 ± 0.9−30.3 ± 0.7+09.2 ± 0.6−30.0 ± 1.2
RW LYN12.91+03 ± 3−18 ± 3+06.3 ± 0.7−23.4 ± 1.2+07.5 ± 1.0−23.6 ± 0.8+07.3 ± 1.7−15.7 ± 2.5
TT LYN09.84−81.9 ± 1.5−41.8 ± 0.9−84.6 ± 0.8−42.4 ± 0.7−50.2 ± 13.6−25.6 ± 9.2
TW LYN12.07−06.6 ± 5.0−01.1 ± 3.2+03.2 ± 0.8+04.3 ± 0.7+00.6 ± 3.8+02.6 ± 2.9
X LMi12.30+07.8 ± 1.3−17.3 ± 0.7+06.6 ± 1.0−16.7 ± 1.0+12.4 ± 3.2−14.0 ± 5.1
DQ LYN11.46−01.9 ± 0.8−28.7 ± 1.0−01.0 ± 1.0−29.7 ± 2.7+02.9 ± 1.8−20.5 ± 2.8
RR7-07913.44−02 ± 3−12 ± 3−15.5 ± 3.8−18.7 ± 3.6−17.8 ± 4.3−18.9 ± 4.1+01.0 ± 1.1−13.5 ± 1.2
Table C1

A comparison of the proper motions from different sources for the brightest of our program stars.

StarV〉 (mag)SDSS (DR7)NOMADUCAC3GSCII–SDSS
μα (mas yr−1)μdec (mas yr−1)μα (mas yr−1)μdec (mas yr−1)μα (mas yr−1)μdec (mas yr−1)μα (mas yr−1)μdec (mas yr−1)
RR7-1511.75−20.2 ± 1.0−35.0 ± 0.7−19.1 ± 2.0−36.0 ± 0.8−12.0 ± 3.0−43.5 ± 1.7
RR7-2312.63+07.7 ± 1.6−22.6 ± 0.7+07.6 ± 1.3−22.0 ± 0.6+09.6 ± 1.7−25.0 ± 1.4
RR7-6411.23−05.1 ± 0.7−05.4 ± 0.7−06.0 ± 1.6−05.0 ± 1.0−02.4 ± 2.9−00.2 ± 1.6
11419-0112.79−02 ± 3−15 ± 3−08.0 ± 1.0−20.1 ± 0.7−08.3 ± 3.1−17.5 ± 1.4+06.1 ± 2.2−18.3 ± 0.9
16473-0910.91−01.7 ± 0.6−00.1 ± 0.7−02.2 ± 0.9−00.3 ± 0.6+10.7 ± 3.1−17.9 ± 5.5
P 30-3814.39+02 ± 3−11 ± 3+04.1 ± 5.9−11.7 ± 5.6+29.7 ± 7.0−14.0 ± 11.9
16927-2211.18+06.8 ± 0.8−29.8 ± 0.6+06.0 ± 0.9−30.3 ± 0.7+09.2 ± 0.6−30.0 ± 1.2
RW LYN12.91+03 ± 3−18 ± 3+06.3 ± 0.7−23.4 ± 1.2+07.5 ± 1.0−23.6 ± 0.8+07.3 ± 1.7−15.7 ± 2.5
TT LYN09.84−81.9 ± 1.5−41.8 ± 0.9−84.6 ± 0.8−42.4 ± 0.7−50.2 ± 13.6−25.6 ± 9.2
TW LYN12.07−06.6 ± 5.0−01.1 ± 3.2+03.2 ± 0.8+04.3 ± 0.7+00.6 ± 3.8+02.6 ± 2.9
X LMi12.30+07.8 ± 1.3−17.3 ± 0.7+06.6 ± 1.0−16.7 ± 1.0+12.4 ± 3.2−14.0 ± 5.1
DQ LYN11.46−01.9 ± 0.8−28.7 ± 1.0−01.0 ± 1.0−29.7 ± 2.7+02.9 ± 1.8−20.5 ± 2.8
RR7-07913.44−02 ± 3−12 ± 3−15.5 ± 3.8−18.7 ± 3.6−17.8 ± 4.3−18.9 ± 4.1+01.0 ± 1.1−13.5 ± 1.2
StarV〉 (mag)SDSS (DR7)NOMADUCAC3GSCII–SDSS
μα (mas yr−1)μdec (mas yr−1)μα (mas yr−1)μdec (mas yr−1)μα (mas yr−1)μdec (mas yr−1)μα (mas yr−1)μdec (mas yr−1)
RR7-1511.75−20.2 ± 1.0−35.0 ± 0.7−19.1 ± 2.0−36.0 ± 0.8−12.0 ± 3.0−43.5 ± 1.7
RR7-2312.63+07.7 ± 1.6−22.6 ± 0.7+07.6 ± 1.3−22.0 ± 0.6+09.6 ± 1.7−25.0 ± 1.4
RR7-6411.23−05.1 ± 0.7−05.4 ± 0.7−06.0 ± 1.6−05.0 ± 1.0−02.4 ± 2.9−00.2 ± 1.6
11419-0112.79−02 ± 3−15 ± 3−08.0 ± 1.0−20.1 ± 0.7−08.3 ± 3.1−17.5 ± 1.4+06.1 ± 2.2−18.3 ± 0.9
16473-0910.91−01.7 ± 0.6−00.1 ± 0.7−02.2 ± 0.9−00.3 ± 0.6+10.7 ± 3.1−17.9 ± 5.5
P 30-3814.39+02 ± 3−11 ± 3+04.1 ± 5.9−11.7 ± 5.6+29.7 ± 7.0−14.0 ± 11.9
16927-2211.18+06.8 ± 0.8−29.8 ± 0.6+06.0 ± 0.9−30.3 ± 0.7+09.2 ± 0.6−30.0 ± 1.2
RW LYN12.91+03 ± 3−18 ± 3+06.3 ± 0.7−23.4 ± 1.2+07.5 ± 1.0−23.6 ± 0.8+07.3 ± 1.7−15.7 ± 2.5
TT LYN09.84−81.9 ± 1.5−41.8 ± 0.9−84.6 ± 0.8−42.4 ± 0.7−50.2 ± 13.6−25.6 ± 9.2
TW LYN12.07−06.6 ± 5.0−01.1 ± 3.2+03.2 ± 0.8+04.3 ± 0.7+00.6 ± 3.8+02.6 ± 2.9
X LMi12.30+07.8 ± 1.3−17.3 ± 0.7+06.6 ± 1.0−16.7 ± 1.0+12.4 ± 3.2−14.0 ± 5.1
DQ LYN11.46−01.9 ± 0.8−28.7 ± 1.0−01.0 ± 1.0−29.7 ± 2.7+02.9 ± 1.8−20.5 ± 2.8
RR7-07913.44−02 ± 3−12 ± 3−15.5 ± 3.8−18.7 ± 3.6−17.8 ± 4.3−18.9 ± 4.1+01.0 ± 1.1−13.5 ± 1.2

Fig. C1 gives separate plots for the proper motions in RA and declination for the GSC-II–SDSS against those given by the SDSS DR7. Both catalogues are based on quite similar material [i.e. first epochs from the Palomar Schmidt Sky Survey (POSS) photographic plates and second epochs from the SDSS measurements], but they were processed and calibrated in different and independent ways. The plot shows good agreement in general at the milliarcsec per year level except for the proper motion in RA for the BHB star P 30-38. We have preferred the SDSS DR7 proper motion because it roughly agrees with that given by the NOMAD catalogue and because the errors in the GSC-II–SDSS catalogue for this star are unusually large.

A comparison between the GSCII–SDSS proper motions (ordinate) and those given in the SDSS DR7 catalogue (abscissa). The plot on the left is for proper motions in RA and that on the right is for proper motions in declination. The units are milliarcsec per year. The proper motions of the BHB stars are shown by blue filled circles and those of the RR Lyrae stars by red crosses.
Figure C1

A comparison between the GSCII–SDSS proper motions (ordinate) and those given in the SDSS DR7 catalogue (abscissa). The plot on the left is for proper motions in RA and that on the right is for proper motions in declination. The units are milliarcsec per year. The proper motions of the BHB stars are shown by blue filled circles and those of the RR Lyrae stars by red crosses.

