Abstract

Red-nosed mice (genus Wiedomys) are restricted to the Brazilian Cerrado and Caatinga biomes, distributed along the São Francisco River (SFR). Until recently, Wiedomys was considered monotypic, but 2 species with poorly defined geographic and morphological limits have been recognized: W. cerradensis and W. pyrrhorhinos. Our study used morphological, phylogenetic, and cytogenetic analyses to review and detail species limits within the genus and test whether the SFR could be associated with divergence between lineages. This integrative approach indicated that the SFR delineates the geographic boundaries between species, with W. pyrrhorhinos on the right bank and W. cerradensis on the left bank. The species are reciprocally monophyletic and diverge in cranial size, nasal morphology, and facial pelage color pattern. Karyotypic differences between and within W. pyrrhorhinos and W. cerradensis were also detected, and new chromosome complements (2n = 62, FN = 96 and 2n = 62, FN = 88, respectively) were found. Divergence time (0.339 to 0.025 Ma) is concordant with the timing of diversification of other co-distributed vertebrate taxa, and close to a younger estimate for the formation of SFR’s recent lower course to the east coast. Therefore, our study considerably expands knowledge of the geographic range of the genus, diagnoses of species, karyotypic variability between and within species, and reinforces the role of SFR as an important vicariant barrier in northeastern Brazil.

Resumo

Os ratos-bico-de-lacre (gênero Wiedomys) estão restritos aos biomas brasileiros do Cerrado e da Caatinga, distribuídos ao longo do rio São Francisco (RSF). Até recentemente, Wiedomys era considerado monotípico, mas duas espécies com limites geográficos e morfológicos pouco detalhados foram reconhecidas: W. cerradensis e W. pyrrhorhinos. No presente estudo, tivemos como objetivo revisar e detalhar os limites das espécies dentro do gênero e testar se o RSF poderia estar associado à divergência entre as linhagens, usando análises morfológicas, filogenéticas e citogenéticas. Esta abordagem integrativa indicou que o RSF é concordante com os limites geográficos das duas espécies, com W. pyrrhorhinos na margem direita e W. cerradensis na margem esquerda. As espécies são reciprocamente monofiléticas e divergem quanto ao tamanho do crânio, morfologia nasal e padrão de coloração da pelagem facial. Diferenças cariotípicas entre e dentro de W. pyrrhorhinos e W. cerradensis também foram detectadas, e novos complementos cromossômicos (2n = 62, NF = 96 e 2n = 62, NF = 88, respectivamente) foram reportados. O tempo de divergência (0,339-0,025 Ma) é concordante com eventos de diversificação em outros táxons de vertebrados co-distribuídos e se aproxima à estimativa mais recente para a formação do baixo curso do RSF. Portanto, nosso estudo expande consideravelmente o conhecimento sobre as distribuições geográficas do gênero, as diagnoses das espécies e suas variabilidades cariotípicas, e também indica o RSF como uma potencial barreira vicariante para o gênero Wiedomys no Nordeste do Brasil.

The open-dry vegetation formations of central and eastern South America, also referred to as the dry diagonal, extend across a broad latitudinal range that comprises the Chaco, Cerrado, and Caatinga biomes (Prado 2000; Werneck 2011; Silva et al. 2017). The Cerrado is the largest open vegetation biome of South America, forming a savanna that covers an area of approximately 20% of the Brazilian territory, with small enclaves in Bolivia (Werneck et al. 2012). This biome is considered an important center of endemism in South America (Cracraft 1985; Myers et al. 2000), bearing diverse physiognomies, from gallery and riverine forests to shrublands and grasslands (Eiten 1983; Oliveira-Filho and Ratter 2002; Werneck 2011). The Caatinga is the largest and isolated nucleus of Seasonally Dry Tropical Forests (Werneck 2011; Silva et al. 2017), restricted to northeastern Brazil, and characterized by deciduous and xerophilous vegetation adapted to a semiarid climate (Rizzini 1979; Barreto 1996; Ab’Sáber 1998). Both biomes are crossed by long and broad rivers, and they harbor high levels of diversity and endemism, especially for small terrestrial vertebrates such as rodents, snakes, and lizards (Rodrigues 1992, 1996; Rocha 1995; Carmignotto et al. 2012; Gutiérrez and Marinho-Filho 2017).

Large rivers may act as important dispersal barriers leading to lineage diversification (Patton et al. 1994, 2000; Peres et al. 1996; Gascon et al. 2000; Moritz et al. 2000), and their biogeographical significance has been recognized since, at least, the work of the British naturalist Alfred R. Wallace on Amazonian rivers (Wallace 1854). In northeastern Brazil, the São Francisco River is the largest and longest watercourse, flowing along 2,700 km and crossing portions of Caatinga, Cerrado, and the Atlantic Forest. It is the second largest river in Brazil (Kohler 2003) and was probably formed in the Late Cretaceous, approximately 65 million years ago (Potter 1997), presenting opportunities for a dynamic biogeographic history throughout the Cenozoic (Werneck et al. 2015). Biogeographical studies of the open diagonal biotas have suggested that the São Francisco River represents a barrier to gene flow for some vertebrate taxa. However, as recognized previously by other researchers working on Amazonian rivers (Peres et al. 1996; Gascon et al. 2000; Moritz et al. 2000; Patton et al. 2000), testing the riverine hypothesis is challenging. For one, river courses can be highly dynamic over long and short timescales. Thus, geographic data alone cannot distinguish between the hypotheses of rivers as secondary barriers limiting the distribution of lineages that diverged elsewhere or as primary vicariant barriers that promoted speciation. With the latter hypothesis, we would expect congruence among nonvolant and nonaquatic taxa in the age and location of divergence. Therefore, testing the biogeographic role of the São Francisco River requires the study of many taxa widely distributed across the Cerrado and Caatinga biomes. For many taxa in this region, taxonomic and biogeographic revisions are needed—Red-nosed mice of genus Wiedomys are a prime example.

WiedomysHershkovitz, 1959 is one of the few rodent genera of the subfamily Sigmodontinae restricted to the Cerrado and Caatinga biomes in Brazil (Bonvicino 2015). The evolutionary uniqueness of this genus was recognized by Reig (1980), who created the tribe Wiedomyini to include it as the sole extant taxon, along with the Pliocene fossil Cholomys pearsoni. The contents of this tribe have been recently revised and the living genera Juliomys, Phaenomys, and Wilfredomys were included as its additional members (Pardiñas et al. 2014; Machado et al. 2015; Gonçalves et al. 2020), while the fossil C. pearsoni and W. marplatensis have been removed from it and considered synonyms (Pardiñas and Barbière 2018). In spite of these advances, Wiedomys remains an enigmatic genus, especially regarding its alpha taxonomy. From its original description in 1821 until 2005, Wiedomys was a monotypic genus represented by W. pyrrhorhinos (Wied in Schinz 1821). Based on molecular, cytogenetic, and morphological approaches, Gonçalves et al. (2005) described a second species, W. cerradensis, which they considered endemic to the Cerrado, as it was known only from its type locality in southwestern Bahia state. In turn, W. pyrrhorhinos was thought to occupy a broad area in northeastern Brazil, throughout the Caatinga and its transitional areas with the Atlantic Forest and Cerrado, from northern Minas Gerais state to Bahia, Sergipe, eastern Alagoas, and Pernambuco states (Bonvicino 2015). At the time, these species could also be distinguished by their respective karyotypes: W. pyrrhorhinos with 2n = 62, FN = 86, 90, 98 to 99, and 104 (Maia and Langguth 1987; Souza et al. 2011; Bezerra et al. 2014; Geise et al. 2017), and Wiedomys cerradensis with 2n = 60, FN = 88 (Gonçalves et al. 2005).

Recent records based on genetically analyzed specimens have considerably expanded the geographic range of W. cerradensis to Goiás and Tocantins states (Bezerra et al. 2013), in central Cerrado biome, northwards into the Cerrado of Maranhão state (Olímpio et al. 2016), and into the Caatinga in Ceará state (Bonvicino 2015). Recent treatises of rodents (Patton et al. 2015; Pardiñas 2017) already incorporated these proposed changes, indicating that the 2 Wiedomys species were distributed along the São Francisco River. Despite this progress, the geographic limits of the 2 species remain uncertain, particularly because the morphological and cytogenetic variation distinguishing the species has not been revised since the original description of W. cerradensis. Consequently, the identification of new samples of both species has relied almost exclusively on mitochondrial Cytochrome b (mt-Cytb) sequences, without further analyses of cytogenetic and detailed morphological variation. Additionally, the broad distribution of Wiedomys in northeastern Brazil offers an excellent opportunity to evaluate whether the São Francisco River would be coincident with the variation between or within species. According to the riverine barrier hypothesis, if the São Francisco River represents a primary barrier for Wiedomys lineages, divergence between species (or populations) would be spatially and temporally coincident with the formation of the current river course separating them (Moritz et al. 2000). Alternatively, if the current river course acts as a secondary barrier to lineages that diverged elsewhere or that dispersed after the establishment of the actual river course, there would be spatial but not temporal coincidence between the river course and multiple co-distributed species boundaries. Therefore, an integrative approach to assess diversity in the genus Wiedomys has the potential to shed light on both its taxonomy and biogeography throughout the Cerrado and Caatinga biomes.

In this study, we aim to provide an updated diagnosis of Wiedomys species by integrating phylogenetic, cytogenetic, and morphological analyses, and to discuss the implication of these results for the hypothesis that São Francisco River has operated historically as a vicariant barrier in the diversification of this genus.

Materials and methods

Samples

Morphological analyses were based on 282 specimens of the genus Wiedomys, housed at the following Brazilian mammal collections: Museu Nacional/Universidade Federal do Rio de Janeiro (MN/UFRJ), Rio de Janeiro-RJ; Museu de Ciências Naturais da Pontifícia Universidade Católica de Minas Gerais (MCN/PUC-Minas), Belo Horizonte-MG; Coleção de Mamíferos, Universidade de Brasília (UnB), Brasília-DF; and Museu de História Natural da Universidade Federal de Alagoas (MHN/UFAL), Maceió-AL (Appendix  I). Molecular analyses were performed on sequenced samples from 50 specimens, from which 25 were karyotyped and 26 were morphologically examined (Appendix  I; Fig. 1). The specimens examined comprised the entire extant distribution known for the genus (Fig. 1), including a specimen close to the type locality of W. pyrrhorhinos (Ribeirão da Ressaca, Piripá, Bahia state; locality 10 in Fig. 1) and the holotype of W. cerradensis.

Collection localities (see Table 1 for number identification) of specimens and OTUs used in morphological and/or genetic analyses of Wiedomys spanning the known distribution of the genus. OTU ellipses are colored according to their location at the left (green) and right (blue) sides of the São Francisco River (bold blue line).
Fig. 1.

Collection localities (see Table 1 for number identification) of specimens and OTUs used in morphological and/or genetic analyses of Wiedomys spanning the known distribution of the genus. OTU ellipses are colored according to their location at the left (green) and right (blue) sides of the São Francisco River (bold blue line).

Table 1.

OTUs of Wiedomys examined in this study for morphological, cytogenetic, and molecular phylogenetic analyses, including distribution of OTUs in relation to the São Francisco River (SF riverside), locality identifier (LI), sample size for morphometric analyses (n morph), karyotypes with diploid (2n) and fundamental (FN) numbers, and genetic data. Localities are mapped in Fig. 1.

OTUSF riversideLILocalityn morphKaryotypeGenetic data
2nFN
BeriloRight1MG, Jenipapo de Minasx
BeriloRight2MG, Leme do Prado (UHE Irapé)1
BeriloRight3MG, Berilo16
BeriloRight4MG, Araçuaí (Alto Caparaó)2
BeriloRight5MG, Juramento (Fazenda Canoas)1x
BeriloRight6MG, José Gonçalves de Minas (UHE Irapé)7
BeriloRight7MG, Grão Mogol (Fazenda do Matão)2
BeriloRight8MG, Porteirinha1
BeriloRight9MG, Jaíba (Parque Florestal de Jaíba)5
CaetitéRight10BA, Piripá (Ribeirão da Ressaca)1
CaetitéRight11BA, Vitória da Conquista (Sítio Caititu)10
CaetitéRight12BA, Caetité (Maniaçu)26290x
CaetitéRight13BA, Jequié (Fazenda Ipoeira)6
CaetitéRight14BA, Jaguaquara (Fazenda Vazante)5
CaetitéRight15BA, Santo Ináciox
Morro do ChapéuRight16BA, Palmeiras (Sítio Ananaz)1
Morro do ChapéuRight17BA, Seabra (Várzea da Canabrava)19
Morro do ChapéuRight18BA, Morro do Chapéu (Fazenda Salinas)262104x
Feira de SantanaRight19BA, Feira de Santana (Fazenda Três Riachos)19
SerrinhaRight20BA, Serrinha (Fazenda Cruzeiro)6
Canindé de São FranciscoRight21SE, Nossa Senhora da Glória62104x
Canindé de São FranciscoRight22SE, Monte Alegre de Sergipe62104x
Canindé de São FranciscoRight23SE, Canindé de São Francisco (Miramar)6x
Canindé de São FranciscoRight24BA, Curaçá6296x
PiranhasLeft25AL, Piranhas36286x
PiranhasLeft26AL, Delmiro Gouveia16286x
PiranhasLeft27AL, Olho d’Água do Casado (Curralinho)26286
PiranhasLeft28AL, Inhapi2x
Santana do IpanemaLeft29AL, Santana do Ipanema (Fazenda Santa Cruz II)8
QuebranguloLeft30AL, Quebrangulo (Fazenda Lagoa dos Bois)17
QuebranguloLeft31AL, Palmeira dos Índios (Sítio Ribeira)1
QuebranguloLeft32AL, Limoeiro de Anadia (Sítio Cadoz)1
GaranhunsLeft33PE, Garanhuns (Sítio Canhoto)37
PesqueiraLeft34PE, Buíque (Serra do Catimbau)6286x
PesqueiraLeft35PE, Pesqueira (Sítio São Marcos)10
PesqueiraLeft36PE, Belo Jardim (Sítio Catota)1
PesqueiraLeft37PE, São Bento do Una (Sítio Mimoso)4
CaruaruLeft38PE, Caruaru (Sítio Preguiça)24
CaruaruLeft39PE, Bezerrosx
CaruaruLeft40PE, Sítio Alfredox
CearáLeft41PE, Triunfo (Sítio Espírito Santo)8
CearáLeft42PE, Bodocó (Sítio Socorro)10
CearáLeft43CE, Jardim (Jardim (C02))1
CearáLeft44CE, Crato (Sítio Piaba)1
CearáLeft45CE, Missão Velha (Santa Cachoeira)4
CearáLeft46CE, Campos Sales5
CearáLeft47CE, Russasx
CearáLeft48CE, Jaguaruanax
CearáLeft49CE, Monte Alegre3
CearáLeft50CE, Guaraciaba do Norte1
CearáLeft51CE, São Benedito5
PiauíLeft52PI, São João do Piauí (E13)2
PiauíLeft53PI, Canto do Buriti2
PiauíLeft54PI, Eliseu Martins2
PiauíLeft55PI, Uruçuí-Unax
MaranhãoLeft56MA, Mirador1x
JaborandiLeft57TO, Paranã (Fazenda São João)3x
JaborandiLeft58BA, Correntina2
JaborandiLeft59BA, Barreiras2
JaborandiLeft60GO, São Domingos (Fazenda Cruzeiro do Sul)1
JaborandiLeft61BA, Correntina (Fazenda Jatobá)x
JaborandiLeft62BA, Jaborandi56088x
JaborandiLeft63MG, Formoso (Parque Nacional Grande Sertão Veredas)1
OTUSF riversideLILocalityn morphKaryotypeGenetic data
2nFN
BeriloRight1MG, Jenipapo de Minasx
BeriloRight2MG, Leme do Prado (UHE Irapé)1
BeriloRight3MG, Berilo16
BeriloRight4MG, Araçuaí (Alto Caparaó)2
BeriloRight5MG, Juramento (Fazenda Canoas)1x
BeriloRight6MG, José Gonçalves de Minas (UHE Irapé)7
BeriloRight7MG, Grão Mogol (Fazenda do Matão)2
BeriloRight8MG, Porteirinha1
BeriloRight9MG, Jaíba (Parque Florestal de Jaíba)5
CaetitéRight10BA, Piripá (Ribeirão da Ressaca)1
CaetitéRight11BA, Vitória da Conquista (Sítio Caititu)10
CaetitéRight12BA, Caetité (Maniaçu)26290x
CaetitéRight13BA, Jequié (Fazenda Ipoeira)6
CaetitéRight14BA, Jaguaquara (Fazenda Vazante)5
CaetitéRight15BA, Santo Ináciox
Morro do ChapéuRight16BA, Palmeiras (Sítio Ananaz)1
Morro do ChapéuRight17BA, Seabra (Várzea da Canabrava)19
Morro do ChapéuRight18BA, Morro do Chapéu (Fazenda Salinas)262104x
Feira de SantanaRight19BA, Feira de Santana (Fazenda Três Riachos)19
SerrinhaRight20BA, Serrinha (Fazenda Cruzeiro)6
Canindé de São FranciscoRight21SE, Nossa Senhora da Glória62104x
Canindé de São FranciscoRight22SE, Monte Alegre de Sergipe62104x
Canindé de São FranciscoRight23SE, Canindé de São Francisco (Miramar)6x
Canindé de São FranciscoRight24BA, Curaçá6296x
PiranhasLeft25AL, Piranhas36286x
PiranhasLeft26AL, Delmiro Gouveia16286x
PiranhasLeft27AL, Olho d’Água do Casado (Curralinho)26286
PiranhasLeft28AL, Inhapi2x
Santana do IpanemaLeft29AL, Santana do Ipanema (Fazenda Santa Cruz II)8
QuebranguloLeft30AL, Quebrangulo (Fazenda Lagoa dos Bois)17
QuebranguloLeft31AL, Palmeira dos Índios (Sítio Ribeira)1
QuebranguloLeft32AL, Limoeiro de Anadia (Sítio Cadoz)1
GaranhunsLeft33PE, Garanhuns (Sítio Canhoto)37
PesqueiraLeft34PE, Buíque (Serra do Catimbau)6286x
PesqueiraLeft35PE, Pesqueira (Sítio São Marcos)10
PesqueiraLeft36PE, Belo Jardim (Sítio Catota)1
PesqueiraLeft37PE, São Bento do Una (Sítio Mimoso)4
CaruaruLeft38PE, Caruaru (Sítio Preguiça)24
CaruaruLeft39PE, Bezerrosx
CaruaruLeft40PE, Sítio Alfredox
CearáLeft41PE, Triunfo (Sítio Espírito Santo)8
CearáLeft42PE, Bodocó (Sítio Socorro)10
CearáLeft43CE, Jardim (Jardim (C02))1
CearáLeft44CE, Crato (Sítio Piaba)1
CearáLeft45CE, Missão Velha (Santa Cachoeira)4
CearáLeft46CE, Campos Sales5
CearáLeft47CE, Russasx
CearáLeft48CE, Jaguaruanax
CearáLeft49CE, Monte Alegre3
CearáLeft50CE, Guaraciaba do Norte1
CearáLeft51CE, São Benedito5
PiauíLeft52PI, São João do Piauí (E13)2
PiauíLeft53PI, Canto do Buriti2
PiauíLeft54PI, Eliseu Martins2
PiauíLeft55PI, Uruçuí-Unax
MaranhãoLeft56MA, Mirador1x
JaborandiLeft57TO, Paranã (Fazenda São João)3x
JaborandiLeft58BA, Correntina2
JaborandiLeft59BA, Barreiras2
JaborandiLeft60GO, São Domingos (Fazenda Cruzeiro do Sul)1
JaborandiLeft61BA, Correntina (Fazenda Jatobá)x
JaborandiLeft62BA, Jaborandi56088x
JaborandiLeft63MG, Formoso (Parque Nacional Grande Sertão Veredas)1
Table 1.

