SUMMARY

Simulation is a standard technique for investigating the sampling distribution of parameter estimators. The bootstrap is a distribution-free method of assessing sampling variability based on resampling from the empirical distribution; the parametric bootstrap resamples from a fitted parametric model. However, if the parameters of the model are constrained, and the application of these constraints is a function of the realized sample, then the resampling distribution obtained from the parametric bootstrap may become badly biased and overdispersed. Here we discuss such problems in the context of estimating parameters from a bilinear model that incorporates the singular value decomposition (SVD) and in which the parameters are identified by the standard orthogonality relationships of the SVD. Possible effects of the SVD parameter identification are arbitrary changes in the sign of singular vectors, inversion of the order of singular values and rotation of the plotted co-ordinates. This paper proposes inverse transformation or ‘filtering’ techniques to avoid these problems. The ideas are illustrated by assessing the variability of the location of points in a principal co-ordinates diagram and in the marginal sampling distribution of singular values. An application to the analysis of a biological data set is described. In the discussion it is pointed out that several exploratory multivariate methods may benefit by using resampling with filtering.

References

Becker
,
R. A.
,
Chambers
,
J. M.
and
Wilks
,
A. R.
(
1988
)
The New S Language: A Programming Environment for Data Analysis and Graphics.
 
Belmont
:
Wadsworth and Brooks/Cole
.

Carlin
,
B. P.
and
Gelfand
,
A. E.
(
1991
)
A sample reuse method for accurate parametric empirical Bayes confidence intervals
.
J. R. Statist. Soc. B
,
53
,
189
200
.

Digby
,
P. G. N.
and
Kempton
,
R. A.
(
1987
)
Multivariate Analysis of Ecological Communities.
 
London
:
Chapman and Hall
.

Efron
,
B.
(
1979
)
Bootstrap methods: Another look at the jackknife
.
Ann. Statist.
,
7
,
1
26
.

Gabriel
,
K. R.
(
1978
)
Least squares approximation of matrices by additive and multiplicative models
.
J. R. Statist. Soc. B
,
40
,
186
196
.

Geyer
,
C. J.
(
1991
)
Constrained maximum likelihood exemplified by isotonic convex logistic regression
.
J. Am. Statist. Ass.
,
86
,
717
724
.

Golub
,
G. N.
and
van
 
Loan
,
C. F.
(
1989
)
Matrix Computations.
 
Baltimore
:
Johns Hopkins University Press
.

Goodman
,
L. A.
(
1985
)
The analysis of cross-classified data having ordered and/or unordered categories: Association models, correlation models, and asymmetry models for contingency tables with or without missing entries
.
Ann. Statist.
,
13
,
10
69
.

Goodman
,
L. A.
(
1986
)
Some useful extensions of the usual correspondence analysis approach and the usual log-linear models approach in the analysis of contingency tables
.
Int. Statist. Rev.
,
54
,
243
309
.

Gower
,
J. C.
(
1966
)
Some distance properties of latent root and vector methods used in multivariate analysis
.
Biometrika
,
53
,
325
338
.

Gower
,
J. C.
(
1971
)
Statistical methods of comparing different multivariate analyses of the same data
. In
Mathematics in the Archaeological and Historical Sciences
(eds
F. R.
 
Hodson
,
D. G.
 
Kendall
and
P.
 
Tautu
), pp.
138
149
.
Edinburgh
:
Edinburgh University Press
.

Green
,
P. J.
and
Silverman
,
B. W.
(
1979
)
Constructing the convex hull of a set of points in the plane
.
Comput. J.
,
22
,
262
266
.

Greenacre
,
M. J.
(
1984
)
Theory and Applications of Correspondence Analysis.
 
London
:
Academic Press
.

Hinkley
,
D. V.
(
1988
)
Bootstrap methods
.
J. R. Statist. Soc. B
,
50
,
321
337
.

Krzanowski
,
W. J.
(
1988
)
Principles of Multivariate Analysis: A User’s Perspective.
 
Oxford
:
Oxford University Press
.

Krzanowski
,
W. J.
(
1989
)
On confidence regions in canonical variate analysis
.
Biometrika
,
76
,
107
116
.

Krzanowski
,
W. J.
and
Radley
,
D.
(
1989
)
Nonparametric confidence and tolerance regions in canonical variate analysis
.
Biometrics
,
45
,
1163
1173
.

Loh
,
W.-L.
(
1991
)
Estimating covariance matrices
.
Ann. Statist.
,
19
,
283
296
.

Mardia
,
K. V.
,
Kent
,
J. T.
and
Bibby
,
J. M.
(
1979
)
Multivariate Analysis.
 
London
:
Academic Press
.

Muirhead
,
R. J.
(
1982
)
Aspects of Multivariate Statistical Theory.
 
New York
:
Wiley
.

Ringrose
,
T. J.
(
1992
)
Bootstrapping and correspondence analysis in archaeology
.
J. Arch. Sci.
,
19
,
615
629
.

Ringrose
,
T. J.
and
Krzanowski
,
W. J.
(
1991
)
Simulation study of confidence regions for canonical variate analysis
.
Statist. Comput.
,
1
,
41
46
.

Schott
,
J. R.
(
1990
)
Canonical mean projections and confidence regions in canonical variate analysis
.
Biometrika
,
77
,
587
596
.

Sibson
,
R.
(
1978
)
Studies in the robustness of multidimensional scaling: Procrustes statistics
.
J. R. Statist. Soc. B
,
40
,
234
238
.

Stewart
,
G. W.
(
1973
)
Introduction to Matrix Computations.
 
New York
:
Academic Press
.

This content is only available as a PDF.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://dbpia.nl.go.kr/journals/pages/open_access/funder_policies/chorus/standard_publication_model)