APPENDIX D: THICK DISC

Fig. D1 shows the L versus Lz plot for the thick disc stars within 2 kpc from Bensby et al. (2011) (crosses) and the thick disc stars within 0.5 kpc (ages 8 to 11 Gyr and −0.4 < [Fe/H] < −0.5) from the Geneva–Copenhagen Survey of the Solar Neighbourhood III (Holmberg, Nordström & Andersen 2009)(small black open circles); Most of these stars have L < 650 kpc km s−1 and 1100 < Lz < 2000 kpc km s−1; we have used these limits to define the location of stars that belong to the thick disc.9 There is a strong concentration of local RR Lyrae stars (red circles) in this location but rather few local BHB stars (Fig. D1); these stars are listed in Table D1. Table D2 gives the mean properties of the 46 RR Lyrae stars in this thick disc location: five stars (11 per cent) have [Fe/H] ≤−1.50 and have a high probability of being halo stars; 19 (41 per cent) have [Fe/H] > −0.5 and can definitely be called disc stars. The remaining 22 (48 per cent) have intermediate [Fe/H] (−0.5 > [Fe/H] > −1.5) and mean values of their orbital eccentricity and maximum orbital height above the Galactic plane (zmax) and angular momentum L that lie between those of the stars with [Fe/H] > −0.5 and those with [Fe/H] < −1.5. All of the 19 RR Lyrae stars with [Fe/H] > −0.7 and 73 per cent of the 22 with −0.7 > [Fe/H] > −1.5 have L < 325 kpc km s−1; consequently ∼82 per cent of the likely thick disc stars, those with [Fe/H] > −1.5, should have L < 325 kpc km s−1 and 1100 < Lz < 2000 kpc km s−1. The isolation of a purer sample of disc stars requires additional chemical or kinematic information. Only three local BHB stars (within 1 kpc) have L < 650 kpc km s−1 and 1100 < Lz < 2000 kpc km s−1 and two of these have [Fe/H] < −2.0 and so are almost certainly halo stars. Thus, unlike RR Lyrae stars, BHB stars do not have a strong disc component in the solar neighbourhood as was found by Kinman, Morrison & Brown (2009).

Angular momenta L⊥ versus Lz. RR Lyrae stars within 1 kpc are shown by red filled circles. Open circles are stars within 500 pc, age 8 to 11 Gyr, −0.4 > [Fe/H] > −0.5 taken from the Geneva–Copenhagen Survey (Holmberg et al. 2009). Crosses are thick disc stars within 2 kpc taken from Bensby et al. (2011). The large black filled circle is the star Arcturus. The black full and dotted contours are taken from fig. 3 of Morrison et al. (2009). The magenta box shows the adopted location of the thick disc stars.
Figure D1

Angular momenta L versus Lz. RR Lyrae stars within 1 kpc are shown by red filled circles. Open circles are stars within 500 pc, age 8 to 11 Gyr, −0.4 > [Fe/H] > −0.5 taken from the Geneva–Copenhagen Survey (Holmberg et al. 2009). Crosses are thick disc stars within 2 kpc taken from Bensby et al. (2011). The large black filled circle is the star Arcturus. The black full and dotted contours are taken from fig. 3 of Morrison et al. (2009). The magenta box shows the adopted location of the thick disc stars.

Table D1

Candidates for thick disc RR Lyrae and BHB stars with distances (D) within 2 kpc.

D < 1 kpc star[Fe/H]SEcc.zmaxLLz1 < D < 2 kpc star[Fe/H]SEcc.zmaxLLz
RR LYRAE:RR LYRAE:
FW LUP−0.20(1)0.060.130681607CN LYR−0.58(1)0.160.32661846
KX LYR−0.46(2)0.310.410691561CG PEG−0.50(1)0.030.39871736
DX DEL−0.50(1)0.220.230731594HH PUP−0.50(1)0.120.351221815
SW DRA−1.12(1)0.420.711071176ST OPH−1.30(2)0.100.561291514
AV PEG−0.36(1)0.270.391291287TW HER−0.88(1)0.130.611391796
v494 SCO−1.01(2)0.120.211381548SS CNC−0.56(1)0.180.831592009
RS BOO−0.62(1)0.170.941911971TW LYN−0.66(1)0.212.131702276
SW AND−0.41(1)0.130.471931692TZ AQR−1.24(1)0.201.391931200
DH PEG−1.24(2)0.270.522071338Z MIC−1.10(1)0.391.252101196
AR PER−0.57(1)0.060.402261987UW OCT−0.49(2)0.471.582101170
UY CYG−0.95(1)0.110.232401630EZ LYR−1.29(1)0.420.651761309
AN SER−0.39(1)0.100.842451440RR LEO−1.51(1)0.381.042181256
v690 SCO−1.16(2)0.190.482481405RR GEM−0.55(1)0.180.732252152
DM CYG−0.57(1)0.130.482051890AA CMI−0.15(1)0.090.432251978
XZ DRA−0.89(1)0.100.682991746AV SER−1.20(3)0.110.862301605
v445 OPH−0.19(2)0.110.813881419RW ARI−1.16(2)0.261.442381639
T SEX−1.33(1)0.301.184311255U PIC−0.72(1)0.091.012421885
UU VIR−0.87(2)0.521.714391142BS APS−1.33(2)0.301.122641852
RX ERI−1.33(1)0.001.676281654CP AQR−0.77(1)0.311.072781308
W CVN−1.22(1)0.292.476431132RW DRA−1.55(2)0.601.112801100
RW TRA−0.13(1)0.140.783211605
BHB:AT SER−2.03(1)0.161.473801137
HD 4850−1.18(4)3571311BR AQR−0.74(1)0.111.654261473
HD 8376−2.82(4)5011173VV PEG−1.88(2)0.262.554951575
BD +01 0548−2.23(4)2991794RV SEX−1.10(2)0.402.145511226
BO AQR−1.80(2)0.461.822571159
D < 1 kpc star[Fe/H]SEcc.zmaxLLz1 < D < 2 kpc star[Fe/H]SEcc.zmaxLLz
RR LYRAE:RR LYRAE:
FW LUP−0.20(1)0.060.130681607CN LYR−0.58(1)0.160.32661846
KX LYR−0.46(2)0.310.410691561CG PEG−0.50(1)0.030.39871736
DX DEL−0.50(1)0.220.230731594HH PUP−0.50(1)0.120.351221815
SW DRA−1.12(1)0.420.711071176ST OPH−1.30(2)0.100.561291514
AV PEG−0.36(1)0.270.391291287TW HER−0.88(1)0.130.611391796
v494 SCO−1.01(2)0.120.211381548SS CNC−0.56(1)0.180.831592009
RS BOO−0.62(1)0.170.941911971TW LYN−0.66(1)0.212.131702276
SW AND−0.41(1)0.130.471931692TZ AQR−1.24(1)0.201.391931200
DH PEG−1.24(2)0.270.522071338Z MIC−1.10(1)0.391.252101196
AR PER−0.57(1)0.060.402261987UW OCT−0.49(2)0.471.582101170
UY CYG−0.95(1)0.110.232401630EZ LYR−1.29(1)0.420.651761309
AN SER−0.39(1)0.100.842451440RR LEO−1.51(1)0.381.042181256
v690 SCO−1.16(2)0.190.482481405RR GEM−0.55(1)0.180.732252152
DM CYG−0.57(1)0.130.482051890AA CMI−0.15(1)0.090.432251978
XZ DRA−0.89(1)0.100.682991746AV SER−1.20(3)0.110.862301605
v445 OPH−0.19(2)0.110.813881419RW ARI−1.16(2)0.261.442381639
T SEX−1.33(1)0.301.184311255U PIC−0.72(1)0.091.012421885
UU VIR−0.87(2)0.521.714391142BS APS−1.33(2)0.301.122641852
RX ERI−1.33(1)0.001.676281654CP AQR−0.77(1)0.311.072781308
W CVN−1.22(1)0.292.476431132RW DRA−1.55(2)0.601.112801100
RW TRA−0.13(1)0.140.783211605
BHB:AT SER−2.03(1)0.161.473801137
HD 4850−1.18(4)3571311BR AQR−0.74(1)0.111.654261473
HD 8376−2.82(4)5011173VV PEG−1.88(2)0.262.554951575
BD +01 0548−2.23(4)2991794RV SEX−1.10(2)0.402.145511226
BO AQR−1.80(2)0.461.822571159

†Sources of [Fe/H]: (1) Feast et al. (2008); (2) Beers et al. (2000); (3) Layden (1994); (4) Kinman et al. (2009).