OTUs of Wiedomys examined in this study for morphological, cytogenetic, and molecular phylogenetic analyses, including distribution of OTUs in relation to the São Francisco River (SF riverside), locality identifier (LI), sample size for morphometric analyses (n morph), karyotypes with diploid (2n) and fundamental (FN) numbers, and genetic data. Localities are mapped in Fig. 1.

OTUSF riversideLILocalityn morphKaryotypeGenetic data
2nFN
BeriloRight1MG, Jenipapo de Minasx
BeriloRight2MG, Leme do Prado (UHE Irapé)1
BeriloRight3MG, Berilo16
BeriloRight4MG, Araçuaí (Alto Caparaó)2
BeriloRight5MG, Juramento (Fazenda Canoas)1x
BeriloRight6MG, José Gonçalves de Minas (UHE Irapé)7
BeriloRight7MG, Grão Mogol (Fazenda do Matão)2
BeriloRight8MG, Porteirinha1
BeriloRight9MG, Jaíba (Parque Florestal de Jaíba)5
CaetitéRight10BA, Piripá (Ribeirão da Ressaca)1
CaetitéRight11BA, Vitória da Conquista (Sítio Caititu)10
CaetitéRight12BA, Caetité (Maniaçu)26290x
CaetitéRight13BA, Jequié (Fazenda Ipoeira)6
CaetitéRight14BA, Jaguaquara (Fazenda Vazante)5
CaetitéRight15BA, Santo Ináciox
Morro do ChapéuRight16BA, Palmeiras (Sítio Ananaz)1
Morro do ChapéuRight17BA, Seabra (Várzea da Canabrava)19
Morro do ChapéuRight18BA, Morro do Chapéu (Fazenda Salinas)262104x
Feira de SantanaRight19BA, Feira de Santana (Fazenda Três Riachos)19
SerrinhaRight20BA, Serrinha (Fazenda Cruzeiro)6
Canindé de São FranciscoRight21SE, Nossa Senhora da Glória62104x
Canindé de São FranciscoRight22SE, Monte Alegre de Sergipe62104x
Canindé de São FranciscoRight23SE, Canindé de São Francisco (Miramar)6x
Canindé de São FranciscoRight24BA, Curaçá6296x
PiranhasLeft25AL, Piranhas36286x
PiranhasLeft26AL, Delmiro Gouveia16286x
PiranhasLeft27AL, Olho d’Água do Casado (Curralinho)26286
PiranhasLeft28AL, Inhapi2x
Santana do IpanemaLeft29AL, Santana do Ipanema (Fazenda Santa Cruz II)8
QuebranguloLeft30AL, Quebrangulo (Fazenda Lagoa dos Bois)17
QuebranguloLeft31AL, Palmeira dos Índios (Sítio Ribeira)1
QuebranguloLeft32AL, Limoeiro de Anadia (Sítio Cadoz)1
GaranhunsLeft33PE, Garanhuns (Sítio Canhoto)37
PesqueiraLeft34PE, Buíque (Serra do Catimbau)6286x
PesqueiraLeft35PE, Pesqueira (Sítio São Marcos)10
PesqueiraLeft36PE, Belo Jardim (Sítio Catota)1
PesqueiraLeft37PE, São Bento do Una (Sítio Mimoso)4
CaruaruLeft38PE, Caruaru (Sítio Preguiça)24
CaruaruLeft39PE, Bezerrosx
CaruaruLeft40PE, Sítio Alfredox
CearáLeft41PE, Triunfo (Sítio Espírito Santo)8
CearáLeft42PE, Bodocó (Sítio Socorro)10
CearáLeft43CE, Jardim (Jardim (C02))1
CearáLeft44CE, Crato (Sítio Piaba)1
CearáLeft45CE, Missão Velha (Santa Cachoeira)4
CearáLeft46CE, Campos Sales5
CearáLeft47CE, Russasx
CearáLeft48CE, Jaguaruanax
CearáLeft49CE, Monte Alegre3
CearáLeft50CE, Guaraciaba do Norte1
CearáLeft51CE, São Benedito5
PiauíLeft52PI, São João do Piauí (E13)2
PiauíLeft53PI, Canto do Buriti2
PiauíLeft54PI, Eliseu Martins2
PiauíLeft55PI, Uruçuí-Unax
MaranhãoLeft56MA, Mirador1x
JaborandiLeft57TO, Paranã (Fazenda São João)3x
JaborandiLeft58BA, Correntina2
JaborandiLeft59BA, Barreiras2
JaborandiLeft60GO, São Domingos (Fazenda Cruzeiro do Sul)1
JaborandiLeft61BA, Correntina (Fazenda Jatobá)x
JaborandiLeft62BA, Jaborandi56088x
JaborandiLeft63MG, Formoso (Parque Nacional Grande Sertão Veredas)1
OTUSF riversideLILocalityn morphKaryotypeGenetic data
2nFN
BeriloRight1MG, Jenipapo de Minasx
BeriloRight2MG, Leme do Prado (UHE Irapé)1
BeriloRight3MG, Berilo16
BeriloRight4MG, Araçuaí (Alto Caparaó)2
BeriloRight5MG, Juramento (Fazenda Canoas)1x
BeriloRight6MG, José Gonçalves de Minas (UHE Irapé)7
BeriloRight7MG, Grão Mogol (Fazenda do Matão)2
BeriloRight8MG, Porteirinha1
BeriloRight9MG, Jaíba (Parque Florestal de Jaíba)5
CaetitéRight10BA, Piripá (Ribeirão da Ressaca)1
CaetitéRight11BA, Vitória da Conquista (Sítio Caititu)10
CaetitéRight12BA, Caetité (Maniaçu)26290x
CaetitéRight13BA, Jequié (Fazenda Ipoeira)6
CaetitéRight14BA, Jaguaquara (Fazenda Vazante)5
CaetitéRight15BA, Santo Ináciox
Morro do ChapéuRight16BA, Palmeiras (Sítio Ananaz)1
Morro do ChapéuRight17BA, Seabra (Várzea da Canabrava)19
Morro do ChapéuRight18BA, Morro do Chapéu (Fazenda Salinas)262104x
Feira de SantanaRight19BA, Feira de Santana (Fazenda Três Riachos)19
SerrinhaRight20BA, Serrinha (Fazenda Cruzeiro)6
Canindé de São FranciscoRight21SE, Nossa Senhora da Glória62104x
Canindé de São FranciscoRight22SE, Monte Alegre de Sergipe62104x
Canindé de São FranciscoRight23SE, Canindé de São Francisco (Miramar)6x
Canindé de São FranciscoRight24BA, Curaçá6296x
PiranhasLeft25AL, Piranhas36286x
PiranhasLeft26AL, Delmiro Gouveia16286x
PiranhasLeft27AL, Olho d’Água do Casado (Curralinho)26286
PiranhasLeft28AL, Inhapi2x
Santana do IpanemaLeft29AL, Santana do Ipanema (Fazenda Santa Cruz II)8
QuebranguloLeft30AL, Quebrangulo (Fazenda Lagoa dos Bois)17
QuebranguloLeft31AL, Palmeira dos Índios (Sítio Ribeira)1
QuebranguloLeft32AL, Limoeiro de Anadia (Sítio Cadoz)1
GaranhunsLeft33PE, Garanhuns (Sítio Canhoto)37
PesqueiraLeft34PE, Buíque (Serra do Catimbau)6286x
PesqueiraLeft35PE, Pesqueira (Sítio São Marcos)10
PesqueiraLeft36PE, Belo Jardim (Sítio Catota)1
PesqueiraLeft37PE, São Bento do Una (Sítio Mimoso)4
CaruaruLeft38PE, Caruaru (Sítio Preguiça)24
CaruaruLeft39PE, Bezerrosx
CaruaruLeft40PE, Sítio Alfredox
CearáLeft41PE, Triunfo (Sítio Espírito Santo)8
CearáLeft42PE, Bodocó (Sítio Socorro)10
CearáLeft43CE, Jardim (Jardim (C02))1
CearáLeft44CE, Crato (Sítio Piaba)1
CearáLeft45CE, Missão Velha (Santa Cachoeira)4
CearáLeft46CE, Campos Sales5
CearáLeft47CE, Russasx
CearáLeft48CE, Jaguaruanax
CearáLeft49CE, Monte Alegre3
CearáLeft50CE, Guaraciaba do Norte1
CearáLeft51CE, São Benedito5
PiauíLeft52PI, São João do Piauí (E13)2
PiauíLeft53PI, Canto do Buriti2
PiauíLeft54PI, Eliseu Martins2
PiauíLeft55PI, Uruçuí-Unax
MaranhãoLeft56MA, Mirador1x
JaborandiLeft57TO, Paranã (Fazenda São João)3x
JaborandiLeft58BA, Correntina2
JaborandiLeft59BA, Barreiras2
JaborandiLeft60GO, São Domingos (Fazenda Cruzeiro do Sul)1
JaborandiLeft61BA, Correntina (Fazenda Jatobá)x
JaborandiLeft62BA, Jaborandi56088x
JaborandiLeft63MG, Formoso (Parque Nacional Grande Sertão Veredas)1

Research on live animals followed ASM guidelines (Sikes et al. 2016) and ethical approval was granted by CEUA/Instituto Oswaldo Cruz L-036/2018 and CEUA/Instituto Butantan nº 1260/14. Permits for the collection of specimens were issued by Instituto Chico Mendes de Conservação da Biodiversidade-ICMBio and SISBIO (ICMBIO-187/2010, SISBIO-13373-1, 11375-2, 24003-12) and by Instituto Brasileiro do Meio Ambiente-IBAMA (CGFAP-189/2010).

DNA extraction, amplification, and sequencing

DNA was isolated from liver or muscle using Chelex (Walsh et al. 1991). Gene nomenclature followed Mouse Genome Database (Blake et al. 2021). Partial and complete mt-Cytb segments were amplified by polymerase chain reaction (PCR), using primers MVZ05 and MVZ16 (Irwin et al. 1991; Smith and Patton 1993) and Cytb-REV (Casado et al. 2010), respectively. We sequenced 2 nuclear loci, exon 1 of retinoid-binding protein (IRBP) using primers A1 and F (Stanhope et al. 1992) and intron 7 of the beta-fibrinogen (i7Fgb), using primers Β17-mammL and Βfib-mammaU (Matocq et al. 2007). PCR was conducted in a thermal cycler (Eppendorf Mastercycler ep Gradient, Model 5341) by using cocktails with a final volume of 18 μL containing 0.2 units of Platinum Taq DNA Polymerase (Invitrogen), 30 ng of DNA, 25 pmol of each primer, 0.2 mM of dNTP, and 2.52 μL of reaction buffer (50 mM KCl, 2.5 mM MgCl2, and 10 mM Tris–HCl; pH 8.8), following the thermal profile described by Suárez-Villota et al. (2018). PCR products were visualized using 1% agarose gel in TAE buffer, and the purification was carried out with ExoSAP-IT (Code number US78200, GE Healthcare).

Cycle sequencing was performed with BigDye (Applied Biosystems) in an ABI PRISM 3100 Genetic Analyzer (Applied Biosystems). Electropherograms were inspected and aligned with Geneious 7.1.7 (GeneMatters Corp; Kearse et al. 2012) using the MUSCLE algorithm implemented in the same software (Edgar 2004). Sequences were submitted to a comparative similarity search on BLAST before the alignment. All sequences generated by us were submitted to GenBank. In addition to sequences generated in this work, we included 61 sequences of mt-Cytb, IRBP, and i7Fgb downloaded from GenBank (Supplementary Data SD1). These encompassed 4 specimens of W. cerradensis (including the holotype), 4 specimens of W. pyrrhorhinos, and the remaining sequences belong to outgroup species composed of Wilfredomys oenax, Juliomys pictipes, and Phaenomys ferrugineus (as part of the Wiedomyini tribe); Abrothrix longipilis and Geoxus valdivianus (Abrotrichini tribe, sister to Wiedomyini); Delomys dorsalis, D. sublineatus, together with Calomys callosus, Phyllotis haggardi, and P. xanthopygus (representing the Delomys + Phyllotini clade, sister to Wiedomyini–Abrotrichini clade); and Rheomys raptor, Sigmodon hispidus, and S. toltecus (representing the most distantly related genera within Sigmodontinae), following Gonçalves et al. (2020; Supplementary Data SD1).

Phylogenetic analyses, species tree, and molecular dating

We used the following sets of data: (i) mt-Cytb gene sequences (mt), since this was the most informative gene in terms of number of sampled specimens; and (ii) a multilocus data set using mt-Cytb, IRBP, and i7Fgb sequences (mt + nuc). Models of nucleotide substitution and partitioning schemes were evaluated in PartitionFinder 2 (Lanfear et al. 2016), using the Bayesian information criterion (BIC). The best partition scheme suggested was partitioning by gene and codon position, except for noncoding i7Fgb sequences, to which a single partition and HKY + G model were proposed. SYM + G, HKY + I, and HKY + I + G were the models selected for each mt-Cytb codon positions, respectively. For IRBP, HKY + I was selected for position 1, K80 for position 2, and K80 + I for position 3.

