Abstract

In linear regression, the coefficients are simple to estimate using the least squares method with a known design matrix for the observed measurements. However, real-world applications may encounter complications such as an unknown design matrix and complex-valued parameters. The design matrix can be estimated from prior information but can potentially cause an inverse problem when multiplying by the transpose as it is generally ill-conditioned. This can be combat by adding regularizers to the model but does not always mitigate the issues. Here, we propose our Bayesian approach to a complex-valued latent variable linear model with an application to functional magnetic resonance imaging (fMRI) image reconstruction. The complex-valued linear model and our Bayesian model are evaluated through extensive simulations and applied to experimental fMRI data.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://dbpia.nl.go.kr/pages/standard-publication-reuse-rights)
You do not currently have access to this article.