The orbital eccentricity (Ecc.) and the maximum height in kpc above the Galactic plane (zmax) are taken from Maintz & de Boer (2005). L and Lz are in units of kpc km s−1.

Table D1

Candidates for thick disc RR Lyrae and BHB stars with distances (D) within 2 kpc.

D < 1 kpc star[Fe/H]SEcc.zmaxLLz1 < D < 2 kpc star[Fe/H]SEcc.zmaxLLz
RR LYRAE:RR LYRAE:
FW LUP−0.20(1)0.060.130681607CN LYR−0.58(1)0.160.32661846
KX LYR−0.46(2)0.310.410691561CG PEG−0.50(1)0.030.39871736
DX DEL−0.50(1)0.220.230731594HH PUP−0.50(1)0.120.351221815
SW DRA−1.12(1)0.420.711071176ST OPH−1.30(2)0.100.561291514
AV PEG−0.36(1)0.270.391291287TW HER−0.88(1)0.130.611391796
v494 SCO−1.01(2)0.120.211381548SS CNC−0.56(1)0.180.831592009
RS BOO−0.62(1)0.170.941911971TW LYN−0.66(1)0.212.131702276
SW AND−0.41(1)0.130.471931692TZ AQR−1.24(1)0.201.391931200
DH PEG−1.24(2)0.270.522071338Z MIC−1.10(1)0.391.252101196
AR PER−0.57(1)0.060.402261987UW OCT−0.49(2)0.471.582101170
UY CYG−0.95(1)0.110.232401630EZ LYR−1.29(1)0.420.651761309
AN SER−0.39(1)0.100.842451440RR LEO−1.51(1)0.381.042181256
v690 SCO−1.16(2)0.190.482481405RR GEM−0.55(1)0.180.732252152
DM CYG−0.57(1)0.130.482051890AA CMI−0.15(1)0.090.432251978
XZ DRA−0.89(1)0.100.682991746AV SER−1.20(3)0.110.862301605
v445 OPH−0.19(2)0.110.813881419RW ARI−1.16(2)0.261.442381639
T SEX−1.33(1)0.301.184311255U PIC−0.72(1)0.091.012421885
UU VIR−0.87(2)0.521.714391142BS APS−1.33(2)0.301.122641852
RX ERI−1.33(1)0.001.676281654CP AQR−0.77(1)0.311.072781308
W CVN−1.22(1)0.292.476431132RW DRA−1.55(2)0.601.112801100
RW TRA−0.13(1)0.140.783211605
BHB:AT SER−2.03(1)0.161.473801137
HD 4850−1.18(4)3571311BR AQR−0.74(1)0.111.654261473
HD 8376−2.82(4)5011173VV PEG−1.88(2)0.262.554951575
BD +01 0548−2.23(4)2991794RV SEX−1.10(2)0.402.145511226
BO AQR−1.80(2)0.461.822571159
D < 1 kpc star[Fe/H]SEcc.zmaxLLz1 < D < 2 kpc star[Fe/H]SEcc.zmaxLLz
RR LYRAE:RR LYRAE:
FW LUP−0.20(1)0.060.130681607CN LYR−0.58(1)0.160.32661846
KX LYR−0.46(2)0.310.410691561CG PEG−0.50(1)0.030.39871736
DX DEL−0.50(1)0.220.230731594HH PUP−0.50(1)0.120.351221815
SW DRA−1.12(1)0.420.711071176ST OPH−1.30(2)0.100.561291514
AV PEG−0.36(1)0.270.391291287TW HER−0.88(1)0.130.611391796
v494 SCO−1.01(2)0.120.211381548SS CNC−0.56(1)0.180.831592009
RS BOO−0.62(1)0.170.941911971TW LYN−0.66(1)0.212.131702276
SW AND−0.41(1)0.130.471931692TZ AQR−1.24(1)0.201.391931200
DH PEG−1.24(2)0.270.522071338Z MIC−1.10(1)0.391.252101196
AR PER−0.57(1)0.060.402261987UW OCT−0.49(2)0.471.582101170
UY CYG−0.95(1)0.110.232401630EZ LYR−1.29(1)0.420.651761309
AN SER−0.39(1)0.100.842451440RR LEO−1.51(1)0.381.042181256
v690 SCO−1.16(2)0.190.482481405RR GEM−0.55(1)0.180.732252152
DM CYG−0.57(1)0.130.482051890AA CMI−0.15(1)0.090.432251978
XZ DRA−0.89(1)0.100.682991746AV SER−1.20(3)0.110.862301605
v445 OPH−0.19(2)0.110.813881419RW ARI−1.16(2)0.261.442381639
T SEX−1.33(1)0.301.184311255U PIC−0.72(1)0.091.012421885
UU VIR−0.87(2)0.521.714391142BS APS−1.33(2)0.301.122641852
RX ERI−1.33(1)0.001.676281654CP AQR−0.77(1)0.311.072781308
W CVN−1.22(1)0.292.476431132RW DRA−1.55(2)0.601.112801100
RW TRA−0.13(1)0.140.783211605
BHB:AT SER−2.03(1)0.161.473801137
HD 4850−1.18(4)3571311BR AQR−0.74(1)0.111.654261473
HD 8376−2.82(4)5011173VV PEG−1.88(2)0.262.554951575
BD +01 0548−2.23(4)2991794RV SEX−1.10(2)0.402.145511226
BO AQR−1.80(2)0.461.822571159

†Sources of [Fe/H]: (1) Feast et al. (2008); (2) Beers et al. (2000); (3) Layden (1994); (4) Kinman et al. (2009).

The orbital eccentricity (Ecc.) and the maximum height in kpc above the Galactic plane (zmax) are taken from Maintz & de Boer (2005). L and Lz are in units of kpc km s−1.

Table D2

Mean properties of RR Lyrae stars with 1100 < Lz < 2000 kpc km s−1 and L kpc km s−1 as a function of [Fe/H].

Range in [Fe/H]Number of stars〈[Fe/H]〉〈Ecc.〉zmax〉 (kpc)〈J〉 (km s−1 kpc)
[Fe/H] ≤−1.505−1.75 ± 0.110.37 ± 0.091.60 ± 0.31326 ± 56
−0.70 ≤ [Fe/H] ≥−1.5022−1.09 ± 0.040.23 ± 0.031.07 ± 0.13293 ± 36
[Fe/H] ≥−0.7019−0.44 ± 0.040.17 ± 0.020.67 ± 0.11177 ± 21
Range in [Fe/H]Number of stars〈[Fe/H]〉〈Ecc.〉zmax〉 (kpc)〈J〉 (km s−1 kpc)
[Fe/H] ≤−1.505−1.75 ± 0.110.37 ± 0.091.60 ± 0.31326 ± 56
−0.70 ≤ [Fe/H] ≥−1.5022−1.09 ± 0.040.23 ± 0.031.07 ± 0.13293 ± 36
[Fe/H] ≥−0.7019−0.44 ± 0.040.17 ± 0.020.67 ± 0.11177 ± 21

The orbital eccentricity (Ecc.) and the maximum height in kpc above the Galactic plane (zmax) are taken from Maintz & de Boer (2005).

Table D2

Mean properties of RR Lyrae stars with 1100 < Lz < 2000 kpc km s−1 and L kpc km s−1 as a function of [Fe/H].