We inferred molecular phylogenies using maximum likelihood (ML) and Bayesian inference (BI). ML analyses were performed using IQTree Web server (Trifinopoulos et al. 2016). Statistical support for nodes was estimated by nonparametric bootstrapping (BS) (Felsenstein 1985), with 1,000 pseudoreplicates. BI was carried out in MrBayes 3.2.6 (Ronquist and Huelsenbeck 2003). Markov chains were started from a random tree and run for 1.0 × 107 generations with sampling every 1,000th generation. The stationary phase was checked using Tracer 1.6 (Rambaut et al. 2014). Sample points prior to the plateau phase were discarded as burn-in, and the remaining trees were combined to find the maximum a posteriori estimated probability of the phylogeny. Branch supports were estimated with Bayesian posterior probabilities (PP). Two simultaneous analyses were performed to ensure convergence on topologies. To evaluate genetic and geographic population structure we reconstructed a Median-Joining (MJ) network (Bandelt et al. 1999) of mt-Cytb haplotypes using NETWORK10 (http://www.fluxus-engineering.com). This analysis was based on variable sites and excluded sites containing missing data.

The evolutionary distance between pairs of sequences was estimated with MEGA 11 (Tamura et al. 2021), using the Tamura–Nei model with gamma rate among sites for mt-Cytb gene and Kimura 2-parameter model for nuclear sequences data sets (IRBP and i7Fgb). The goodness of fit of these models to data sets was measured also in MEGA 11 by the BIC and corrected by Akaike information criterion. For mt-Cytb, we analyzed a total of 51 sequences (32 from W. cerradensis and 19 from W. pyrrhorhinos). For nuclear data sets, 38 sequences of i7Fgb (24 from W. cerradensis and 14 from W. pyrrhorhinos) and 25 sequences of IRBP (18 from W. cerradensis and 7 from W. pyrrhorhinos) were analyzed.

We inferred the species tree by using multispecies coalescent analyses and molecular dating in BEAST 2.7.3 (Drummond and Rambaut 2007; Suchard and Rambaut 2009). Gene trees for the partitioned mt + nuc data set were simultaneously estimated and reconciled onto a species tree using the Bayesian multispecies coalescent (MSC) method (Heled and Drummond 2010). The mt + nuc data set used in the MSC included all Wiedomys samples (44 terminals) with the 3 loci sequenced and 3 samples for each genus used as outgroup (Supplementary Data SD1). We used a Yule model as the prior to genes and species trees and the multispecies coalescent population size was set to “Constant population.” The MCMC was run for 400 million generations, sampling parameters values, gene trees, and species trees every 10,000 generations. We checked the convergence through effective sample sizes (ESS > 200) of estimated parameters on TRACER 1.6 and by comparing the topologies across multiple independent runs. Consensus for species trees and gene trees were annotated from MCMC samples using TreeAnnotator 2.4.2, with the first 10% of samples discarded as burn-in.

In the same analyses, the crown age for the genus Wiedomys was estimated. Ages of 6 clades were constrained as calibration points with time units in millions of years ago (Ma) based on Gonçalves et al. (2020), Ronez et al. (2021), Parada et al. (2021), and Salazar-Bravo et al. (2023): (i) Sigmodontalia (offset: 6.79); (ii) Sigmodon (offset: 2.5); (iii) Phyllotini (offset: 4.3 Ma); (iv) Abrotrichini (offset: 1.7 Ma); (v) Wiedomyini–Abrotrichini (offset: 5.19 Ma); and (vi) Wiedomyini (offset: 0.85 Ma). For calibration points, we used log-normal distribution priors (Ho and Phillips 2009) with offsets adjusted to accommodate fossil dates (i.e., clade minimum age) within the first fifth percentile of a log-normal distribution with mean 0.01 and standard deviation 1.0.

Chromosome analyses

Chromosome suspensions were obtained from different sampling collections and using 2 methods, respectively: in vivo, from spleen and bone marrow following Ford and Hamerton (1956); and in vitro, with short-term bone marrow cultures incubated for 2 h (around 37 °C) in 15-mL polypropylene tubes containing sterile medium (80% RPMI, 20% fetal calf serum, 5 μg of ethidium bromide, and 10-6 M colchicine). Conventional Giemsa staining and CBG-banding (when possible) were performed according to Sumner (1972). Metaphases were captured with visible light on an Axioskop 40 microscope (Zeiss) using AxioVision software.

Morphological analyses

Specimens were classified into 7 age classes based on molar tooth eruption and wear according to criteria defined in Sobral and Oliveira (2014). Morphometric analyses included only skulls of adult specimens (age classes 5 to 7). Twenty craniodental and mandibular measurements (Supplementary Data SD2) were taken with the aid of a digital caliper nearest to 0.01 mm of precision. Adult specimens with less than 4 missing measurements were used for morphometric analyses, which resulted in a matrix of 165 specimens. To make this matrix complete, we inferred values for up to 4 missing measurements per specimen (20% of the total) using the Expectation-Maximization Bootstrapping routine in the R v. 4.2.1 (R Core Team 2022) package “Amelia II” (Honaker et al. 2011).

As most localities had less than 5 specimens, geographic samples were pooled into 16 operational taxonomic units (OTUs) based on their geographical proximity and absence of geographical barriers among collecting localities (Table 1). Among these OTUs, 8 comprised specimens included in cytogenetic and molecular analyses, 1 included topotypes of W. pyrrhorhinos (OTU Caetité—Bahia state, right riverside), and 1 included the holotype of W. cerradensis (OTU Jaborandi—Bahia state, left riverside). This correspondence among data types allowed us to assign OTUs inferred by morphological groupings to genetic lineages, karyotypes, and species (Table 1).

To estimate patterns of craniometric discrimination among Wiedomys OTUs, a canonical variate analysis (CVA) was carried out based on the 20 log-transformed cranial measurements (Supplementary Data SD2). The specimen OTUs were used as prior classification in CVA so that we could test whether patterns of morphometric discrimination were congruent with the genetic lineages revealed by molecular analysis. After species names were assigned to morphological groups revealed by the CVA, we assessed the amount of a posteriori correct classifications between species based on 1,000 jack-knife pseudoreplicates of the discrimination functions estimated in the OTUs CVA.

We also evaluated qualitative variation among and within OTUs in the following external and cranial characters: size and distribution of chromogenic patches of hairs on the head; alisphenoid strut presence; mesopterygoid fossa terminal edge shape; frontal–parietal–squamosal suture shape; nasal morphology; and molar characters. We used the anatomical terminology of Carleton and Musser (1989), Voss (1991), Weksler (2006), and Barbière et al. (2019) for these characters.

Results

Phylogenetic relationships and divergence time estimation

The topology based on the mt + nuc data set using the multispecies coalescent method recovered Wiedomys as monophyletic and Wilfredomys as the sister genus with both relationships highly supported (PP = 1.0; Fig. 2A). This topology was supported by all gene trees derived from different partitions of the mt + nuc data set, although mt-Cytb third positions and IRBP first and second positions yielded lower support values (PP < 0.85) for the monophyly of Wiedomys (Supplementary Data SD3). The relationship between Wiedomys and Wilfredomys inferred exclusively from the mt data set using the ML and BI methods (Supplementary Data SD4) differed from that inferred from the mt + nuc data set. The mt topology recovered 3 highly supported clades (BS—100%/PP = 1), but recovered Wiedomys as paraphyletic, with W. pyrrhorhinos as the sister to W. oenax (BS = 73%/PP = 0.88; Supplementary Data SD4).

(A) Multispecies coalescent tree analysis of Wiedomys using mt-Cytb, IRBP, and i7Fgb sequences. Circles indicate posterior probability (above) and bootstrap (below) values: black > 0.95% and 90%, gray 75% to 90%, and white < 0.95% and 75%. * represents W. cerradensis type series. (B) Divergence time estimates of Wiedomys species based on multispecies coalescent analysis of the multilocus data set (mt-Cytb, IRBP, i7Fgb). Numbers below branches are mean height and maximum and minimum height. Bars on nodes indicate 95% credibility intervals of date estimates.
Fig. 2.

(A) Multispecies coalescent tree analysis of Wiedomys using mt-Cytb, IRBP, and i7Fgb sequences. Circles indicate posterior probability (above) and bootstrap (below) values: black > 0.95% and 90%, gray 75% to 90%, and white < 0.95% and 75%. * represents W. cerradensis type series. (B) Divergence time estimates of Wiedomys species based on multispecies coalescent analysis of the multilocus data set (mt-Cytb, IRBP, i7Fgb). Numbers below branches are mean height and maximum and minimum height. Bars on nodes indicate 95% credibility intervals of date estimates.

In all analyses of mt and mt + nuc data sets, the W. pyrrhorhinos lineage was recovered grouping samples from the right bank of the São Francisco River—distributed throughout Bahia, Sergipe, and Minas Gerais states—and the W. cerradensis lineage included samples from the left bank of the São Francisco River, distributed throughout localities of Cerrado and Caatinga of Alagoas, Bahia, Ceará, Goiás, Maranhão, Pernambuco, Piauí, and Tocantins states (Figs. 1 and 2A; Supplementary Data SD4). The mean genetic distance of mt-Cytb between W. pyrrhorhinos and W. cerradensis was 17% (ranging from 13% to 19%), within W. pyrrhorhinos 0.7% (range: 0.0% to 1.5%), and within W. cerradensis 1% (range: 0.0% to 2.5%). The mean genetic distance obtained using nuclear sequences (IRBP + i7Fgb) between W. pyrrhorhinos and W. cerradensis was 1% (ranging from 0.0% to 3.0%), within W. pyrrhorhinos 0.4% (range: 0.0% to 1.4%), and within W. cerradensis 0.5% (range: 0.0% to 2.9%). The genus Wiedomys showed high haplotype diversity (Hd = 0.99). The MJ network (Fig. 3) of 46 sequences of at least 771 bp was highly concordant with the pattern shown in the phylogenetic analyses, recovering 2 haplogroups separated by 84 substitutions: the W. pyrrhorhinos haplogroup with 15 haplotypes (n = 19 sequences); and the W. cerradensis haplogroup with 24 haplotypes (n = 27). The network did not show any clear structure among specimens with the same haplogroup.

Median-joining network of Wiedomys specimen haplotypes based on mt-Cytb (n = 165). Circle size corresponds to the number of individuals with a given haplotype. Diploid and fundamental numbers (when available) are shown below the haplotype indication, as well as the Brazilian state abbreviation (see Table 1) from where the individuals were collected. Black circles represent median vectors. Numbers and lines in connecting branches denote more than 2 nucleotide substitutions; straight lines indicate one nucleotide substitution.
Fig. 3.

Median-joining network of Wiedomys specimen haplotypes based on mt-Cytb (n = 165). Circle size corresponds to the number of individuals with a given haplotype. Diploid and fundamental numbers (when available) are shown below the haplotype indication, as well as the Brazilian state abbreviation (see Table 1) from where the individuals were collected. Black circles represent median vectors. Numbers and lines in connecting branches denote more than 2 nucleotide substitutions; straight lines indicate one nucleotide substitution.

Molecular dating showed that the divergence between lineages in the Wiedomys–Wilfredomys clade occurred during the Late Quaternary. Wilfredomys and Wiedomys diverged at approximately 0.38 Ma (Highest Posterior Density (HPD) 95% interval = 0.09 to 0.8 Ma), while W. pyrrhorhinos and W. cerradensis split approximately at 0.15 Ma (HPD 95% interval = 0.02 to 0.34 Ma; Fig. 2B).

Cytogenetic variation

The karyotypes of W. pyrrhorhinos from Curaçá (Bahia state) and W. cerradensis from Jaguaruana (Ceará state) are described for the first time. Wiedomys pyrrhorhinos had a karyotype of 2n = 62, FN = 96, with the autosome complement composed of 18 biarmed pairs and 12 acrocentric pairs; the X chromosome is a large submetacentric and the Y is a small acrocentric (Fig. 4A).

New karyotypes described for Wiedomys. (A) Wiedomys pyrrhorhinos (CIT959), male, from Curaçá (Bahia State) with 2n = 62, FN = 96; (B) W. cerradensis (LBCE5255), female, from Jaguaruana (Ceará s tate) with 2n = 62, FN = 88.
Fig. 4.

New karyotypes described for Wiedomys. (A) Wiedomys pyrrhorhinos (CIT959), male, from Curaçá (Bahia State) with 2n = 62, FN = 96; (B) W. cerradensis (LBCE5255), female, from Jaguaruana (Ceará s tate) with 2n = 62, FN = 88.

Wiedomys cerradensis had a karyotype of 2n = 62, FN = 86 for samples from Piranhas and Delmiro Gouveia (Alagoas state), and 2n = 62, FN = 88 for samples from Jaguaruana (Ceará state). Autosome complement is composed of 13 biarmed pairs and 17 acrocentric pairs in samples from Alagoas (not shown) and 14 biarmed pairs and 16 acrocentric pairs in samples from Ceará. The 2 karyotypes showed a large acrocentric pair, the largest chromosome pair of the complement; the X is a large acrocentric (Fig. 4B) and the Y is a small acrocentric (not shown).

Morphological variation

The first 3 canonical variates (CVA), based on 20 craniometric measurements, summarized 60.15% of total variation among the 16 morphological OTUs (Fig. 5). CV1 predominantly represented a gradient of cranial size variation among samples, as all characters were positively correlated with this axis, while CV2 and CV3 represented different trends of cranial shape variation. The major trend of discrimination between OTUs was evidenced along CV1, mirroring the geographic distribution of samples between opposite sides of the São Francisco River. In general, OTUs on the left side of the river could be discriminated from OTUs on the right side by their relatively smaller cranial size. The sample from Piauí state illustrates a single exception to this trend as it presented the largest crania among the left-side OTUs, overlapping its 95% confidence ellipses more extensively with right-side OTUs such as samples from Feira de Santana (Bahia state) and Canindé de São Francisco (Sergipe state). However, discrimination between left-side and right-side OTUs was consistent in all other cases, even when left-side and right-side OTUs were geographically close, such as the Piranhas (Alagoas State) and Canindé de São Francisco OTUs (Fig. 1).

Craniometric discrimination among Wiedomys OTUs provided by CVA: (A, C) centroids and 95% confidence ellipses of OTUs along the first 3 canonical variates; and (B, D) respective vector correlations among characters and canonical variates.
Fig. 5.

Craniometric discrimination among Wiedomys OTUs provided by CVA: (A, C) centroids and 95% confidence ellipses of OTUs along the first 3 canonical variates; and (B, D) respective vector correlations among characters and canonical variates.

Jaborandi is the type locality, since it includes the holotype of W. cerradensis, and this OTU was found to be on the left side of the São Francisco River, while Caetité, which includes a topotype of W. pyrrhorhinos and also presents the largest crania of all samples, is an OTU distributed on the right side of the São Francisco River. Therefore, OTUs from the left riverside can be referred to W. cerradensis, whereas OTUs from the right riverside are referred to W. pyrrhorhinos, consistent with the taxonomic assignment of left-side and right-side lineages delineated in the molecular phylogenetic analyses (Fig. 2A). When OTUs are assigned to these 2 species, the discriminant functions correctly classify 71.4% of the specimens of W. pyrrhorhinos and 82% of the specimens of W. cerradensis.

We also observed consistent variation between species in the size of the ring of orangish hairs around the eyes (periocular ring) and in its connection to the patch of orangish hairs in the muzzle (Fig. 6; Table 2). In all skins of W. cerradensis analyzed (n = 65), specimens present a wide and conspicuous periocular ring, which in most of them (84%) extends along the infraorbital region and reaches the patch of orangish hairs in the muzzle (Fig. 6A). The wide periocular ring gives the appearance that these 2 chromogenic patches are contiguous. In contrast, most specimens (n = 50) of W. pyrrhorhinos present a narrower periocular ring (90%), sometimes incomplete or inconspicuous (10%), which is always separated from the muzzle patch by a strip of grizzled hairs along the infraorbital region. These grizzled hairs are of similar color to those from the frontal and/or cheek regions of the head, giving the appearance that the periocular ring and the orangish patches on the muzzle are completely separated or discontinuous. In some W. cerradensis specimens (16% examined here), the 2 chromogenic patches are discontinuous, approaching the most common condition seen in W. pyrrhorhinos. But no W. pyrrhorhinos specimen analyzed exhibited the most common condition seen in W. cerradensis (broad periocular ring connected to the muzzle patch).

Table 2.