Range in [Fe/H]Number of stars〈[Fe/H]〉〈Ecc.〉zmax〉 (kpc)〈J〉 (km s−1 kpc)
[Fe/H] ≤−1.505−1.75 ± 0.110.37 ± 0.091.60 ± 0.31326 ± 56
−0.70 ≤ [Fe/H] ≥−1.5022−1.09 ± 0.040.23 ± 0.031.07 ± 0.13293 ± 36
[Fe/H] ≥−0.7019−0.44 ± 0.040.17 ± 0.020.67 ± 0.11177 ± 21
Range in [Fe/H]Number of stars〈[Fe/H]〉〈Ecc.〉zmax〉 (kpc)〈J〉 (km s−1 kpc)
[Fe/H] ≤−1.505−1.75 ± 0.110.37 ± 0.091.60 ± 0.31326 ± 56
−0.70 ≤ [Fe/H] ≥−1.5022−1.09 ± 0.040.23 ± 0.031.07 ± 0.13293 ± 36
[Fe/H] ≥−0.7019−0.44 ± 0.040.17 ± 0.020.67 ± 0.11177 ± 21

The orbital eccentricity (Ecc.) and the maximum height in kpc above the Galactic plane (zmax) are taken from Maintz & de Boer (2005).

APPENDIX E: THE ANGLUAR MOMENTA L AND Lz FOR OBJECTS IN FIGS 4, 5 and 6

Tables E1, E2, E3 and E4 give the Angular Momenta L and Lz for the RR Lyrae stars at the NGP (table 2 in Kinman et al. 2007b), the BHB stars at the NGP (table 1 in Kinman et al. 2007b), Local BHB stars within 1 kpc (Kinman et al. 2000) using proper motions taken from the NOMAD catalogue (Zacharias et al. 2009) and globular clusters within 10 kpc. We have only included RR Lyrae and BHB stars at the NGP whose distances are less than 10 kpc.

Table E1

Angular momenta L and Lz for RR Lyrae stars at the NGP.

StarLLzStarLLzStarLLz
NSV54761074 ± 440−1005 ± 497SV-CVn1059 ± 228−0827 ± 238IP-Com1878 ± 780−1860 ± 780
V-Com1001 ± 454+0902 ± 1285FV-Com0786 ± 369+0611 ± 497SA57-0191041 ± 389−1089 ± 438
CD-Com6464 ± 768−4461 ± 795U-Com0690 ± 057−0723 ± 160EO-Com1743 ± 483−1889 ± 528
AF-0313935 ± 710−2075 ± 1170SW-CVn0469 ± 210+0153 ± 313TZ-CVn0903 ± 368−1010 ± 595
TU-Com0951 ± 628−1218 ± 1459DV-Com1406 ± 595−0718 ± 721SA57-0472809 ± 515−3615 ± 516
CK-Com2207 ± 407−2985 ± 459AF-7914599 ± 544+1355 ± 442MQ-Com1572 ± 393−1895 ± 501
CL-Com0868 ± 592+0165 ± 476TX-Com1101 ± 405−0993 ± 395IS-Com1472 ± 177−1642 ± 338
AT-CVn1103 ± 666−0409 ± 1106AP-CVn0875 ± 419−0254 ± 359AF-8820636 ± 315−0445 ± 390
RR-CVn0465 ± 118−1375 ± 336AF-1551078 ± 548−0310 ± 739
S-Com0560 ± 083+0147 ± 260TY-CVn0802 ± 263−0747 ± 471
StarLLzStarLLzStarLLz
NSV54761074 ± 440−1005 ± 497SV-CVn1059 ± 228−0827 ± 238IP-Com1878 ± 780−1860 ± 780
V-Com1001 ± 454+0902 ± 1285FV-Com0786 ± 369+0611 ± 497SA57-0191041 ± 389−1089 ± 438
CD-Com6464 ± 768−4461 ± 795U-Com0690 ± 057−0723 ± 160EO-Com1743 ± 483−1889 ± 528
AF-0313935 ± 710−2075 ± 1170SW-CVn0469 ± 210+0153 ± 313TZ-CVn0903 ± 368−1010 ± 595
TU-Com0951 ± 628−1218 ± 1459DV-Com1406 ± 595−0718 ± 721SA57-0472809 ± 515−3615 ± 516
CK-Com2207 ± 407−2985 ± 459AF-7914599 ± 544+1355 ± 442MQ-Com1572 ± 393−1895 ± 501
CL-Com0868 ± 592+0165 ± 476TX-Com1101 ± 405−0993 ± 395IS-Com1472 ± 177−1642 ± 338
AT-CVn1103 ± 666−0409 ± 1106AP-CVn0875 ± 419−0254 ± 359AF-8820636 ± 315−0445 ± 390
RR-CVn0465 ± 118−1375 ± 336AF-1551078 ± 548−0310 ± 739
S-Com0560 ± 083+0147 ± 260TY-CVn0802 ± 263−0747 ± 471

†The stars are identified in table 2 of Kinman et al. (2007b); L and Lz are in units of kpc km s−1.

Table E1

Angular momenta L and Lz for RR Lyrae stars at the NGP.

StarLLzStarLLzStarLLz
NSV54761074 ± 440−1005 ± 497SV-CVn1059 ± 228−0827 ± 238IP-Com1878 ± 780−1860 ± 780
V-Com1001 ± 454+0902 ± 1285FV-Com0786 ± 369+0611 ± 497SA57-0191041 ± 389−1089 ± 438
CD-Com6464 ± 768−4461 ± 795U-Com0690 ± 057−0723 ± 160EO-Com1743 ± 483−1889 ± 528
AF-0313935 ± 710−2075 ± 1170SW-CVn0469 ± 210+0153 ± 313TZ-CVn0903 ± 368−1010 ± 595
TU-Com0951 ± 628−1218 ± 1459DV-Com1406 ± 595−0718 ± 721SA57-0472809 ± 515−3615 ± 516
CK-Com2207 ± 407−2985 ± 459AF-7914599 ± 544+1355 ± 442MQ-Com1572 ± 393−1895 ± 501
CL-Com0868 ± 592+0165 ± 476TX-Com1101 ± 405−0993 ± 395IS-Com1472 ± 177−1642 ± 338
AT-CVn1103 ± 666−0409 ± 1106AP-CVn0875 ± 419−0254 ± 359AF-8820636 ± 315−0445 ± 390
RR-CVn0465 ± 118−1375 ± 336AF-1551078 ± 548−0310 ± 739
S-Com0560 ± 083+0147 ± 260TY-CVn0802 ± 263−0747 ± 471
StarLLzStarLLzStarLLz
NSV54761074 ± 440−1005 ± 497SV-CVn1059 ± 228−0827 ± 238IP-Com1878 ± 780−1860 ± 780
V-Com1001 ± 454+0902 ± 1285FV-Com0786 ± 369+0611 ± 497SA57-0191041 ± 389−1089 ± 438
CD-Com6464 ± 768−4461 ± 795U-Com0690 ± 057−0723 ± 160EO-Com1743 ± 483−1889 ± 528
AF-0313935 ± 710−2075 ± 1170SW-CVn0469 ± 210+0153 ± 313TZ-CVn0903 ± 368−1010 ± 595
TU-Com0951 ± 628−1218 ± 1459DV-Com1406 ± 595−0718 ± 721SA57-0472809 ± 515−3615 ± 516
CK-Com2207 ± 407−2985 ± 459AF-7914599 ± 544+1355 ± 442MQ-Com1572 ± 393−1895 ± 501
CL-Com0868 ± 592+0165 ± 476TX-Com1101 ± 405−0993 ± 395IS-Com1472 ± 177−1642 ± 338
AT-CVn1103 ± 666−0409 ± 1106AP-CVn0875 ± 419−0254 ± 359AF-8820636 ± 315−0445 ± 390
RR-CVn0465 ± 118−1375 ± 336AF-1551078 ± 548−0310 ± 739
S-Com0560 ± 083+0147 ± 260TY-CVn0802 ± 263−0747 ± 471

†The stars are identified in table 2 of Kinman et al. (2007b); L and Lz are in units of kpc km s−1.

Table E2

Angular Momenta L and Lz for BHB stars at the NGP.