Frequencies of the orangish periocular ring character-states in population samples and species of Wiedomys (see Fig. 6A–C). Average frequencies for the 2 species are in bold.

Species/OTUnPeriocular ring
Broad and contiguous to the muzzle patchNarrow and separated from muzzle patchIncomplete and separated from muzzle patch
Wiedomys cerradensis
Caruaru20.500.500.00
Ceará280.830.170.00
Garanhuns190.790.210.00
Jaborandi60.670.330.00
Maranhão11.000.000.00
Pesqueira140.930.070.00
Piauí40.750.250.00
Piranhas11.000.000.00
Quebrangulo131.000.000.00
Santana do Ipanema50.800.200.00
Total650.840.160.00
Wiedomys pyrrhorhinos
Berilo100.000.900.10
Caetité130.000.920.08
Canindé de São Francisco10.001.000.00
Feira de Santana170.000.820.18
Morro do Chapéu40.001.000.00
Serrinha50.001.000.00
Total500.000.910.09
Species/OTUnPeriocular ring
Broad and contiguous to the muzzle patchNarrow and separated from muzzle patchIncomplete and separated from muzzle patch
Wiedomys cerradensis
Caruaru20.500.500.00
Ceará280.830.170.00
Garanhuns190.790.210.00
Jaborandi60.670.330.00
Maranhão11.000.000.00
Pesqueira140.930.070.00
Piauí40.750.250.00
Piranhas11.000.000.00
Quebrangulo131.000.000.00
Santana do Ipanema50.800.200.00
Total650.840.160.00
Wiedomys pyrrhorhinos
Berilo100.000.900.10
Caetité130.000.920.08
Canindé de São Francisco10.001.000.00
Feira de Santana170.000.820.18
Morro do Chapéu40.001.000.00
Serrinha50.001.000.00
Total500.000.910.09
Table 2.

Frequencies of the orangish periocular ring character-states in population samples and species of Wiedomys (see Fig. 6A–C). Average frequencies for the 2 species are in bold.

Species/OTUnPeriocular ring
Broad and contiguous to the muzzle patchNarrow and separated from muzzle patchIncomplete and separated from muzzle patch
Wiedomys cerradensis
Caruaru20.500.500.00
Ceará280.830.170.00
Garanhuns190.790.210.00
Jaborandi60.670.330.00
Maranhão11.000.000.00
Pesqueira140.930.070.00
Piauí40.750.250.00
Piranhas11.000.000.00
Quebrangulo131.000.000.00
Santana do Ipanema50.800.200.00
Total650.840.160.00
Wiedomys pyrrhorhinos
Berilo100.000.900.10
Caetité130.000.920.08
Canindé de São Francisco10.001.000.00
Feira de Santana170.000.820.18
Morro do Chapéu40.001.000.00
Serrinha50.001.000.00
Total500.000.910.09
Species/OTUnPeriocular ring
Broad and contiguous to the muzzle patchNarrow and separated from muzzle patchIncomplete and separated from muzzle patch
Wiedomys cerradensis
Caruaru20.500.500.00
Ceará280.830.170.00
Garanhuns190.790.210.00
Jaborandi60.670.330.00
Maranhão11.000.000.00
Pesqueira140.930.070.00
Piauí40.750.250.00
Piranhas11.000.000.00
Quebrangulo131.000.000.00
Santana do Ipanema50.800.200.00
Total650.840.160.00
Wiedomys pyrrhorhinos
Berilo100.000.900.10
Caetité130.000.920.08
Canindé de São Francisco10.001.000.00
Feira de Santana170.000.820.18
Morro do Chapéu40.001.000.00
Serrinha50.001.000.00
Total500.000.910.09
Variation in the size of periocular ring of orangish hairs and on its connection with the patch of orangish hairs in the muzzle of Wiedomys: (A) broad periocular ring contiguously connected to the muzzle patch (Wiedomys cerradensis, MN67022); (B) narrower periocular ring disconnected from the muzzle patch (W. cerradensis, MN18554); and (C) incomplete or inconspicuous periocular ring disconnected from the muzzle patch (Wiedomys pyrrhorhinos, MN18762).
Fig. 6.

Variation in the size of periocular ring of orangish hairs and on its connection with the patch of orangish hairs in the muzzle of Wiedomys: (A) broad periocular ring contiguously connected to the muzzle patch (Wiedomys cerradensis, MN67022); (B) narrower periocular ring disconnected from the muzzle patch (W. cerradensis, MN18554); and (C) incomplete or inconspicuous periocular ring disconnected from the muzzle patch (Wiedomys pyrrhorhinos, MN18762).

Among qualitative cranial characters, nasal bone morphology was the most useful to differentiate W. cerradensis and W. pyrrhorhinos, showing no polymorphism within OTUs (Table 2). Wiedomys cerradensis present relatively short nasals, with their posterior margin terminating in level with the frontal–premaxillary sutures, while W. pyrrhorhinos present longer nasals, with their posterior margins extending beyond the frontal–premaxillary sutures (Fig. 7). The anterior outlines of nasals also vary between species. In W. cerradensis, the anterior margins of nasals taper continuously to the midline, producing a more pointed and shorter rostrum, while in W. cerradensis the nasal anterior margins are rounded, giving the rostrum a more blunt and stocky appearance (Figs. 7 and 8).

Dorsal views of the rostrum showing variation in the morphology of the posterior margin of nasals: (A) Wiedomys cerradensis (MUFAL249, Piranhas, Alagoas state) exhibiting a short nasal with its posterior margin terminating in level with the frontal–premaxillary suture, and (B) Wiedomys pyrrhorhinos (MUFAL265, Canindé de São Francisco, Sergipe state) showing a long nasal with the posterior margin extending beyond the frontal–premaxillary suture.
Fig. 7.

Dorsal views of the rostrum showing variation in the morphology of the posterior margin of nasals: (A) Wiedomys cerradensis (MUFAL249, Piranhas, Alagoas state) exhibiting a short nasal with its posterior margin terminating in level with the frontal–premaxillary suture, and (B) Wiedomys pyrrhorhinos (MUFAL265, Canindé de São Francisco, Sergipe state) showing a long nasal with the posterior margin extending beyond the frontal–premaxillary suture.

Dorsal, ventral, and lateral views of skulls and lateral view of mandibles of Wiedomys cerradensis (MUFAL250, Piranhas, Alagoas state) and W. pyrrhorhinos (MUFAL265, Canindé de São Francisco, Sergipe state).
Fig. 8.

Dorsal, ventral, and lateral views of skulls and lateral view of mandibles of Wiedomys cerradensis (MUFAL250, Piranhas, Alagoas state) and W. pyrrhorhinos (MUFAL265, Canindé de São Francisco, Sergipe state).

All other cranial qualitative characters presented high levels of polymorphism and were not informative for discrimination between species (Table 3). These polymorphic characters include the occurrence of a bony alisphenoid strut, which was considered as diagnostic by Gonçalves et al. (2005) but exhibited variation within the OTUs examined here (Table 3). Dental characters also exhibited polymorphism within the 2 species, but when young adults of the same age category are compared, W. cerradensis most frequently exhibit a broader anteromedian style in the procingulum of M1 relative to W. pyrrhorhinos.

Table 3.

Frequencies of cranial character-states in population samples (n shown) and species of Wiedomys. Total frequencies for the 2 species are in bold.

Species/OTUnNasalsAlisphenoid strutMesopterygoid fossa marginFrontoparietal suture
ShortLongAbsentPresentRoundedPointedSquaredUV
W. cerradensis
Caruaru231.000.001.000.000.460.000.540.260.74
Ceará181.000.000.190.810.130.070.800.060.94
Garanhuns181.000.000.890.110.820.000.180.001.00
Jaborandi81.000.000.220.781.000.000.000.110.89
Pesqueira91.000.000.420.580.780.000.220.001.00
Piauí41.000.000.330.670.670.000.330.001.00
Piranhas71.000.001.000.000.890.000.110.001.00
Quebrangulo111.000.000.370.630.630.000.370.150.85
Santana do Ipanema61.000.000.090.910.710.000.290.230.77
Total/mean1041.000.000.500.500.680.010.320.090.91
W. pyrrhorhinos
Berilo260.001.000.310.770.590.350.070.001.00
Caetité170.001.000.500.500.680.230.090.140.86
Canindé de São Francisco50.001.000.800.201.000.000.000.001.00
Feira de Santana170.001.000.710.291.000.000.000.350.65
Morro do Chapéu280.001.000.400.600.730.150.130.110.89
Serrinha60.001.000.290.710.860.000.140.290.71
Total/Mean990.001.000.500.510.810.120.070.150.85
Species/OTUnNasalsAlisphenoid strutMesopterygoid fossa marginFrontoparietal suture
ShortLongAbsentPresentRoundedPointedSquaredUV
W. cerradensis
Caruaru231.000.001.000.000.460.000.540.260.74
Ceará181.000.000.190.810.130.070.800.060.94
Garanhuns181.000.000.890.110.820.000.180.001.00
Jaborandi81.000.000.220.781.000.000.000.110.89
Pesqueira91.000.000.420.580.780.000.220.001.00
Piauí41.000.000.330.670.670.000.330.001.00
Piranhas71.000.001.000.000.890.000.110.001.00
Quebrangulo111.000.000.370.630.630.000.370.150.85
Santana do Ipanema61.000.000.090.910.710.000.290.230.77
Total/mean1041.000.000.500.500.680.010.320.090.91
W. pyrrhorhinos
Berilo260.001.000.310.770.590.350.070.001.00
Caetité170.001.000.500.500.680.230.090.140.86
Canindé de São Francisco50.001.000.800.201.000.000.000.001.00
Feira de Santana170.001.000.710.291.000.000.000.350.65
Morro do Chapéu280.001.000.400.600.730.150.130.110.89
Serrinha60.001.000.290.710.860.000.140.290.71
Total/Mean990.001.000.500.510.810.120.070.150.85
Table 3.

Frequencies of cranial character-states in population samples (n shown) and species of Wiedomys. Total frequencies for the 2 species are in bold.

Species/OTUnNasalsAlisphenoid strutMesopterygoid fossa marginFrontoparietal suture
ShortLongAbsentPresentRoundedPointedSquaredUV
W. cerradensis
Caruaru231.000.001.000.000.460.000.540.260.74
Ceará181.000.000.190.810.130.070.800.060.94
Garanhuns181.000.000.890.110.820.000.180.001.00
Jaborandi81.000.000.220.781.000.000.000.110.89
Pesqueira91.000.000.420.580.780.000.220.001.00
Piauí41.000.000.330.670.670.000.330.001.00
Piranhas71.000.001.000.000.890.000.110.001.00
Quebrangulo111.000.000.370.630.630.000.370.150.85
Santana do Ipanema61.000.000.090.910.710.000.290.230.77
Total/mean1041.000.000.500.500.680.010.320.090.91
W. pyrrhorhinos
Berilo260.001.000.310.770.590.350.070.001.00
Caetité170.001.000.500.500.680.230.090.140.86
Canindé de São Francisco50.001.000.800.201.000.000.000.001.00
Feira de Santana170.001.000.710.291.000.000.000.350.65
Morro do Chapéu280.001.000.400.600.730.150.130.110.89
Serrinha60.001.000.290.710.860.000.140.290.71
Total/Mean990.001.000.500.510.810.120.070.150.85
Species/OTUnNasalsAlisphenoid strutMesopterygoid fossa marginFrontoparietal suture
ShortLongAbsentPresentRoundedPointedSquaredUV
W. cerradensis
Caruaru231.000.001.000.000.460.000.540.260.74
Ceará181.000.000.190.810.130.070.800.060.94
Garanhuns181.000.000.890.110.820.000.180.001.00
Jaborandi81.000.000.220.781.000.000.000.110.89
Pesqueira91.000.000.420.580.780.000.220.001.00
Piauí41.000.000.330.670.670.000.330.001.00
Piranhas71.000.001.000.000.890.000.110.001.00
Quebrangulo111.000.000.370.630.630.000.370.150.85
Santana do Ipanema61.000.000.090.910.710.000.290.230.77
Total/mean1041.000.000.500.500.680.010.320.090.91
W. pyrrhorhinos
Berilo260.001.000.310.770.590.350.070.001.00
Caetité170.001.000.500.500.680.230.090.140.86
Canindé de São Francisco50.001.000.800.201.000.000.000.001.00
Feira de Santana170.001.000.710.291.000.000.000.350.65
Morro do Chapéu280.001.000.400.600.730.150.130.110.89
Serrinha60.001.000.290.710.860.000.140.290.71
Total/Mean990.001.000.500.510.810.120.070.150.85

Discussion

Species boundaries and genus monophyly

Molecular and morphological analyses were congruent in supporting the presence of 2 species within living Wiedomys, corroborating the previous taxonomic assessment of the genus (Gonçalves et al. 2005). Phylogenetic analyses of mt-Cytb and the species tree approach evidenced a clear separation between the 2 species and did not reveal any geographic subdivision within either of them. This is evident in the low genetic distance among individuals within species compared to divergence among individuals between species. Morphological analyses also allowed both quantitative and qualitative discrimination of W. cerradensis and W. pyrrhorhinos. Previous analyses that relied on 2 adults and 1 young of W. cerradensis could not detect consistent morphometric discrimination between species despite including a large series of W. pyrrhorhinos (Gonçalves et al. 2005). Molecular and morphological results presented herein also revealed that samples from Alagoas and Pernambuco states treated by Gonçalves et al. (2005) as W. pyrrhorhinos are in fact W. cerradensis, posing considerable changes in the distributions of both species and in their cytogenetic variability. Current evidence suggests that W. cerradensis presents a much wider distribution than previous proposals, occurring throughout the Cerrado and Caatinga habitats of central and northeastern Brazil, respectively, while W. pyrrhorhinos presents a more restricted distribution to Caatinga habitats of Bahia and northern Minas Gerais states (Fig. 9).

Geographic distribution of Wiedomys cerradensis (green, circles) and W. pyrrhorhinos (blue, triangles) showing their corresponding karyotypes according to data from the present study and literature (see text).
Fig. 9.

Geographic distribution of Wiedomys cerradensis (green, circles) and W. pyrrhorhinos (blue, triangles) showing their corresponding karyotypes according to data from the present study and literature (see text).

The analysis based exclusively on mt-Cytb sequences found weak support for a paraphyletic Wiedomys, with W. pyrrhorhinos more closely related to W. oenax than to W. cerradensis (Supplementary Data SD4), as in the arrangement obtained by Machado et al. (2015). In contrast, the multilocus analysis with a coalescent species tree approach (Fig. 2A) and concatenated nuclear phylogenetic analyses (not shown) recovered strong support for a monophyletic Wiedomys with W. oenax as its sister lineage. Divergence between the 2 genera is recent (Fig. 2B), and the short branch between the common ancestors of Wiedomys and of Wiedomys + Wilfredomys suggests that the diversification of Wiedomys occurred shortly after its separation from Wilfredomys. Successive cladogenetic events separated by a short interval, like those in the Wilfredomys + Wiedomys clade, are more prone to incomplete lineage sorting across the genome during cladogenesis, leading to higher discordance among genes and species trees (Maddison and Knowles 2006; Feng et al. 2022). Under this scenario, the likelihood that a given gene genealogy differs from those of other loci increases as the interval between cladogenetic events becomes shorter and population sizes grow larger. In the present study, the consensus among different loci favors the monophyly of Wiedomys, but divergence within the Wilfredomys + Wiedomys clade deserves greater attention and should be reevaluated using more loci or genomic approaches. Phylogenetic discordance between mitochondrial and nuclear genes is a common occurrence (e.g., Reddy et al. 2017), having been attributed to various factors such as introgressive hybridization, incomplete lineage sorting, selection, or distinct mutation rates in specific genes (Toews and Brelsford 2012). Detailed studies using a representative number of samples from Wilfredomys and other lines of evidence will be necessary to discriminate among these alternatives. We conclude that the multispecies coalescent method applied here is more appropriate to infer the species tree than a single locus, especially when discordance among gene trees is evident (Parada et al. 2021).

Karyotypic diversity

Although with the same diploid number (2n = 62), the W. cerradensis karyotypes reported here can be clearly distinguished from W. pyrrhorhinos due to the presence of a large-sized acrocentric pair and the difference in the number of biarmed and acrocentric pairs reflected in the fundamental numbers (FN = 88 and FN = 96, respectively; Fig. 4).

In addition to the novel karyotypes described herein, another 6 different chromosome complements were previously reported in Wiedomys (Fig. 9). Four of these karyotypes were assigned to W. pyrrhorhinos: (i) 2n = 62, FN = 90 from Caetité (Gonçalves et al. 2005); (ii) 2n = 62, FN = 96 from Curaçá (this study), both in Bahia state; (iii) 2n = 62, FN = 98 to 99 from Minas Gerais state (Geise et al. 2017), and (iv) 2n = 62, FN = 104 from Morro do Chapéu, Bahia state (Souza et al. 2011), and from Canindé do São Francisco and Nossa Senhora da Glória, Sergipe state (Bezerra et al. 2014). Although no comparative banding pattern was performed, the difference between these karyotypes could be related to pericentric inversions or centromere repositioning in the small pairs, or even by different interpretations among authors.

As many as 3 karyotypes have now been described for W. cerradensis: 2n = 60, FN = 88 (holotype, Gonçalves et al. 2005); 2n = 62, FN = 88 from Ceará state (this study); and 2n = 62, FN = 86 from Alagoas (this study) and Pernambuco states (Maia and Langguth 1987; Geise et al. 2010). The difference observed in the FN (86 and 88) for karyotypes with 2n = 62 is probably due to pericentric inversion or centromere repositioning, while the difference found between 2n = 60 and 2n = 62 karyotypes could be due to Robertsonian rearrangements involving the largest acrocentric pair and one medium/small acrocentric.

Despite the changes in the chromosome morphology within Wiedomys altering diploid and fundamental numbers, the phylogenetic and network analyses were unable to detect genetic structure among these samples. We hypothesize that these karyological events have occurred in a relatively short period of time (0.34 to 0.02 Ma; Fig. 2B), considering the results of molecular dating in this study.

A wide diploid number variation can be observed in the tribe Wiedomyini, ranging from 2n = 20 in J. ossitenuis and J. rimofrons, to 2n = 78 in P. ferrugineus (Di-Nizo et al. 2017). Karyotypic changes can play an important role in several evolutionary processes, including speciation (King 1993). First, they can cause meiotic problems as hetero-karyotypes may fail to pair completely, causing meiotic arrest. They may also produce unbalanced gametes through crossovers in rearranged regions or malsegregation during meiotic recombination. In addition, rearrangements such as several pericentric inversions and centric fusion/fission can cause suppression of recombination and reduction in gene flow, leading to the accumulation of incompatibilities fueling the process of speciation (King 1993; Rieseberg 2001; Sumner 2003).

São Francisco River as a putative vicariant barrier

Redefined geographic, genetic, and morphological boundaries between W. cerradensis and W. pyrrhorhinos are coincident with the current course of the São Francisco River, as both species occur on opposite banks of its course, and invite an appraisal of this river as a putative cause of speciation. This hypothesis has been evoked to explain divergence in other Caatinga vertebrate taxa with sister lineages currently separated by the river (Nascimento et al. 2013; Werneck et al. 2015; Bruschi et al. 2019; Recoder and Rodrigues 2020; Thomé et al. 2021). If the river acted as a primary barrier promoting vicariant allopatric speciation in Wiedomys, the splitting date between W. cerradensis and W. pyrrhorhinos, here estimated for the Late Pleistocene, should coincide with the age of formation of the São Francisco modern watercourse dividing the 2 taxa.

The course of the São Francisco River has evolved substantially since its emergence during the Late Cretaceous, when it flowed from Minas Gerais and Bahia states northward, connecting to the Piauí and Parnaíba river basins, and discharging to the equatorial Atlantic Ocean (King 1956; Grabert 1968; Mabesoone 1994; Potter 1997). During the Middle–Late Miocene, the uplift of the Serra Grande and Serra de Ibiapaba Mountains interrupted the northward paleocourse, and the river probably became endorheic, draining its waters into a large lake located at its middle course, in Bahia state (Mabesoone 1994). The river did not achieve its current lower course, making its way to the Brazilian east coast until sometime during the Pliocene–Pleistocene. Mabesoone (1994), based on analyses of the Caatinga limestones formed by the watercourse shift, dated the formation of the modern lower river course to 0.475 to 0.400 Mya, while Auler et al. (2003) proposed that these limestones are much older (>0.500 Mya), possibly of Pliocene–Early Pleistocene origin. No further geological studies have been carried out on the Caatinga limestones to provide a more conclusive date for the formation of the current lower course of the São Francisco River, leaving us to evaluate the 2 ages based on biogeographic evidence alone. This major course shift could have separated populations that were continuously distributed throughout the Caatinga during the endorheic phase, including the ancestor of W. cerradensis and W. pyrrhorhinos. In this case, the divergence date between W. cerradensis and W. pyrrhorhinos is more concordant with a younger formation of the lower course of the São Francisco River, as its 95% lower limit (0.34 Mya) is close to the age proposed by Mabesoone (1994).

Important complementary biogeographic evidence favoring a younger age for the lower river course was provided by Coelho et al. (2022). Analyzing multilocus and genomic data under a coalescent model approach, these authors found the same phylogeographic breaks observed in Wiedomys in another 6 co-distributed vertebrate taxa (3 lizards, 1 frog, 1 bird, and 1 mammal species), with divergence times also close to the 0.475 to 0.400 Mya interval proposed by Mabesoone (1994) for the formation of the lower São Francisco River course. Studies of other vertebrate taxa from the Caatinga found older (2.2 to 1.0 Mya) divergence time estimates for sister lineages separated by the middle course of the São Francisco River midcourse (Siedchlag et al. 2010; Nascimento et al. 2013; Bruschi et al. 2019; Recoder and Rodrigues 2020), suggesting the possibility that different portions of the river promoted divergence at different times, as also recognized by studies on Amazonian rivers (e.g., Gascon et al. 2000; Patton et al. 2000; Leite and Rogers 2013). Nonetheless, in the absence of further geological evidence, the temporal and spatial congruence among Wiedomys and the taxa analyzed by Coelho et al. (2022) suggests that the lower course of the river acted as a vicariant barrier during the Late Pleistocene, promoting divergence in the Caatinga biota.

Final considerations

Our revision based on an integrative approach evidenced that Wiedomys has 2 genetically divergent and morphologically diagnosable species, W. cerradensis and W. pyrrhorhinos, which present much of their geographical limits defined by the São Francisco River. Different chromosome complements were not found in sympatry, but samples of the same species sharing the same karyotype can be less closely related than samples with different karyotypes, corroborating the polymorphic condition of the karyotypes in each species. Despite the karyotype variation in 2n and FN in W. cerradensis (2n = 60, 62, FN = 86, 88) and the karyotype variation in FN in W. pyrrhorhinos (2n = 62, FN = 90, 96, 98, 99, 104), the molecular analyses did not find any population structure within either species. We provide emended descriptions for the species below.

Taxonomic accounts

Wiedomys cerradensisGonçalves, Almeida, and Bonvicino, 2005

Wiedomys cerradensis is a monotypic species, commonly known as: rato-de-nariz-vermelho do Cerrado (Cerrado Red-nosed Mouse), rato-da-fava (Fava mouse), rato-bico-de-lacre (Waxbill mouse), rato-de-palmatória (Paddle mouse), and rato-do-algodão (Cotton mouse; Carvalho 1979).

Type locality

Fazenda Sertão do Formoso (14°37.888ʹS and 45°51.293ʹW), Jaborandi, Bahia state, Brazil (Gonçalves et al. 2005).

Synonyms

Wiedomys cerradensisGonçalves, Almeida, and Bonvicino, 2005; Wiedomys pyrrhorhinus: Gonçalves et al. 2005 [part, samples from Alagoas and Pernambuco states]; Wiedomys pyrrhorhinos: Bonvicino 2015 [part, samples from Alagoas and Pernambuco states].

Emended diagnosis

A relatively small red-nosed mouse of the genus Wiedomys with head-and-body length varying from 72 to 130 mm (Table 4). General dorsal coloration is pale grizzled-brown (relative to W. pyrrhorhinos), but with rump, periocular region, ears, muzzle, manus, and pes covered by bright orange hairs. Conspicuous and broad periocular ring of orangish hairs, in most specimens continuously extending along the infraorbital region to reach the orange muzzle patch. Skull relatively small compared to W. pyrrhorhinos (greatest skull length varying from 22.64 to 31.2 mm), and with a short and pointed rostrum gradually tapering toward its anterior tip. Nasals short, with caudal margins that do not extend posteriorly beyond the frontomaxillary suture.

Table 4.

Summary statistics of external and cranial measurements of Wiedomys species (mean ± standard deviation, minimum and maximum values, and sample size) based on adult specimens (age classes 5 to 7) used in morphometric analyses. Measurements in millimeters (mm), mass in grams (g). Character abbreviation in Fig. S1.

Wiedomys cerradensisWiedomys pyrrhorhinos
Head-and-body length108.71 ± 11.45 (72 to 130) 99115.2 ± 19.52 (80 to 205) 50
Tail length165.47 ± 16.53 (119 to 201) 100173.65 ± 25.72 (100 to 211) 49
Hindfoot length24.71 ± 2.08 (20 to 30) 9626.69 ± 2.49 (19 to 30) 48
Ear length19.47 ± 2.02 (15 to 30) 9619.83 ± 2.73 (12 to 26) 48
Mass36.21 ± 9.71 (11 to 60) 9940.84 ± 11 (18 to 70) 47
GSL28.74 ± 1.49 (22.64 to 31.20) 10630.35 ± 1.24 (26.15 to 34.27) 59
NL10.28 ± 0.94 (7.10 to 12.75) 10611.26 ± 1.01 (7.77 to 14.50) 59
RB3.56 ± 0.31 (2.96 to 4.47) 1063.72 ± 0.35 (3.21 to 4.77) 59
AB8.34 ± 0.65 (5.58 to 9.55) 1068.76 ± 0.52 (7.60 to 9.90) 59
LIB4.42 ± 0.2 (3.79 to 4.96) 1064.61 ± 0.2 (4.18 to 5.08) 59
BB12.79 ± 0.56 (10.19 to 14.10) 10613.34 ± 0.67 (9.91 to 14.58) 59
IPB9.71 ± 0.63 (8.13 to 11.67) 10610.17 ± 0.56 (9.04 to 11.35) 59
IPL3.88 ± 0.44 (2.98 to 5.15) 1064.19 ± 0.44 (3.23 to 5.28) 59
PL10.96 ± 0.8 (7.70 to 13.25) 10611.72 ± 0.61 (10.31 to 13.20) 59
IFL5.58 ± 0.61 (3.57 to 7.26) 1065.75 ± 0.52 (4.25 to 6.67) 59
PBL4.47 ± 0.38 (3.37 to 5.34) 1064.99 ± 0.33 (4.39 to 5.95) 59
LM4.45 ± 0.18 (3.59 to 4.86) 1064.65 ± 0.21 (4.15 to 5.10) 59
M1M5.09 ± 0.24 (4.25 to 5.66) 1065.23 ± 0.29 (4.46 to 5.91) 59
ABD4.42 ± 0.45 (3.21 to 5.41) 1064.73 ± 0.47 (3.01 to 5.62) 59
ABB4.51 ± 0.35 (3.13 to 5.18) 1064.82 ± 0.43 (4.06 to 5.97) 59
ZPL2.75 ± 0.31 (2.07 to 3.64) 1062.89 ± 0.4 (2.07 to 3.86) 59
ZB14.80 ± 0.82 (11.53 to 16.64) 10615.49 ± 0.78 (13.48 to 17.23) 59
OL9.76 ± 0.66 (8.13 to 11.48) 10610.31 ± 0.54 (8.77 to 11.28) 59
BD9.53 ± 0.64 (7.59 to 11.12) 1069.94 ± 0.57 (8.06 to 11.31) 59
ML14.58 ± 0.99 (10.08 to 16.55) 10615.38 ± 0.75 (13.77 to 17.07) 59
Wiedomys cerradensisWiedomys pyrrhorhinos
Head-and-body length108.71 ± 11.45 (72 to 130) 99115.2 ± 19.52 (80 to 205) 50
Tail length165.47 ± 16.53 (119 to 201) 100173.65 ± 25.72 (100 to 211) 49
Hindfoot length24.71 ± 2.08 (20 to 30) 9626.69 ± 2.49 (19 to 30) 48
Ear length19.47 ± 2.02 (15 to 30) 9619.83 ± 2.73 (12 to 26) 48
Mass36.21 ± 9.71 (11 to 60) 9940.84 ± 11 (18 to 70) 47
GSL28.74 ± 1.49 (22.64 to 31.20) 10630.35 ± 1.24 (26.15 to 34.27) 59
NL10.28 ± 0.94 (7.10 to 12.75) 10611.26 ± 1.01 (7.77 to 14.50) 59
RB3.56 ± 0.31 (2.96 to 4.47) 1063.72 ± 0.35 (3.21 to 4.77) 59
AB8.34 ± 0.65 (5.58 to 9.55) 1068.76 ± 0.52 (7.60 to 9.90) 59
LIB4.42 ± 0.2 (3.79 to 4.96) 1064.61 ± 0.2 (4.18 to 5.08) 59
BB12.79 ± 0.56 (10.19 to 14.10) 10613.34 ± 0.67 (9.91 to 14.58) 59
IPB9.71 ± 0.63 (8.13 to 11.67) 10610.17 ± 0.56 (9.04 to 11.35) 59
IPL3.88 ± 0.44 (2.98 to 5.15) 1064.19 ± 0.44 (3.23 to 5.28) 59
PL10.96 ± 0.8 (7.70 to 13.25) 10611.72 ± 0.61 (10.31 to 13.20) 59
IFL5.58 ± 0.61 (3.57 to 7.26) 1065.75 ± 0.52 (4.25 to 6.67) 59
PBL4.47 ± 0.38 (3.37 to 5.34) 1064.99 ± 0.33 (4.39 to 5.95) 59
LM4.45 ± 0.18 (3.59 to 4.86) 1064.65 ± 0.21 (4.15 to 5.10) 59
M1M5.09 ± 0.24 (4.25 to 5.66) 1065.23 ± 0.29 (4.46 to 5.91) 59
ABD4.42 ± 0.45 (3.21 to 5.41) 1064.73 ± 0.47 (3.01 to 5.62) 59
ABB4.51 ± 0.35 (3.13 to 5.18) 1064.82 ± 0.43 (4.06 to 5.97) 59
ZPL2.75 ± 0.31 (2.07 to 3.64) 1062.89 ± 0.4 (2.07 to 3.86) 59
ZB14.80 ± 0.82 (11.53 to 16.64) 10615.49 ± 0.78 (13.48 to 17.23) 59
OL9.76 ± 0.66 (8.13 to 11.48) 10610.31 ± 0.54 (8.77 to 11.28) 59
BD9.53 ± 0.64 (7.59 to 11.12) 1069.94 ± 0.57 (8.06 to 11.31) 59
ML14.58 ± 0.99 (10.08 to 16.55) 10615.38 ± 0.75 (13.77 to 17.07) 59
Table 4.

Summary statistics of external and cranial measurements of Wiedomys species (mean ± standard deviation, minimum and maximum values, and sample size) based on adult specimens (age classes 5 to 7) used in morphometric analyses. Measurements in millimeters (mm), mass in grams (g). Character abbreviation in Fig. S1.