StarLLzStarLLzStarLLz
16549-510605 ± 363−0197 ± 234AF-0780990 ± 209+1159 ± 314SA57-0011430 ± 342−1742 ± 503
AF-0060499 ± 164−0973 ± 349AF-7690646 ± 189−1423 ± 408SA57-0060404 ± 191−0280 ± 412
AF-7270916 ± 159+1812 ± 32316026-670523 ± 153−0946 ± 443SA57-0070590 ± 343−0135 ± 215
AF-7291193 ± 577−1024 ± 717AF-1000410 ± 149−0656 ± 325SA57-0170810 ± 253−1037 ± 492
AF-0291080 ± 450+1127 ± 59116466-080742 ± 480−0298 ± 555SA57-0321621 ± 604−1514 ± 670
AF-0300800 ± 392−0902 ± 514AF-1081279 ± 224−2185 ± 370SA57-0400794 ± 320+0719 ± 358
16022-260708 ± 350−0574 ± 571AF-1111796 ± 308+1059 ± 394SA57-0451025 ± 405+0035 ± 379
AF-0382494 ± 824−1878 ± 1130AF-1120509 ± 091+1126 ± 180AF-8251082 ± 407+0263 ± 247
AF-0411668 ± 511−1928 ± 635AF-1130284 ± 067−0940 ± 159AF-8410303 ± 157−-391 ± 273
AF-0450555 ± 075+1342 ± 180AF-1151571 ± 457−1484 ± 494AF-8480716 ± 085+0648 ± 176
AF-0480230 ± 123+0118 ± 31416466-151220 ± 154+1194 ± 453SA57-0661856 ± 420+0428 ± 601
AF-0521583 ± 776−0621 ± 785AF-1311329 ± 612−0759 ± 664AF-8541820 ± 584−0275 ± 456
AF-0532091 ± 768−1609 ± 828AF-1340688 ± 117+0211 ± 155SA57-0800555 ± 229+0244 ± 366
16026-280746 ± 094+1411 ± 17916031-440913 ± 182+0163 ± 457AF-8660458 ± 281−0132 ± 396
AF-7541161 ± 733−0175 ± 112015622-480502 ± 276−0436 ± 507AF-9001052 ± 378+0069 ± 203
AF-7551582 ± 762−0676 ± 106815622-070224 ± 105+0417 ± 322AF-9090534 ± 249+0144 ± 330
AF-0681160 ± 405+0257 ± 460AF-1381113 ± 299−0837 ± 494AF-9141054 ± 394−0232 ± 304
AF-0701037 ± 400−0050 ± 57015622-090652 ± 113+0379 ± 262AF-9160772 ± 284+0803 ± 274
AF-0752398 ± 809−1208 ± 760AF-7971318 ± 417−1194 ± 519AF-9180439 ± 247+0261 ± 318
AF-0761741 ± 720−0524 ± 599AF-8040397 ± 153−0258 ± 312
StarLLzStarLLzStarLLz
16549-510605 ± 363−0197 ± 234AF-0780990 ± 209+1159 ± 314SA57-0011430 ± 342−1742 ± 503
AF-0060499 ± 164−0973 ± 349AF-7690646 ± 189−1423 ± 408SA57-0060404 ± 191−0280 ± 412
AF-7270916 ± 159+1812 ± 32316026-670523 ± 153−0946 ± 443SA57-0070590 ± 343−0135 ± 215
AF-7291193 ± 577−1024 ± 717AF-1000410 ± 149−0656 ± 325SA57-0170810 ± 253−1037 ± 492
AF-0291080 ± 450+1127 ± 59116466-080742 ± 480−0298 ± 555SA57-0321621 ± 604−1514 ± 670
AF-0300800 ± 392−0902 ± 514AF-1081279 ± 224−2185 ± 370SA57-0400794 ± 320+0719 ± 358
16022-260708 ± 350−0574 ± 571AF-1111796 ± 308+1059 ± 394SA57-0451025 ± 405+0035 ± 379
AF-0382494 ± 824−1878 ± 1130AF-1120509 ± 091+1126 ± 180AF-8251082 ± 407+0263 ± 247
AF-0411668 ± 511−1928 ± 635AF-1130284 ± 067−0940 ± 159AF-8410303 ± 157−-391 ± 273
AF-0450555 ± 075+1342 ± 180AF-1151571 ± 457−1484 ± 494AF-8480716 ± 085+0648 ± 176
AF-0480230 ± 123+0118 ± 31416466-151220 ± 154+1194 ± 453SA57-0661856 ± 420+0428 ± 601
AF-0521583 ± 776−0621 ± 785AF-1311329 ± 612−0759 ± 664AF-8541820 ± 584−0275 ± 456
AF-0532091 ± 768−1609 ± 828AF-1340688 ± 117+0211 ± 155SA57-0800555 ± 229+0244 ± 366
16026-280746 ± 094+1411 ± 17916031-440913 ± 182+0163 ± 457AF-8660458 ± 281−0132 ± 396
AF-7541161 ± 733−0175 ± 112015622-480502 ± 276−0436 ± 507AF-9001052 ± 378+0069 ± 203
AF-7551582 ± 762−0676 ± 106815622-070224 ± 105+0417 ± 322AF-9090534 ± 249+0144 ± 330
AF-0681160 ± 405+0257 ± 460AF-1381113 ± 299−0837 ± 494AF-9141054 ± 394−0232 ± 304
AF-0701037 ± 400−0050 ± 57015622-090652 ± 113+0379 ± 262AF-9160772 ± 284+0803 ± 274
AF-0752398 ± 809−1208 ± 760AF-7971318 ± 417−1194 ± 519AF-9180439 ± 247+0261 ± 318
AF-0761741 ± 720−0524 ± 599AF-8040397 ± 153−0258 ± 312

†The stars are identified in table 1 of Kinman et al. (2007b); L and Lz are in units of kpc km s−1.

Table E2

Angular Momenta L and Lz for BHB stars at the NGP.

StarLLzStarLLzStarLLz
16549-510605 ± 363−0197 ± 234AF-0780990 ± 209+1159 ± 314SA57-0011430 ± 342−1742 ± 503
AF-0060499 ± 164−0973 ± 349AF-7690646 ± 189−1423 ± 408SA57-0060404 ± 191−0280 ± 412
AF-7270916 ± 159+1812 ± 32316026-670523 ± 153−0946 ± 443SA57-0070590 ± 343−0135 ± 215
AF-7291193 ± 577−1024 ± 717AF-1000410 ± 149−0656 ± 325SA57-0170810 ± 253−1037 ± 492
AF-0291080 ± 450+1127 ± 59116466-080742 ± 480−0298 ± 555SA57-0321621 ± 604−1514 ± 670
AF-0300800 ± 392−0902 ± 514AF-1081279 ± 224−2185 ± 370SA57-0400794 ± 320+0719 ± 358
16022-260708 ± 350−0574 ± 571AF-1111796 ± 308+1059 ± 394SA57-0451025 ± 405+0035 ± 379
AF-0382494 ± 824−1878 ± 1130AF-1120509 ± 091+1126 ± 180AF-8251082 ± 407+0263 ± 247
AF-0411668 ± 511−1928 ± 635AF-1130284 ± 067−0940 ± 159AF-8410303 ± 157−-391 ± 273
AF-0450555 ± 075+1342 ± 180AF-1151571 ± 457−1484 ± 494AF-8480716 ± 085+0648 ± 176
AF-0480230 ± 123+0118 ± 31416466-151220 ± 154+1194 ± 453SA57-0661856 ± 420+0428 ± 601
AF-0521583 ± 776−0621 ± 785AF-1311329 ± 612−0759 ± 664AF-8541820 ± 584−0275 ± 456
AF-0532091 ± 768−1609 ± 828AF-1340688 ± 117+0211 ± 155SA57-0800555 ± 229+0244 ± 366
16026-280746 ± 094+1411 ± 17916031-440913 ± 182+0163 ± 457AF-8660458 ± 281−0132 ± 396
AF-7541161 ± 733−0175 ± 112015622-480502 ± 276−0436 ± 507AF-9001052 ± 378+0069 ± 203
AF-7551582 ± 762−0676 ± 106815622-070224 ± 105+0417 ± 322AF-9090534 ± 249+0144 ± 330
AF-0681160 ± 405+0257 ± 460AF-1381113 ± 299−0837 ± 494AF-9141054 ± 394−0232 ± 304
AF-0701037 ± 400−0050 ± 57015622-090652 ± 113+0379 ± 262AF-9160772 ± 284+0803 ± 274
AF-0752398 ± 809−1208 ± 760AF-7971318 ± 417−1194 ± 519AF-9180439 ± 247+0261 ± 318
AF-0761741 ± 720−0524 ± 599AF-8040397 ± 153−0258 ± 312
StarLLzStarLLzStarLLz
16549-510605 ± 363−0197 ± 234AF-0780990 ± 209+1159 ± 314SA57-0011430 ± 342−1742 ± 503
AF-0060499 ± 164−0973 ± 349AF-7690646 ± 189−1423 ± 408SA57-0060404 ± 191−0280 ± 412
AF-7270916 ± 159+1812 ± 32316026-670523 ± 153−0946 ± 443SA57-0070590 ± 343−0135 ± 215
AF-7291193 ± 577−1024 ± 717AF-1000410 ± 149−0656 ± 325SA57-0170810 ± 253−1037 ± 492
AF-0291080 ± 450+1127 ± 59116466-080742 ± 480−0298 ± 555SA57-0321621 ± 604−1514 ± 670
AF-0300800 ± 392−0902 ± 514AF-1081279 ± 224−2185 ± 370SA57-0400794 ± 320+0719 ± 358
16022-260708 ± 350−0574 ± 571AF-1111796 ± 308+1059 ± 394SA57-0451025 ± 405+0035 ± 379
AF-0382494 ± 824−1878 ± 1130AF-1120509 ± 091+1126 ± 180AF-8251082 ± 407+0263 ± 247
AF-0411668 ± 511−1928 ± 635AF-1130284 ± 067−0940 ± 159AF-8410303 ± 157−-391 ± 273
AF-0450555 ± 075+1342 ± 180AF-1151571 ± 457−1484 ± 494AF-8480716 ± 085+0648 ± 176
AF-0480230 ± 123+0118 ± 31416466-151220 ± 154+1194 ± 453SA57-0661856 ± 420+0428 ± 601
AF-0521583 ± 776−0621 ± 785AF-1311329 ± 612−0759 ± 664AF-8541820 ± 584−0275 ± 456
AF-0532091 ± 768−1609 ± 828AF-1340688 ± 117+0211 ± 155SA57-0800555 ± 229+0244 ± 366
16026-280746 ± 094+1411 ± 17916031-440913 ± 182+0163 ± 457AF-8660458 ± 281−0132 ± 396
AF-7541161 ± 733−0175 ± 112015622-480502 ± 276−0436 ± 507AF-9001052 ± 378+0069 ± 203
AF-7551582 ± 762−0676 ± 106815622-070224 ± 105+0417 ± 322AF-9090534 ± 249+0144 ± 330
AF-0681160 ± 405+0257 ± 460AF-1381113 ± 299−0837 ± 494AF-9141054 ± 394−0232 ± 304
AF-0701037 ± 400−0050 ± 57015622-090652 ± 113+0379 ± 262AF-9160772 ± 284+0803 ± 274
AF-0752398 ± 809−1208 ± 760AF-7971318 ± 417−1194 ± 519AF-9180439 ± 247+0261 ± 318
AF-0761741 ± 720−0524 ± 599AF-8040397 ± 153−0258 ± 312