Wiedomys cerradensisWiedomys pyrrhorhinos
Head-and-body length108.71 ± 11.45 (72 to 130) 99115.2 ± 19.52 (80 to 205) 50
Tail length165.47 ± 16.53 (119 to 201) 100173.65 ± 25.72 (100 to 211) 49
Hindfoot length24.71 ± 2.08 (20 to 30) 9626.69 ± 2.49 (19 to 30) 48
Ear length19.47 ± 2.02 (15 to 30) 9619.83 ± 2.73 (12 to 26) 48
Mass36.21 ± 9.71 (11 to 60) 9940.84 ± 11 (18 to 70) 47
GSL28.74 ± 1.49 (22.64 to 31.20) 10630.35 ± 1.24 (26.15 to 34.27) 59
NL10.28 ± 0.94 (7.10 to 12.75) 10611.26 ± 1.01 (7.77 to 14.50) 59
RB3.56 ± 0.31 (2.96 to 4.47) 1063.72 ± 0.35 (3.21 to 4.77) 59
AB8.34 ± 0.65 (5.58 to 9.55) 1068.76 ± 0.52 (7.60 to 9.90) 59
LIB4.42 ± 0.2 (3.79 to 4.96) 1064.61 ± 0.2 (4.18 to 5.08) 59
BB12.79 ± 0.56 (10.19 to 14.10) 10613.34 ± 0.67 (9.91 to 14.58) 59
IPB9.71 ± 0.63 (8.13 to 11.67) 10610.17 ± 0.56 (9.04 to 11.35) 59
IPL3.88 ± 0.44 (2.98 to 5.15) 1064.19 ± 0.44 (3.23 to 5.28) 59
PL10.96 ± 0.8 (7.70 to 13.25) 10611.72 ± 0.61 (10.31 to 13.20) 59
IFL5.58 ± 0.61 (3.57 to 7.26) 1065.75 ± 0.52 (4.25 to 6.67) 59
PBL4.47 ± 0.38 (3.37 to 5.34) 1064.99 ± 0.33 (4.39 to 5.95) 59
LM4.45 ± 0.18 (3.59 to 4.86) 1064.65 ± 0.21 (4.15 to 5.10) 59
M1M5.09 ± 0.24 (4.25 to 5.66) 1065.23 ± 0.29 (4.46 to 5.91) 59
ABD4.42 ± 0.45 (3.21 to 5.41) 1064.73 ± 0.47 (3.01 to 5.62) 59
ABB4.51 ± 0.35 (3.13 to 5.18) 1064.82 ± 0.43 (4.06 to 5.97) 59
ZPL2.75 ± 0.31 (2.07 to 3.64) 1062.89 ± 0.4 (2.07 to 3.86) 59
ZB14.80 ± 0.82 (11.53 to 16.64) 10615.49 ± 0.78 (13.48 to 17.23) 59
OL9.76 ± 0.66 (8.13 to 11.48) 10610.31 ± 0.54 (8.77 to 11.28) 59
BD9.53 ± 0.64 (7.59 to 11.12) 1069.94 ± 0.57 (8.06 to 11.31) 59
ML14.58 ± 0.99 (10.08 to 16.55) 10615.38 ± 0.75 (13.77 to 17.07) 59
Wiedomys cerradensisWiedomys pyrrhorhinos
Head-and-body length108.71 ± 11.45 (72 to 130) 99115.2 ± 19.52 (80 to 205) 50
Tail length165.47 ± 16.53 (119 to 201) 100173.65 ± 25.72 (100 to 211) 49
Hindfoot length24.71 ± 2.08 (20 to 30) 9626.69 ± 2.49 (19 to 30) 48
Ear length19.47 ± 2.02 (15 to 30) 9619.83 ± 2.73 (12 to 26) 48
Mass36.21 ± 9.71 (11 to 60) 9940.84 ± 11 (18 to 70) 47
GSL28.74 ± 1.49 (22.64 to 31.20) 10630.35 ± 1.24 (26.15 to 34.27) 59
NL10.28 ± 0.94 (7.10 to 12.75) 10611.26 ± 1.01 (7.77 to 14.50) 59
RB3.56 ± 0.31 (2.96 to 4.47) 1063.72 ± 0.35 (3.21 to 4.77) 59
AB8.34 ± 0.65 (5.58 to 9.55) 1068.76 ± 0.52 (7.60 to 9.90) 59
LIB4.42 ± 0.2 (3.79 to 4.96) 1064.61 ± 0.2 (4.18 to 5.08) 59
BB12.79 ± 0.56 (10.19 to 14.10) 10613.34 ± 0.67 (9.91 to 14.58) 59
IPB9.71 ± 0.63 (8.13 to 11.67) 10610.17 ± 0.56 (9.04 to 11.35) 59
IPL3.88 ± 0.44 (2.98 to 5.15) 1064.19 ± 0.44 (3.23 to 5.28) 59
PL10.96 ± 0.8 (7.70 to 13.25) 10611.72 ± 0.61 (10.31 to 13.20) 59
IFL5.58 ± 0.61 (3.57 to 7.26) 1065.75 ± 0.52 (4.25 to 6.67) 59
PBL4.47 ± 0.38 (3.37 to 5.34) 1064.99 ± 0.33 (4.39 to 5.95) 59
LM4.45 ± 0.18 (3.59 to 4.86) 1064.65 ± 0.21 (4.15 to 5.10) 59
M1M5.09 ± 0.24 (4.25 to 5.66) 1065.23 ± 0.29 (4.46 to 5.91) 59
ABD4.42 ± 0.45 (3.21 to 5.41) 1064.73 ± 0.47 (3.01 to 5.62) 59
ABB4.51 ± 0.35 (3.13 to 5.18) 1064.82 ± 0.43 (4.06 to 5.97) 59
ZPL2.75 ± 0.31 (2.07 to 3.64) 1062.89 ± 0.4 (2.07 to 3.86) 59
ZB14.80 ± 0.82 (11.53 to 16.64) 10615.49 ± 0.78 (13.48 to 17.23) 59
OL9.76 ± 0.66 (8.13 to 11.48) 10610.31 ± 0.54 (8.77 to 11.28) 59
BD9.53 ± 0.64 (7.59 to 11.12) 1069.94 ± 0.57 (8.06 to 11.31) 59
ML14.58 ± 0.99 (10.08 to 16.55) 10615.38 ± 0.75 (13.77 to 17.07) 59

Distribution

Wiedomys cerradensis occurs in the Caatinga and Cerrado biomes. Occupies the left bank of the São Francisco River from the northwest Minas Gerais state, through southeast Goiás state, and south Tocantins state to the central-eastern region of Maranhão state and the Ceará state, expanding eastwards through Pernambuco and Alagoas states.

Fossils

Pardiñas and Barbière (2018) demonstrated that the fossil species from Argentina (Cholomys pearsoni and Wiedomys marplatensis), previously considered either allied to or included in Wiedomys by Reig (1980) and Quintana (2002), lack the diagnostic dental characters of Wiedomyini and should not be included in this tribe. If this hypothesis is accepted, the fossil record of Wiedomys is limited to remnants found in limestone caves from Bahia and Piauí states in Brazil. Neves et al. (2017) reported specimens identified as Wiedomys sp. from Serra da Capivara caves, at Piauí state, associated with dated materials of Late Pleistocene (~26,000 years ago) to Holocene (~1,670 years ago) ages. We provisionally assign those specimens to W. cerradensis based on the geographic distribution of this species and on the fact that the specimen illustrated in Neves et al. (2017: Fig. 3d) exhibits a broad anteromedian cingulum in M1, a condition most commonly seen in W. cerradensis.

Wiedomys pyrrhorhinos (Wied in Schinz 1821)

Wiedomys pyrrhorhinos is a monotypic species, commonly known as: rato-de-nariz-vermelho da Caatinga (Caatinga Red-nosed Mouse), rato-da-fava (Fava mouse), rato-bico-de-lacre (Waxbill mouse), rato-de-palmatória (Paddle mouse), and rato-do-algodão (Cotton mouse; Carvalho 1979).

Type locality

Ribeirão da Ressaca (14°51ʹS, 41°24ʹW), state of Bahia, Brazil. The Ribeirão da Ressaca, formerly known “Riacho da Ressaca,” is a short tributary of the Rio Gavião, in Bahia state, near the border with Minas Gerais state, flowing from the municipality of Ilha Dentro to the neighboring municipality of Tremedal. Prince Maximilian Alexander Philip of Wied-Neuwied (hereafter Wied, in accordance with Vanzolini and Myers 2015) collected the holotype of W. pyrrhorhinos in the “caatingas along the Riacho da Ressaca” while traveling between the farms of “Tamboril” and “Ilha” (Avila-Pires 1965), areas that are now part of the municipalities of Tremedal and Ilha Dentro, respectively (Bockermann 1957). Wied reported that W. pyrrhorhinos was found inhabiting one of the chambers of a nest of the Rufous-fronted Thornbird (Phallocedomus rufifrons rufifrons), a species also described by Wied (as Anabates rufifronsWied 1821) based on specimens collected during the same trip between “Tamboril” and “Ilha” (Wied 1821). The type locality of W. pyrrhorhinos assumed by us, thus, follows the same type-locality restriction proposed by LeCroy and Sloss (2000) for A. rufifronsWied 1821.

Correct spelling of the specific epithet

The correct spelling of the scientific name of the Caatinga Red-nosed Mouse has been a matter of controversy, assuming 3 different forms in recent taxonomic publications: pyrrhorinos (e.g., Pardiñas 2017), pyrrhorhinos (e.g., Bonvicino 2015), and pyrrhorhinus (e.g., Gonçalves et al. 2005). The spelling pyrrhorinos was used by Wied in a short description of the Caatinga Red-nosed Mouse in the second volume of his book “Reise nach Brasilien in den Jahren 1815 bis 1817” (Wied 1821). In the same year, Schinz (1821) published another description of the same species, crediting Wied as its author (“Mus pyrrhorhinos Princ. Max.”) but using the alternative spelling pyrrhorhinos. This spelling was published in the first volume of Schinz’ book “Das Thierreich, eingetheilt nach dem Bau der Thiere als Grundlage ihrer Naturgeschichte und der vergleichenden Anatomie von den Herrn Ritter von Cuvier, Erster: Band Säugethiere und Vögel,” and was adopted by most subsequent authors (Hershkovitz 1959; Cabrera 1961; Avila-Pires 1965; Honacki et al. 1982; Maia and Langguth 1987; Corbet and Hill 1991; Musser and Carleton 2005; Bonvicino 2015). Until 2023 there was no way to establish priority between the 2 spellings, both of which were published in 1821, but in 2023 it was reported that the first volume of Schinz’ book was published in October 1821, before the second volume of Wied’s book, which was published in December 1821 (Nascimento and Garbino 2023). Therefore, the name published in Schinz’ book has priority over the one published in Wied’s and the correct spelling of the Caatinga Red-nosed Mouse is Wiedomys pyrrhorhinos (Wied in Schinz 1821). The latinization of Schinz’ spelling made by Wied in subsequent publications (Wied 1823, 1826), and followed by several authors (see synonyms) is considered unjustified according to the International Code of Zoological Nomenclature (Article 33.2.3.1). Interestingly, Wied latinized Schinz’ epithet pyrrhorhinos instead of his own epithet pyrrhorinos, suggesting the lack of an “h” in the epithet originally published in his “Reise nach Brasilien” was a printing error.

Synonyms

Mus pyrrhorhinos Wied in Schinz (1821) [original description]; Mus pyrrhorinosWied (1821) [incorrect spelling]; Mus pyrrhorhinusWied 1823 [Latinization of Schinz’ pyrrhorhinos, unjustified emendation]; Hesperomys pyrrhorhinus: Burmeister 1856 [new name combination]; Hesperomys (Rhipidomys) pyrrhorhinus: Thomas 1882 [new name combination]; Oryzomys pyrrhorhinus: Thomas 1886 [new name combination]; Thomasomys pyrrhorinos: Moojen 1952 [new name combination of Wied’s incorrect spelling]; Wiedomys pyrrhorhinos: Hershkovitz 1959 [current name combination]; Wiedomys pirrhorhynos: Pardiñas 2017 [incorrect spelling].

Emended diagnosis

A relatively large red-nosed mouse of the genus Wiedomys with head-and-body length varying from 80 to 205 mm (Table 4). General dorsal coloration grizzled-brown, but with rump, periocular region, ears, muzzle, manus, and pes covered by bright orange hairs. Narrow or incomplete periocular ring of orangish hairs, separated from the orangish muzzle patch by a strip of grizzled hairs along the infraorbital region. Skull relatively larger (greatest skull length ranging from 26.15 to 34.27 mm) and with a long and blunt rostrum. Nasals are long, with pointed caudal margins that extend posteriorly beyond the frontomaxillary suture.

Distribution

Wiedomys pyrrhorhinos is endemic to Brazil and to the Caatinga biome. It is distributed from the north Minas Gerais state, extending through Bahia to Sergipe states, on the right bank of the São Francisco River.

Fossils

Gomes et al. (2020) documented specimens of W. pyrrhorhinos recovered from owl pellets collected in the Toca dos Ossos cave of Bahia state, but they have indeterminate age.

Supplementary data

Supplementary data are available at Journal of Mammalogy online.

Supplementary Data SD1. Ingroup and outgroup sequences extracted from GenBank used for phylogenetic analyses: species, mitochondrial gene (mt-Cytb), and nuclear genes (IRBP and i7FGB).

Supplementary Data SD2. Craniodental measurements of Wiedomys used in quantitative morphological analyses.

Supplementary Data SD3. Gene trees obtained from the different partitions of the multilocus data set by Bayesian multispecies coalescent analysis.

Supplementary Data SD4. Phylogenetic tree based on Bayesian analysis using mt-Cytb sequences. Maximum likelihood analysis recovered a similar topology. Numbers close to branches are bootstrap values followed by posterior probability (PP) values. The sign “-” indicates absence of bootstrap in maximum likelihood due to collapsed phylogenetic branches.

Acknowledgments

We thank the following curators and technicians for the access and loan of specimens under their care: João Alves de Oliveira, Marcelo Weskler, and Aldo Caccavo de Araujo (MN/UFRJ); Cláudia Guimarães Costa and Albert Carl Cavalcante (PUC-Minas); Jader Marinho-Filho and Pedro de Podestá (UNB). We also thank Gabriel Marroig (USP), Alfredo Langguth (UFPB), and Juliana Bragança Campos (UNB) for providing tissues from specimens used in this study, Renata Cecília Amaro for the cytogenetic preparations, and Miguel T. Rodrigues and his team for some of the samples from Bahia, Tocantins, Piauí, and Pernambuco states. We are also indebted to Anna Ludmilla C. P. Nascimento and Mariana Dias Guilardi for helping with field trips and the field team of the Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, IOC/FIOCRUZ. We also thank Regiane Spirandelli and Leonardo Kobashi for technical assistance. We are also indebted to Ulyses F. J. Pardiñas and an anonymous reviewer for important and constructive criticisms to a previous version of this paper.

Author contributions

CBD-N: conceptualization, formal analysis, investigation, methodology, writing—original draft; AL: conceptualization, formal analysis, investigation, methodology, writing—original draft; CAC-F: conceptualization, formal analysis, investigation, methodology, writing—original draft; MJJS: conceptualization, data curation, funding acquisition, supervision, writing—original draft; AMRB: data curation, writing—original draft; EYS-V: formal analysis, investigation, methodology, writing—review & editing; CRB: conceptualization, data curation, funding acquisition, supervision, writing—original draft; LMP: conceptualization, data curation, funding acquisition, supervision, writing—original draft; PRG: conceptualization, data curation, funding acquisition, supervision, writing—original draft.

Funding

This study was funded in part by Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ grants n° E26/102.804/2011, E26/201/200/2014, FAPERJ No. 08/2020 and E-26/200.415/2023), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP: 2014/02885-2 for MJJS), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001, CAPES/PNPD, and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (grants n° 305564/2010-2, 307669/2013-0, 313686/2020-3, 300980/2022-1, and 200533/2022-3).

Conflict of interest

None declared.

Data availability

The data sets generated during the current study are available in GenBank.

References

Ab’Sáber
AN.
1998
.
Participação das Depressões Periféricas e Superfícies Aplainadas na Compartimentação do Planalto Brasileiro - Considerações Finais e Conclusões
.
Revista do Instituto Geológico
19
(
1–2
):
51
69
. https://doi.org/

Auler
AS
,
Smart
PL
,
Wang
X
,
Cristalli
P
,
Edwards
L.
2003
.
O Calcário caatinga e os carbonatos secundários superficiais do norte da Bahia: geocronologia e significado paleoambiental
.
Recife, Pernambuco, Brazil
:
Anais do II Congresso sobre Planeamento e Gestão das Zonas Costeiras dos Países de Expressão Portuguesa
; p.
2
.

Avila-Pires
FD.
1965
.
The type specimens of Brazilian mammals collected by Prince Maximilian zu Wied
.
American Museum Novitates
2209
:
1
21
. http://hdl.handle.net/2246/3320

Bandelt
HJ
,
Forster
P
,
Röhl
A.
1999
.
Median-joining networks for inferring intraspecific phylogenies
.
Molecular Biology and Evolution
16
(
1
):
37
48
. https://doi.org/

Barbière
F
,
Ronez
C
,
Ortiz
PE
,
Martin
RA
,
Pardiñas
UFJ.
2019
.
A new nomenclatural system for the study of sigmodontine rodent molars: first step towards an integrative phylogeny of fossil and living cricetids
.
Biological Journal of the Linnean Society
127
(
2
):
224
244
. https://doi.org/

Barreto
AMF.
1996
.
Interpretação paleoambiental do sistema de dunas fixadas do médio Rio São Francisco, Bahia
[
PhD’s thesis
]. [
São Paulo (SP, Brazil)
]:
Universidade de São Paulo
.

Bezerra
AMR
,
Lazar
A
,
Bonvicino
CR
,
Cunha
AS.
2014
.
Subsidies for a poorly known endemic semiarid biome of Brazil: non-volant mammals of an eastern region of Caatinga
.
Zoological Studies
53
(
1
):
16-1-13
. https://doi.org/

Bezerra
AMR
,
Lazar
A
,
Bonvicino
CR
,
Marinho-Filho
J.
2013
.
Wiedomys cerradensis Gonçalves, Almeida and Bonvicino, 2005 (Mammalia: Rodentia: Cricetidae) in Tocantins and Goiás states, central-northern Brazil
.
Check List
9
(
3
):
680
683
. https://doi.org/

Blake
JA
,
Baldarelli
R
,
Kadin
JA
,
Richardson
JE
,
Smith
CL
,
Bult
CJ
,
Mouse Genome Database Group
.
2021
.
Mouse Genome Database (MGD): knowledgebase for mouse–human comparative biology
.
Nucleic Acids Research
8
(
49D1
):
D981
D987
. https://doi.org/

Bokermann
WCA.
1957
.
Atualização do itinerário da viagem do príncipe Wied ao Brasil (1815–1817)
.
Arquivos de Zoologia do Estado de Sao Paulo
10
(
1956
):
209
251
. https://doi.org/

Bonvicino
CR.
2015
.
Tribe Wiedomyini Reig, 1980
. In:
Patton
JL
,
Pardiñas
UFJ
,
D’Elía
G
, editors.
Mammals of South America. Vol. 2, rodents
.
Chicago (IL, USA)
:
Chicago University Press
; p.
682
685
.

Bruschi
DP
,
Peres
EA
,
Lourenço
LB
,
De Macedo Bartoleti
LF
,
Sobral-Souza
T
,
Recco-Pimentel
SM.
2019
.
Signature of the paleo-course changes in the São Francisco River as source of genetic structure in Neotropical Pithecopus nordestinus (Phyllomedusinae, Anura) treefrog
.
Frontiers in Genetics
10
(
728
):
1
16
. https://doi.org/

Burmeister
H.
1856
.
1 Systematische Uebersicht der Thiere Brasiliens: welche während einer Reise durch die Provinzen von Rio de Janeiro und Minas geraës gesammlt oder beobachtet Wurden/von Hermann Burmeister. Systematische Uebersicht der Thiere Brasiliens: welche während einer Reise durch die Provinzen von Rio de Janeiro und Minas geraës gesammlt oder beobachtet Wurden/von Hermann Burmeister
.
Berlin
:
Georg Reimer
; i–x, 1 pp. https://doi.org/

Cabrera
A.
1961
.
Catalogo de los mamíferos de América del Sur
.
Revista del Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’, Ciencias Zoológicas
4
(
2
):
309
732
.

Carleton
MD
,
Musser
GG.
1989
.
Systematic studies of oryzomyine rodents (Muridae, Sigmodontinae): a synopsis of Microryzomys
.
Bulletin of the American Museum of Natural History
191
:
1
83
. http://hdl.handle.net/2246/953

Carmignotto
AP
,
de Vivo
M
,
Langguth
A.
2012
.
Mammals of the Cerrado and Caatinga: distribution patterns of the tropical open biomes of central South America
. In:
Patterson
BD
,
Costa
LP
, editors.
Bones, clones, and biomes: the history and geography of recent Neotropical mammals
.
Chicago (IL, USA)
:
University of Chicago Press
; p.
307
350
.

Carvalho
C.T.
1979
.
Dicionário dos mamíferos do Brasil
.
São Paulo (SP, Brazil)
:
Nobel
.

Casado
F
,
Bonvicino
CR
,
Nagle
C
,
Comas
B
,
Manzur
TD
,
Lahoz
MM
,
Seuánez
HN.
2010
.
Mitochondrial divergence between two populations of the hooded capuchin, Cebus (Sapajus) cay (Platyrrhini, Primates)
.
Journal of Heredity
101
(
3
):
261
269
. https://doi.org/

Corbet
GB
,
Hill
JE.
1991
.
A world list of mammalian species
.
London (UK)
:
Oxford University Press
.

Coelho
FEA
,
Guillory
WX
,
Gehara
M.
2022
.
Coalescent simulations indicate that the São Francisco River is a biogeographic barrier for six vertebrates in a seasonally dry South American forest
.
Frontiers in Ecology and Evolution
10
(
983134
):
1
12
. https://doi.org/

Cracraft
J.
1985
.
Historical biogeography and patterns of differentiation within the South American avifauna: areas of endemism
.
Ornithological Monographs
36
(
36
):
49
84
. https://doi.org/

Di-Nizo
CB
,
da Silva Banci
KR
,
Sato-Kuwabara
Y
,
Silva
MJJ.
2017
.
Advances in cytogenetics of Brazilian rodents: cytotaxonomy, chromosome evolution and new karyotypic data
.
Comparative Cytogenetics
11
(
4
):
833
892
. https://doi.org/

Drummond
AJ
,
Rambaut
A.
2007
.
BEAST: Bayesian evolutionary analysis by sampling trees
.
BMC Evolutionary Biology
7
(
214
):
1
8
. https://doi.org/

Edgar
RC.
2004
.
MUSCLE: multiple sequence alignment with high accuracy and high throughput
.
Nucleic Acids Research
32
(
5
):
1792
1797
. https://doi.org/

Eiten
G.
1983
.
Classificação da vegetação do Brasil
.
Brasília
:
CNPq/Coordenação Editorial
.

Felsenstein
J.
1985
.
Confidence limits on phylogenies: an approach using the bootstrap
.
Evolution
39
(
4
):
783
791
. https://doi.org/

Feng
S
,
Bai
M
,
Rivas-González
I
,
Li
C
,
Liu
S
,
Tong
Y
,
Yang
HH
,
Chen
G
,
Xie
D
,
Sears
KE
, et al.
2022
.
Incomplete lineage sorting and phenotypic evolution in marsupials
.
Cell
185
(
10
):
1646
1660.e18
. https://doi.org/

Ford
CE
,
Hamerton
JL.
1956
.
A colchicine, hypotonic citrate, squash sequence for mammalian chromosomes
.
Stain Technology
31
(
6
):
247
251
. https://doi.org/

Gascon
C
,
Malcolm
JR
,
Patton
JL
,
Silva
MNF
,
Bogart
JP
,
Lougheed
SC
,
Peres
CA
,
Necke
S
,
Boag
PT.
2000
.
Riverine barriers and the geographic distribution of Amazonian species
.
Proceedings of the National Academy of Sciences of the united states of America
97
(
25
):
13672
13677
. https://doi.org/

Geise
L
,
Paresque
R
,
Sebastião
H
,
Shirai
LT
,
Astúa
D
,
Marroig
G.
2010
.
Non-volant mammals, Parque Nacional do Catimbau, Vale do Catimbau, Buíque, state of Pernambuco, Brazil, with karyologic data
.
Check List
6
(
1
):
180
. https://doi.org/

Geise
L
,
Pereira
LG
,
Astúa
D
,
Aguieiras
M
,
Lessa
LG
,
Asfora
PH
,
Dourado
F
,
Esberárd
CEL.
2017
.
Terrestrial mammals of the Jequitinhonha River Basin, Brazil: a transition area between Atlantic Forest and Cerrado
.
Mastozoología Neotropical
24
(
1
):
95
119
. https://mn.sarem.org.ar/article/terrestrial-mammals-of-the-jequitinhonha-river-basin-brazil-a-transition-area-between-atlantic-forest-and-cerrado/

Gomes
ACF
,
Scherer
CS
,
Hadler
P
,
Cherem
JJ
,
Veiga de Oliveira
T
,
Stutz
NS.
2020
.
Roedores muróideos (Mammalia, Cricetidae e Muridae) da Toca dos Ossos, Ourolândia, Caatinga do estado da Bahia, Brasil
.
Boletim do Museu Paraense Emílio Goeldi - Ciências Naturais
15
(
3
):
777
794
. http://doi.org/10.46357/bcnaturais.v15i3.215

Gonçalves
PR
,
Almeida
FC
,
Bonvicino
CR.
2005
.
A new species of Wiedomys (Rodentia: Sigmodontinae) from Brazilian Cerrado
.
Mammalian Biology
70
(
1
):
46
60
. https://doi.org/

Gonçalves
PR
,
Christoff
AU
,
Machado
LF
,
Bonvicino
CR
,
Peters
FB
,
Percequillo
AR.
2020
.
Unraveling deep branches of the Sigmodontinae tree (Rodentia; Cricetidae) in eastern South America
.
Journal of Mammalian Evolution
27
(
1
):
139
160
. https://doi.org/

Grabert
H.
1968
.
Postmesozoische Entwässerung und Oszillation am Ostrande des Brasilianischen Schildes
.
Geologische Rundschau
58
(
1
):
166
190
. https://doi.org/

Gutiérrez
EE
,
Marinho-Filho
J.
2017
.
The mammalian faunas endemic to the Cerrado and the Caatinga
.
ZooKeys
644
(
2017
):
105
157
. https://doi.org/

Heled
J
,
Drummond
AJ.
2010
.
Bayesian inference of species trees from multilocus data
.
Molecular Biology and Evolution
27
(
3
):
570
580
. https://doi.org/

Hershkovitz
P.
1959
.
Two new genera of South American rodents (Cricetinae)
.
Proceedings of the Biological Society of Washington
72
(
April
):
5
9
. https://biostor.org/reference/82349

Ho
SYW
,
Phillips
MJ.
2009
.
Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times
.
Systematic Biology
58
(
3
):
367
380
. https://doi.org/

Honaker
J
,
King
G
,
Blackwell
M.
2011
.
AMELIA II: a program for missing data
.
Journal of Statistical Software
45
(
7
):
1
54
. https://doi.org/

Honacki
JH
,
Kinman
KE
,
Koeppl
JW.
1982
.
Mammal species of the world: a taxonomic and geographic reference
.
Lawrence (KS, USA)
:
Allen Press and the Association of Systematics Collections
.

Irwin
DM
,
Kocher
TD
,
Wilson
AC.
1991
.
Evolution of the cytochrome-b gene of mammals
.
Journal of Molecular Evolution
32
(
2
):
128
144
. https://doi.org/

Kearse
M
,
Moir
R
,
Wilson
A
,
Stones-Havas
S
,
Cheung
M
,
Sturrock
S
,
Buxton
S
,
Cooper
A
,
Markowitz
S
,
Duran
C
, et al.
2012
.
Geneious Basic: an integrated and extendable desktop software platform for the organisation and analysis of sequence data
.
Bioinformatics
28
(
12
):
1647
1649
. https://doi.org/

King
LC.
1956
.
A geomorfologia do Brasil oriental
.
Rio de Janeiro (RJ, Brazil)
:
Instituto Brasileiro de Geografia e Estatística, Conselho Nacional de Geografia
.

King
M.
1993
.
Species evolution: the role of chromosome change
.
New York (NY, USA)
:
Cambridge University Press
.

Kohler
HC.
2003
.
Aspectos geoecológicos da bacia hidrográfica do São Francisco (primeira aproximação na escala 1:1 000 000)
. In:
Godinho
HP
,
Godinho
AL
, editors.
Águas, peixes e pescadores do São Francisco das Minas Gerais
.
Belo Horizonte (MG, Brazil)
:
PUC Minas
; p.
25
36
.

Lanfear
R
,
Frandsen
PB
,
Wright
AM
,
Senfeld
T
,
Calcott
B.
2016
.
PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses
.
Molecular Biology and Evolution
34
(
3
):
772
773
. https://doi.org/

LeCroy
M
,
Sloss
R.
2000
.
Type specimens of birds in the American Museum of Natural History PART 3. PASSERIFORMES
.
Bulletin of the American Museum of Natural History
257
:
1
88
. http://hdl.handle.net/2246/1607

Leite
RN
,
Rogers
DS.
2013
.
Revisiting Amazonian phylogeography: insights into diversification hypotheses and novel perspectives
.
Organisms Diversity & Evolution
13
(
4
):
639
664
. https://doi.org/

Machado
LF
,
Passaia
MH
,
Rodrigues
FP
,
Peters
FB
,
Sponchiado
J
,
Valiati
VH
,
Christoff
AU.
2015
.
Molecular phylogenetic position of endangered Wilfredomys within Sigmodontinae (Cricetidae) based on mitochondrial and nuclear DNA sequences and comments on Wiedomyini
.
Zootaxa
3986
(
4
):
421
434
. https://doi.org/

Maddison
WP
,
Knowles
LL.
2006
.
Inferring phylogeny despite incomplete lineage sorting
.
Systematic Biology
55
(
1
):
21
30
. https://doi.org/

Maia
V
,
Langguth
A.
1987
.
Chromosomes of the Brazilian cricetids rodent Wiedomys pvrrhorhinus (Wied, 1821)
.
Revista Brasileira de Genética
10
(
2
):
229
233
.

Mabesoone
JM.
1994
.
Sedimentary basins of Northeast Brazil
.
Recife (PE, Brazil)
:
Federal University of Pernambuco Press
.

Matocq
MD
,
Shurtliff
QR
,
Feldman
CR.
2007
.
Phylogenetics of the woodrat genus Neotoma (Rodentia: Muridae): implications for the evolution of phenotypic variation in male external genitalia
.
Molecular Phylogenetics and Evolution
42
(
3
):
637
652
. https://doi.org/

Moojen
J.
1952
.
Os Roedores do Brasil
.
Rio de Janeiro (RJ, Brazil)
:
Instituto Nacional do Livro
.

Moritz
C
,
Patton
JL
,
Schneider
CJ
,
Smith
TB.
2000
.
Diversification of rainforest faunas: an integrated molecular approach
.
Annual Review of Ecology and Systematics
31
(
1
):
533
563
. https://doi.org/

Musser
GG
,
Carleton
MD.
2005
.
Superfamily Muroidea
. In:
Wilson
DE
,
Reeder
DM
, editors.
Mammal species of the world, a taxonomic and geographic reference
.
Baltimore (MD, USA)
:
The Johns Hopkins University Press
; p.
955
1186
.

Myers
N
,
Mittermeier
RA
,
Mittermeier
CG
,
da Fonseca
GA
,
Kent
J.
2000
.
Biodiversity hotspots for conservation priorities
.
Nature
403
(
6772
):
853
858
. https://doi.org/

Nascimento
FO
,
Garbino
GST.
2023
.
The name of the margay (Mammalia, Felidae): Felis wiedii Schinz, 1821 has nomenclatural priority over F. macroura Wied, 1821
.
Zootaxa
5231
(
5
):
598
600
. https://doi.org/

Nascimento
FF
,
Lazar
A
,
Menezes
AN
,
Durans
ADM
,
Moreira
JC
,
Salazar-Bravo
J
,
D’Andrea
PS
,
Bonvicino
CR.
2013
.
The role of historical barriers in the diversification processes in open vegetation formations during the Miocene/Pliocene using an ancient rodent lineage as a model
.
PLoS One
8
(
4
):
e61924
. https://doi.org/

Neves
SB
,
Mayer
EL
,
Hadler
P
,
Ribeiro
AM.
2017
.
Sigmodontine rodents (Rodentia, Cricetidae) from Quaternary cave deposits of Serra da Capivara, Northeastern Brazil
.
Revista Brasileira de Paleontologia
20
(
2
):
163
178
. https://doi.org/

Olímpio
APM
,
Costa
JF
,
Nascimento
DC
,
Campos
BATP
,
Fraga
EC
,
Barros
MC.
2016
.
Wiedomys cerradensis (Gonçalves, Almeida, Bonvicino, 2003) (Rodentia, Cricetidae): first record from the state of Maranhão, Brazil
.
Mammalia
80
(
1
):
97
101
. https://doi.org/

Oliveira-Filho
AT
,
Ratter
JA.
2002
.
Vegetation Physiognomies and Woody Flora of the Cerrado Biome
. In:
Oliveira
PS
,
Marquis
RJ
, editors.
The Cerrados of Brazil
.
New York (NY, USA)
:
Columbia University Press
; p.
91
120
.

Parada
A
,
Hanson
J
,
D’Elía
G.
2021
.
Ultraconserved elements improve the resolution of difficult nodes within the rapid radiation of Neotropical sigmodontine rodents (Cricetidae: Sigmodontinae)
.
Systematic Biology
70
(
6
):
1090
1100
. https://doi.org/

Pardiñas
,
UFJ.
2017
.
Genus Wiedomys Hershkovitz, 1959
. In:
Wilson
DE
,
Lacher
TE
Jr
,
Mittermeier
RA
, editors.
Handbook of the mammals of the world. Vol. 7, rodents II
.
Barcelona (Spain)
:
Lynx Edicions
; p.
227
228
.