†The stars are identified in table 1 of Kinman et al. (2007b); L and Lz are in units of kpc km s−1.

Table E3

Angular momenta L and Lz for Local BHB stars.

StarLLzStarLLzStarLLz
HD 28570421 ± 075+0063 ± 098HD 789130172 ± 038−0769 ± 040HD1178800319 ± 108−0701 ± 168
HD 48500357 ± 037+1311 ± 032HD 869680477 ± 035+0003 ± 078HD 1288010828 ± 037+0977 ± 038
HD 83760501 ± 024+1173 ± 75HD 870471124 ± 037−0738 ± 131HD 1300950579 ± 031−0184 ± 167
HD 137800258 ± 041+0779 ± 057HD 871120399 ± 48−0316 ± 099HD 1302010603 ± 052+0854 ± 47
HD 148291215 ± 045+0272 ± 104HD 933290599 ± 048−0814 ± 078HD 1399610766 ± 039−1211 ± 162
HD 319430290 ± 042+0472 ± 052HD 1063041305 ± 064−0009 ± 052HD 1618171033 ± 018−0530 ± 029
HD 2529400529 ± 037+0382 ± 070BD +42°26020835 ± 046+0263 ± 110HD 1671050061 ± 044+0087 ± 054
HD 607780888 ± 051+0638 ± 053HD 1099950759 ± 011+0170 ± 064HD 1809030618 ± 034+0122 ± 055
HD 747210803 ± 046+0405 ± 055BD +25° 26020478 ± 040+0067 ± 107HD 2134681282 ± 040−0119 ± 189
StarLLzStarLLzStarLLz
HD 28570421 ± 075+0063 ± 098HD 789130172 ± 038−0769 ± 040HD1178800319 ± 108−0701 ± 168
HD 48500357 ± 037+1311 ± 032HD 869680477 ± 035+0003 ± 078HD 1288010828 ± 037+0977 ± 038
HD 83760501 ± 024+1173 ± 75HD 870471124 ± 037−0738 ± 131HD 1300950579 ± 031−0184 ± 167
HD 137800258 ± 041+0779 ± 057HD 871120399 ± 48−0316 ± 099HD 1302010603 ± 052+0854 ± 47
HD 148291215 ± 045+0272 ± 104HD 933290599 ± 048−0814 ± 078HD 1399610766 ± 039−1211 ± 162
HD 319430290 ± 042+0472 ± 052HD 1063041305 ± 064−0009 ± 052HD 1618171033 ± 018−0530 ± 029
HD 2529400529 ± 037+0382 ± 070BD +42°26020835 ± 046+0263 ± 110HD 1671050061 ± 044+0087 ± 054
HD 607780888 ± 051+0638 ± 053HD 1099950759 ± 011+0170 ± 064HD 1809030618 ± 034+0122 ± 055
HD 747210803 ± 046+0405 ± 055BD +25° 26020478 ± 040+0067 ± 107HD 2134681282 ± 040−0119 ± 189

†The stars are taken from table 1 of Kinman et al. (2000); L and Lz are in units of kpc km s−1.

Table E3

Angular momenta L and Lz for Local BHB stars.

StarLLzStarLLzStarLLz
HD 28570421 ± 075+0063 ± 098HD 789130172 ± 038−0769 ± 040HD1178800319 ± 108−0701 ± 168
HD 48500357 ± 037+1311 ± 032HD 869680477 ± 035+0003 ± 078HD 1288010828 ± 037+0977 ± 038
HD 83760501 ± 024+1173 ± 75HD 870471124 ± 037−0738 ± 131HD 1300950579 ± 031−0184 ± 167
HD 137800258 ± 041+0779 ± 057HD 871120399 ± 48−0316 ± 099HD 1302010603 ± 052+0854 ± 47
HD 148291215 ± 045+0272 ± 104HD 933290599 ± 048−0814 ± 078HD 1399610766 ± 039−1211 ± 162
HD 319430290 ± 042+0472 ± 052HD 1063041305 ± 064−0009 ± 052HD 1618171033 ± 018−0530 ± 029
HD 2529400529 ± 037+0382 ± 070BD +42°26020835 ± 046+0263 ± 110HD 1671050061 ± 044+0087 ± 054
HD 607780888 ± 051+0638 ± 053HD 1099950759 ± 011+0170 ± 064HD 1809030618 ± 034+0122 ± 055
HD 747210803 ± 046+0405 ± 055BD +25° 26020478 ± 040+0067 ± 107HD 2134681282 ± 040−0119 ± 189
StarLLzStarLLzStarLLz
HD 28570421 ± 075+0063 ± 098HD 789130172 ± 038−0769 ± 040HD1178800319 ± 108−0701 ± 168
HD 48500357 ± 037+1311 ± 032HD 869680477 ± 035+0003 ± 078HD 1288010828 ± 037+0977 ± 038
HD 83760501 ± 024+1173 ± 75HD 870471124 ± 037−0738 ± 131HD 1300950579 ± 031−0184 ± 167
HD 137800258 ± 041+0779 ± 057HD 871120399 ± 48−0316 ± 099HD 1302010603 ± 052+0854 ± 47
HD 148291215 ± 045+0272 ± 104HD 933290599 ± 048−0814 ± 078HD 1399610766 ± 039−1211 ± 162
HD 319430290 ± 042+0472 ± 052HD 1063041305 ± 064−0009 ± 052HD 1618171033 ± 018−0530 ± 029
HD 2529400529 ± 037+0382 ± 070BD +42°26020835 ± 046+0263 ± 110HD 1671050061 ± 044+0087 ± 054
HD 607780888 ± 051+0638 ± 053HD 1099950759 ± 011+0170 ± 064HD 1809030618 ± 034+0122 ± 055
HD 747210803 ± 046+0405 ± 055BD +25° 26020478 ± 040+0067 ± 107HD 2134681282 ± 040−0119 ± 189

†The stars are taken from table 1 of Kinman et al. (2000); L and Lz are in units of kpc km s−1.

Table E4

Angular momenta L and Lz for Galactic globular clusters within 10 kpc.

ClusterLLzClusterLLzClusterLLz
NGC 1040618 ± 064+1169 ± 051NBC 60930299 ± 127−0005 ± 053NGC 65220199 ± 079+0057 ± 215
NGC 2880571 ± 075−0244 ± 109NGC 61210073 ± 024+0136 ± 074NGC 65530154 ± 018+0920 ± 180
NGC 3620377 ± 146−0225 ± 132NGC 61440379 ± 026−0179 ± 013NGC 66260145 ± 031+0480 ± 113
NGC 32011199 ± 086−2659 ± 098NGC 61710358 ± 065+0367 ± 111NGC 66560521 ± 092+0843 ± 114
NGC 43720596 ± 095+0813 ± 054NGC 62052066 ± 258−0446 ± 194NGC 67120383 ± 054+0109 ± 125
NGC 48330197 ± 064+0174 ± 116NGC 62180334 ± 034+0758 ± 074NGC 67230437 ± 056−0045 ± 112
NGC 51390114 ± 023−0439 ± 020NGC 62540557 ± 061+0630 ± 106NGC 67520336 ± 018+0971 ± 068
NGC 52721255 ± 224+0644 ± 180NGC 62660178 ± 022+0231 ± 102NGC 68090759 ± 040+0134 ± 075
NGC 59041198 ± 317+0337 ± 091NGC 63040093 ± 009+0338 ± 101NGC 68380097 ± 047+1161 ± 020
NGC 59270225 ± 065+1028 ± 051NGC 63970764 ± 022+0503 ± 043NGC 70090715 ± 114−0457 ± 110
ClusterLLzClusterLLzClusterLLz
NGC 1040618 ± 064+1169 ± 051NBC 60930299 ± 127−0005 ± 053NGC 65220199 ± 079+0057 ± 215
NGC 2880571 ± 075−0244 ± 109NGC 61210073 ± 024+0136 ± 074NGC 65530154 ± 018+0920 ± 180
NGC 3620377 ± 146−0225 ± 132NGC 61440379 ± 026−0179 ± 013NGC 66260145 ± 031+0480 ± 113
NGC 32011199 ± 086−2659 ± 098NGC 61710358 ± 065+0367 ± 111NGC 66560521 ± 092+0843 ± 114
NGC 43720596 ± 095+0813 ± 054NGC 62052066 ± 258−0446 ± 194NGC 67120383 ± 054+0109 ± 125
NGC 48330197 ± 064+0174 ± 116NGC 62180334 ± 034+0758 ± 074NGC 67230437 ± 056−0045 ± 112
NGC 51390114 ± 023−0439 ± 020NGC 62540557 ± 061+0630 ± 106NGC 67520336 ± 018+0971 ± 068
NGC 52721255 ± 224+0644 ± 180NGC 62660178 ± 022+0231 ± 102NGC 68090759 ± 040+0134 ± 075
NGC 59041198 ± 317+0337 ± 091NGC 63040093 ± 009+0338 ± 101NGC 68380097 ± 047+1161 ± 020
NGC 59270225 ± 065+1028 ± 051NGC 63970764 ± 022+0503 ± 043NGC 70090715 ± 114−0457 ± 110

L and Lz are in units of kpc km s−1. They were derived from the data given by Vande Putte & Cropper (2009).

Table E4

Angular momenta L and Lz for Galactic globular clusters within 10 kpc.

ClusterLLzClusterLLzClusterLLz
NGC 1040618 ± 064+1169 ± 051NBC 60930299 ± 127−0005 ± 053NGC 65220199 ± 079+0057 ± 215
NGC 2880571 ± 075−0244 ± 109NGC 61210073 ± 024+0136 ± 074NGC 65530154 ± 018+0920 ± 180
NGC 3620377 ± 146−0225 ± 132NGC 61440379 ± 026−0179 ± 013NGC 66260145 ± 031+0480 ± 113
NGC 32011199 ± 086−2659 ± 098NGC 61710358 ± 065+0367 ± 111NGC 66560521 ± 092+0843 ± 114
NGC 43720596 ± 095+0813 ± 054NGC 62052066 ± 258−0446 ± 194NGC 67120383 ± 054+0109 ± 125
NGC 48330197 ± 064+0174 ± 116NGC 62180334 ± 034+0758 ± 074NGC 67230437 ± 056−0045 ± 112
NGC 51390114 ± 023−0439 ± 020NGC 62540557 ± 061+0630 ± 106NGC 67520336 ± 018+0971 ± 068
NGC 52721255 ± 224+0644 ± 180NGC 62660178 ± 022+0231 ± 102NGC 68090759 ± 040+0134 ± 075
NGC 59041198 ± 317+0337 ± 091NGC 63040093 ± 009+0338 ± 101NGC 68380097 ± 047+1161 ± 020
NGC 59270225 ± 065+1028 ± 051NGC 63970764 ± 022+0503 ± 043NGC 70090715 ± 114−0457 ± 110
ClusterLLzClusterLLzClusterLLz
NGC 1040618 ± 064+1169 ± 051NBC 60930299 ± 127−0005 ± 053NGC 65220199 ± 079+0057 ± 215
NGC 2880571 ± 075−0244 ± 109NGC 61210073 ± 024+0136 ± 074NGC 65530154 ± 018+0920 ± 180
NGC 3620377 ± 146−0225 ± 132NGC 61440379 ± 026−0179 ± 013NGC 66260145 ± 031+0480 ± 113
NGC 32011199 ± 086−2659 ± 098NGC 61710358 ± 065+0367 ± 111NGC 66560521 ± 092+0843 ± 114
NGC 43720596 ± 095+0813 ± 054NGC 62052066 ± 258−0446 ± 194NGC 67120383 ± 054+0109 ± 125
NGC 48330197 ± 064+0174 ± 116NGC 62180334 ± 034+0758 ± 074NGC 67230437 ± 056−0045 ± 112
NGC 51390114 ± 023−0439 ± 020NGC 62540557 ± 061+0630 ± 106NGC 67520336 ± 018+0971 ± 068
NGC 52721255 ± 224+0644 ± 180NGC 62660178 ± 022+0231 ± 102NGC 68090759 ± 040+0134 ± 075
NGC 59041198 ± 317+0337 ± 091NGC 63040093 ± 009+0338 ± 101NGC 68380097 ± 047+1161 ± 020
NGC 59270225 ± 065+1028 ± 051NGC 63970764 ± 022+0503 ± 043NGC 70090715 ± 114−0457 ± 110

L and Lz are in units of kpc km s−1. They were derived from the data given by Vande Putte & Cropper (2009).

Definitions of L and Lz are given in the appendix of Kepley et al. (2007). The calculations of these quantities and their errors were made using a program kindly made available by Heather Morrison and modified for our use by Carla Cacciari. Table E5 compares the values of L and Lz that we calculated with this program for a number of halo objects with those given by Re Fiorentin et al. (2005) and Morrison et al. (2009). The differences are generally less than the quoted errors and are probably largely produced by differences in the proper motions that were used. An exception is HD 128279, where our values of L and Lz agree with those of Re Fiorentin et al. (2005) but not with those of Morrison et al. (2009).

Table E5

Comparison of angular momenta L and Lz for halo stars derived from three sources.

StarThis PaperMorrison et al. (2009)Re Fiorentin et al. (2005)
LLzLLzLLz
UY CYG0113 ± 048+1670 ± 0610240 ± 038+1630 ± 057
VZ HER0196 ± 072+0316 ± 0750193 ± 061+0319 ± 066
RV SEX0421 ± 131+1279 ± 1990551 ± 152+1226 ± 164
SW BOO0686 ± 097−0022 ± 1550878 ± 175+0616 ± 394
AN LEO1232 ± 123−0201 ± 2501014 ± 234+0220 ± 372
V LMI0377 ± 116+0142 ± 1540208 ± 170+0546 ± 334
X LMI0223 ± 064+1005 ± 0800255 ± 176+0913 ± 329
UV VIR0356 ± 130−0510 ± 1960144 ± 126−0070 ± 290
TT CNC2027 ± 238+0797 ± 1282123 ± 225+0718 ± 1192483 ±…+0562 ±…
AR SER2082 ± 135+0656 ± 1962017 ± 108+0637 ± 1701934 ±…+0322 ±…
TT LYN1959 ± 129+0838 ± 0742032 ± 136+0847 ± 0722124 ±…+0748 ±…
HD 1282792075 ± 320+1046 ± 1880475 ± 050+2220 ± 0301844 ±…+1194 ±…
HD 2378461546 ± 032+0931 ± 0381568 ± 026+0948 ± 0331443 ±…+0774 ±…
HD 2141612181 ± 075+0941 ± 0642125 ± 087+0836 ± 1342173 ±…+0952 ±…
StarThis PaperMorrison et al. (2009)Re Fiorentin et al. (2005)
LLzLLzLLz
UY CYG0113 ± 048+1670 ± 0610240 ± 038+1630 ± 057
VZ HER0196 ± 072+0316 ± 0750193 ± 061+0319 ± 066
RV SEX0421 ± 131+1279 ± 1990551 ± 152+1226 ± 164
SW BOO0686 ± 097−0022 ± 1550878 ± 175+0616 ± 394
AN LEO1232 ± 123−0201 ± 2501014 ± 234+0220 ± 372
V LMI0377 ± 116+0142 ± 1540208 ± 170+0546 ± 334
X LMI0223 ± 064+1005 ± 0800255 ± 176+0913 ± 329
UV VIR0356 ± 130−0510 ± 1960144 ± 126−0070 ± 290
TT CNC2027 ± 238+0797 ± 1282123 ± 225+0718 ± 1192483 ±…+0562 ±…
AR SER2082 ± 135+0656 ± 1962017 ± 108+0637 ± 1701934 ±…+0322 ±…
TT LYN1959 ± 129+0838 ± 0742032 ± 136+0847 ± 0722124 ±…+0748 ±…
HD 1282792075 ± 320+1046 ± 1880475 ± 050+2220 ± 0301844 ±…+1194 ±…
HD 2378461546 ± 032+0931 ± 0381568 ± 026+0948 ± 0331443 ±…+0774 ±…
HD 2141612181 ± 075+0941 ± 0642125 ± 087+0836 ± 1342173 ±…+0952 ±…

† L and Lz are in units of kpc km s−1.

Table E5

Comparison of angular momenta L and Lz for halo stars derived from three sources.

StarThis PaperMorrison et al. (2009)Re Fiorentin et al. (2005)
LLzLLzLLz
UY CYG0113 ± 048+1670 ± 0610240 ± 038+1630 ± 057
VZ HER0196 ± 072+0316 ± 0750193 ± 061+0319 ± 066
RV SEX0421 ± 131+1279 ± 1990551 ± 152+1226 ± 164
SW BOO0686 ± 097−0022 ± 1550878 ± 175+0616 ± 394
AN LEO1232 ± 123−0201 ± 2501014 ± 234+0220 ± 372
V LMI0377 ± 116+0142 ± 1540208 ± 170+0546 ± 334
X LMI0223 ± 064+1005 ± 0800255 ± 176+0913 ± 329
UV VIR0356 ± 130−0510 ± 1960144 ± 126−0070 ± 290
TT CNC2027 ± 238+0797 ± 1282123 ± 225+0718 ± 1192483 ±…+0562 ±…
AR SER2082 ± 135+0656 ± 1962017 ± 108+0637 ± 1701934 ±…+0322 ±…
TT LYN1959 ± 129+0838 ± 0742032 ± 136+0847 ± 0722124 ±…+0748 ±…
HD 1282792075 ± 320+1046 ± 1880475 ± 050+2220 ± 0301844 ±…+1194 ±…
HD 2378461546 ± 032+0931 ± 0381568 ± 026+0948 ± 0331443 ±…+0774 ±…
HD 2141612181 ± 075+0941 ± 0642125 ± 087+0836 ± 1342173 ±…+0952 ±…
StarThis PaperMorrison et al. (2009)Re Fiorentin et al. (2005)
LLzLLzLLz
UY CYG0113 ± 048+1670 ± 0610240 ± 038+1630 ± 057
VZ HER0196 ± 072+0316 ± 0750193 ± 061+0319 ± 066
RV SEX0421 ± 131+1279 ± 1990551 ± 152+1226 ± 164
SW BOO0686 ± 097−0022 ± 1550878 ± 175+0616 ± 394
AN LEO1232 ± 123−0201 ± 2501014 ± 234+0220 ± 372
V LMI0377 ± 116+0142 ± 1540208 ± 170+0546 ± 334
X LMI0223 ± 064+1005 ± 0800255 ± 176+0913 ± 329
UV VIR0356 ± 130−0510 ± 1960144 ± 126−0070 ± 290
TT CNC2027 ± 238+0797 ± 1282123 ± 225+0718 ± 1192483 ±…+0562 ±…
AR SER2082 ± 135+0656 ± 1962017 ± 108+0637 ± 1701934 ±…+0322 ±…
TT LYN1959 ± 129+0838 ± 0742032 ± 136+0847 ± 0722124 ±…+0748 ±…
HD 1282792075 ± 320+1046 ± 1880475 ± 050+2220 ± 0301844 ±…+1194 ±…
HD 2378461546 ± 032+0931 ± 0381568 ± 026+0948 ± 0331443 ±…+0774 ±…
HD 2141612181 ± 075+0941 ± 0642125 ± 087+0836 ± 1342173 ±…+0952 ±…

† L and Lz are in units of kpc km s−1.

APPENDIX F: GROUPS OF OUTLIERS

This section summarizes additional data about the two groups of outliers called H99 and K07.

F1 The H99 group

This group was discovered by Helmi et al. (1999) and further investigated by Re Fiorentin et al. (2005). Roederer et al. (2010) made a detailed chemical analysis of these stars (excluding the RR Lyrae stars) and showed that they had a metallicity range of −3.4 < [Fe/H] < −1.5 but were otherwise chemically homogeneous. They concluded that the wide metallicity range precluded the progenitor being a single globular cluster. We note that the globular cluster NGC 6205 (M13) ([Fe/H] =–1.57) has a rather similar L to that of this group but a different Lz. The 4 RR Lyrae stars that belong to the H99 group RZ CEP, TT CNC, AR SER and TT LYN have [Fe/H] =−1.77, −1.57, −1.78 and −1.56, respectively (Re Fiorentin et al. 2005), and XZ CYG and CS ERI have [Fe/H] =−1.44 and −1.41, respectively. The mean [Fe/H] of these six RR Lyrae stars is −1.59 and the rms scatter in their [Fe/H] about this mean is 0.16 which is comparable with the likely error in their metallicity. The period distribution of the six RR Lyrae stars corresponds to Oosterhoff type I; NGC 6205 has too few RR Lyrae stars to have a reliable Oosterhoff type. The RR Lyrae members of H99 therefore are more homogeneous than the later-type stars in the group and could possibly have originated from a single globular cluster.

F2 The K07 group

Kepley et al. (2007) identified six low-metallicity outliers in their table 5. Two of these outliers (RV CAP and HD 214925) that have similar location on the L versus Lz plot and 13 other outliers are also close to this location. The assumed boundaries of what we call the K07 group are −2300 < Lz < −1500 and +1300 < L < +2200 and are shown by the green rectangle in Figs 4, 5 and 6. The 15 low-metallicity stars within these boundaries are listed in Table 3. These stars cover a wide range of distances and it seems unlikely that they all belong to the same group. It is more likely that they belong to several groups that have similar L and Lz. Thus, AT VIR and RV CAP (at ∼1 kpc) have similar properties and IP COM and EO COM (at ∼7 kpc) also have similar properties. Further analysis requires more accurate data and is beyond the scope of this paper.