Pardiñas
UFJ
,
Barbière
F.
2018
.
Taxonomic status of Wiedomys marplatensis, an enigmatic fossil cricetid (Rodentia, Sigmodontinae): neither Wiedomys nor Wiedomyini
.
Mammalia
82
(
1
):
99
105
. https://doi.org/

Pardiñas
UFJ
,
D’Elía
G
,
Lessa
G
,
Passamani
M
,
Teta
P.
2014
.
New morphological data and a phylogenetic hypothesis for Phaenomys (Rodentia, Cricetidae)
.
Mastozoologia Neotropical
21
(
2
):
251
261
. https://www.scielo.org.ar/pdf/mznt/v21n2/v21n2a06.pdf

Patton
JL
,
Silva
MNF
,
Malcolm
JR.
1994
.
Gene genealogy and differentiation among Arboreal spiny rats (Rodentia: Echimyidae) of the Amazon basin: a test of the riverine barrier hypothesis
.
Evolution
48
(
4
):
1314
1323
. https://doi.org/

Patton
JL
,
Silva
MNF
,
Malcolm
JR.
2000
.
Mammals of the Rio Juruá and the evolutionary and ecological diversification of Amazonia
.
Bulletin of the American Museum of Natural History
244
(
1
):
1
306
. https://doi.org/

Patton
JL
,
Pardiñas
UFJ
,
D’Elía
G
, editors.
2015
.
Mammals of South America. Vol. 2, rodents.
Chicago (IL, USA)
:
University of Chicago Press
.

Peres
CA
,
Patton
JL
,
da Silva
MNF.
1996
.
Riverine barriers and gene flow in Amazonian saddle-back tamarins
.
Folia Primatologica
7
(
3
):
113124
. https://doi.org/

Potter
PE.
1997
.
The Mesozoic and Cenozoic paleodrainage of South America: a natural history
.
Journal of South American Earth Sciences
10
(
5–6
):
331
344
. https://doi.org/

Prado
DE.
2000
.
Seasonally dry forests of tropical South America: from forgotten ecosystems to a new phytogeographic unit
.
Edinburgh Journal of Botany
57
(
3
):
437
461
. https://doi.org/.

Quintana
CA.
2002
.
Roedores cricétidos del Sanandresense (Plioceno tardío) de la provincia de Buenos Aires
.
Mastozoología Neotropical
9
(
2
):
263
275
. https://mn.sarem.org.ar/article/roedores-cricetidos-del-sanandrense-de-la-provincia-de-buenos-aires/

Rambaut
A
,
Suchard
M
,
Xie
D
,
Drummond
A.
2014
. Tracer v1.6. https://bioweb.pasteur.fr/packages/pack@Tracer@v1.6

R Core Team
.
2022
.
R: A Language and Environment for Statistical Computing
.
Vienna, Austria
:
R Foundation for Statistical Computing
. https://www.R-project.org

Recoder
RS
,
Rodrigues
MT.
2020
.
Diversification processes in lizards and snakes from the Middle São Francisco River Dune Region, Brazil
. In:
Rull
V
,
Carnaval
AC
, editors.
Neotropical diversification: patterns and processes
.
Cham: Switzerland
:
Springer Nature
; p.
713
740
. https://doi.org/

Reddy
S
,
Kimball
RT
,
Pandey
A
,
Hosner
PA
,
Braun
MJ
,
Hackett
SJ
,
Han
KL
,
Harshman
J
,
Huddleston
CJ
,
Kingston
S
, et al.
2017
.
Why do phylogenomic data sets yield conflicting trees? Data type influences the avian tree of life more than taxon sampling
.
Systematic Biology
66
(
5
):
857
879
. https://doi.org/

Reig
OA.
1980
.
A new fossil genus of South American cricetid rodents allied to Wiedomys, with an assessment of the Sigmodontinae
.
Journal of Zoology
192
(
2
):
257
281
. https://doi.org/

Rieseberg
LH.
2001
.
Chromosomal rearrangements and speciation
.
Trends in Ecology & Evolution
16
(
7
):
351
358
. https://doi.org/

Rizzini
CT.
1979
.
Tratado de Fitogeografia do Brasil. Vol. 2, Aspectos sociológicos e florísticos
.
São Paulo (SP, Brazil)
:
HUCITEC/EDUSP
.

Rocha
PFB.
1995
.
Proechimys yonenagae, a new species of spiny rat (Rodentia: Echimyidae) from fossil dunes in the Brazilian Caatinga
.
Mammalia
59
(
4
):
537
550
. https://doi.org/

Rodrigues
MT.
1992
.
Herpetofauna das dunas interiores do Rio São Francisco: Bahia: Brasil. V. Duas novas espécies de Apostolepis (Ophidia, Colubridae)
.
Memórias do Instituto Butantan
54
(
2
):
53
59
. https://bibliotecadigital.butantan.gov.br/arquivos/100/PDF/2.pdf

Rodrigues
MT.
1996
.
Lizards, snakes, and amphisbaenians from the Quaternary sand dunes of the middle Rio São Francisco, Bahia, Brazil
.
Journal of Herpetology
30
(
4
):
513
523
. https://doi.org/

Ronez
C
,
Martin
RA
,
Kelly
TS
,
Barbière
F
,
Pardiñas
UFJ.
2021
.
A brief critical review of Sigmodontine rodent origins, with emphasis on paleontological data
.
Mastozoologia Neotropical
28
(
1
):
1
26
. https://doi.org/

Ronquist
F
,
Huelsenbeck
JP.
2003
.
MrBayes 3: Bayesian phylogenetic inference under mixed models
.
Bioinformatics
19
(
12
):
1572
1574
. https://doi.org/

Salazar-Bravo
J
,
Tinoco
N
,
Zeballos
H
,
Brito
J
,
Arenas-Viveros
D
,
Marín
CD
,
Ramírez-Fernández
JD
,
Percequillo
AR
,
Lee
TE
Jr
,
Solari
S
, et al.
2023
.
Systematics and diversification of the Ichthyomyini (Cricetidae, Sigmodontinae) revisited: evidence from molecular, morphological, and combined approaches
.
PeerJ
11
(
e14319
):
e14319
. https://doi.org/

Schinz
HR.
1821
.
Das Thierreich eingetheilt nach dem Bau der Thiere als Grundlage ihrer Naturgeschichte und der engleichenden Anatomie von dem Herr Ritter von Cuvier
.
Stuttgart und Tübingen
:
J. G. Cott’aschen Buchhandlung
. https://doi.org/

Siedchlag
AC
,
Benozzati
ML
,
Passoni
JC
,
Rodrigues
MT.
2010
.
Genetic structure, phylogeny, and biogeography of Brazilian eyelid-less lizards of genera Calyptommatus and Nothobachia (Squamata, Gymnophthalmidae) as inferred from mitochondrial DNA sequences
.
Molecular Phylogenetics and Evolution
56
(
2
):
622
630
. https://doi.org/

Sikes
RS
,
The Animal Care and Use Committee of the American Society of Mammalogists
.
2016
.
2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education
.
Journal of Mammalogy
97
(
3
):
663
688
. https://doi.org/

Silva
JM
,
Leal
IR
,
Tabarelli
M.
2017
.
Caatinga—the largest tropical dry forest region in South America
.
Cham (Switzerland)
:
Springer Nature
. https://doi.org/

Smith
MF
,
Patton
JL.
1993
.
The diversification of South American murid rodents: evidence from mitochondrial DNA sequence data for the akodontine tribe
.
Biological Journal of Linnean Society
50
(
3
):
149
177
. https://doi.org/

Sobral
G
,
de Oliveira
JA.
2014
.
Annual age structure and reproduction in the Caatinga red-nosed mouse, Wiedomys pyrrhorhinos (Rodentia, Sigmodontinae)
.
Therya
5
(
2
):
509
534
. https://doi.org/

Souza
ALG
,
Corrêa
MMO
,
Aguilar
CT
,
Pessôa
LM.
2011
.
A new karyotype of Wiedomys pyrrhorhinus (Rodentia: Sigmodontinae) from Chapada Diamantina, northeastern Brazil
.
Zoologia
28
(
1
):
92
96
. https://doi.org/

Stanhope
MJ
,
Czelusniak
J
,
Si
J-S
,
Nickerson
J
,
Goodman
M.
1992
.
A molecular perspective on mammalian evolution from the gene encoding interphotoreceptor retinoid-binding protein, with convincing evidence for bat monophyly
.
Molecular Phylogenetics and Evolution
1
(
2
):
148
160
. https://doi.org/

Suárez-Villota
EY
,
Carmignotto
AP
,
Brandão
MV
,
Percequillo
A
,
Silva
MJJ.
2018
.
Systematics of the genus Oecomys (Sigmodontinae: Oryzomyini): molecular phylogenetic, cytogenetic and morphological approaches reveal cryptic species
.
Zoological Journal of the Linnean Society
184
(
1
):
182
210
. https://doi.org/

Suchard
MA
,
Rambaut
A.
2009
.
Many-core algorithms for statistical phylogenetics
.
Bioinformatics
25
(
11
):
1370
1376
. https://doi.org/

Sumner
AT.
1972
.
A simple technique for demonstrating centromeric heterochromatin
.
Experimental Cell Research
75
(
1
):
304
306
. https://doi.org/

Sumner
AT.
2003
.
Chromosomes: organization and function
.
Cornwall (UK)
:
Blackwell Publishing
. https://doi.org/

Tamura
K
,
Stecher
G
,
Kumar
S.
2021
.
MEGA11: molecular evolutionary genetics analysis version 11
.
Molecular Biology and Evolution
38
(
7
):
3022
3027
. https://doi.org/

Thomé
MTC
,
Carstens
BC
,
Rodrigues
MT
,
Alexandrino
J
,
Haddad
CFB.
2021
.
Genomic data from the Brazilian sibilator frog reveal contrasting Pleistocene dynamics and regionalism in two South American dry biomes
.
Journal of Biogeography
48
(
5
):
1112
1123
. https://doi.org/

Toews
DPL
,
Brelsford
A.
2012
.
The biogeography of mitochondrial and nuclear discordance in animals
.
Molecular Ecology
21
(
16
):
3907
3930
. https://doi.org/

Thomas
O.
1882
.
On a collection of rodents from North Peru
.
Proceedings of the Zoological Society of London
50
(
1
):
98
111
. https://doi.org/

Thomas
O.
1886
.
Note on Hesperomys pyrrhorhinus, Pr. Max
.
Annals and Magazine of Natural History
18
(
108
):
421
423
. https://doi.org/

Trifinopoulos
J
,
Nguyen
LT
,
von Haeseler
A
,
Minh
BQ.
2016
.
W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis
.
Nucleic Acids Research
44
(
W1
):
W232
W235
. https://doi.org/

Vanzolini
PE
,
Myers
CW.
2015
.
The herpetological collection of Maximilian, Prince of Wied (1782–1867), with special reference to Brazilian materials
.
Bulletin of the American Museum of Natural History
395
:
1
155
. https://doi.org/

Voss
RS.
1991
.
An introduction to the Neotropical muroid rodent genus Zygodontomys
.
Bulletin of the American Museum of Natural History
210
:
113
. http://hdl.handle.net/2246/905

Wallace
AR.
1854
.
On the monkeys of the Amazon
.
The Annals and magazine of natural history; zoology, botany, and geology
14
(
2
):
451
454
. https://doi.org/

Walsh
PS
,
Metzger
DA
,
Higuchi
R.
1991
.
Chelex100 as a medium for simple extraction of DNA for PCR-based typing from forensic material
.
Biotechniques
10
(
4
):
506
513
. https://doi.org/

Weksler
M.
2006
.
Phylogenetic relationships of oryzomine rodents (Muroidea: Sigmodontinae): separate and combined analyses of morphological and molecular data
.
Bulletin of the American Museum of Natural History
296
:
1
149
. https://doi.org/

Werneck
FP.
2011
.
The diversification of eastern South American open vegetation biomes: historical biogeography and perspectives
.
Quaternary Science Reviews
30
(
13–14
):
1630
1648
. https://doi.org/

Werneck
FP
,
Leite
RN
,
Geurgas
SR
,
Rodrigues
MT.
2015
.
Biogeographic history and cryptic diversity of saxicolous Tropiduridae lizards endemic to the semiarid Caatinga
.
BMC Evolutionary Biology
15
(
1
):
1
24
. https://doi.org/

Werneck
FP
,
Nogueira
C
,
Colli
GR
,
Sites
AW
Jr
,
Costa
GC.
2012
.
Climatic stability in the Brazilian Cerrado: implications for biogeographical connections of South American savannas, species richness and conservation in a biodiversity hotspot
.
Journal of Biogeography
39
(
9
):
1695
1706
. https://doi.org/

Wied
MP zu.
1821
.
Reise nach Brasilien in den Jahren 1815 bis 1817
.
Frankfurt
:
Heinrich Ludwig Bronner
.

Wied
MP zu.
1823
.
Abbildungen zur Naturgeschichte Brasiliens
.
Weimar
:
im Verlage des Grossherzogl. Sächs. priv. Landes-Industrie-Comptoirs
.

Wied
MP zu.
1826
.
Beiträge zur Naturgeschichte von Brasilien
.
Weimar
:
priv. Landes-Industrie-Comptoirs, Weimar
.

Appendix I

Specimens of Wiedomys examined in morphological, cytogenetic, and molecular analyses.

Reg. numberSpeciesSF riversideOTUGazetteerLocalityStateLat100Long100Morphological dataGenetic dataGenBank number
JBC16W. pyrrhorhinosRightBerilo1Jenipapo de MinasMG−17,08−42,26mt-Cytb; i7FgbPP953694; PP953717
JBC18W. pyrrhorhinosRightBerilo1Jenipapo de MinasMG−17,08−42,26mt-Cytb; i7FgbPP953690; PP953725
JBC26W. pyrrhorhinosRightBerilo1Jenipapo de MinasMG−17,08−42,26mt-Cytb; i7FgbPP953693; PP953715
MCN-M1968W. pyrrhorhinosRightBerilo2Leme do PradoMG−17,08−42,69x
MCN-M1507W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MCN-M1700W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MCN-M2013W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MCN-M2262W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73314W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73416W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73419W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73431W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73435W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73437W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73438W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73442W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73453W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73461W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73477W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73520W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MCN−M1053W. pyrrhorhinosRightBerilo4AraçuaíMG−16,81−41,98x
MCN−M1054W. pyrrhorhinosRightBerilo4AraçuaíMG−16,81−41,98x
MN68601W. pyrrhorhinosRightCaetité10PiripáBA−14,93−41,72x
MN18441W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN18442W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN18725W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN18726W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN18727W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN18756W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN18758W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN60780W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN60783W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN60784W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN63357W. pyrrhorhinosRightCaetité12CaetitéBA−14,07−42,47xi7FgbPP953713
MN63420W. pyrrhorhinosRightCaetité12CaetitéBA−14,07−42,47xmt-Cytb; i7FgbPP953695; PP953709
MN18527W. pyrrhorhinosRightCaetité13JequiéBA−13,85−40,08x
MN18528W. pyrrhorhinosRightCaetité13JequiéBA−13,85−40,08x
MN18529W. pyrrhorhinosRightCaetité13JequiéBA−13,85−40,08x
MN18530W. pyrrhorhinosRightCaetité13JequiéBA−13,85−40,08x
MN18531W. pyrrhorhinosRightCaetité13JequiéBA−13,85−40,08x
MN18532W. pyrrhorhinosRightCaetité13JequiéBA−13,85−40,08x
MN18698W. pyrrhorhinosRightCaetité14JaguaquaraBA−39,97−39,97x
MN18699W. pyrrhorhinosRightCaetité14JaguaquaraBA−39,97−39,97x
MN18700W. pyrrhorhinosRightCaetité14JaguaquaraBA−39,97−39,97x
MN18701W. pyrrhorhinosRightCaetité14JaguaquaraBA−13,52−39,97x
MN18702W. pyrrhorhinosRightCaetité14JaguaquaraBA−13,52−39,97x
MTR2980W. pyrrhorhinosRightCaetité15Santo InácioBA−11,10−39,90mt-Cytb; i7Fgb; IRBPPP953698; PP953731; PP953648
UFPB9790W. pyrrhorhinosRightCanindé de São Francisco21Nossa Senhora da GlóriaSE−10,21−37,42mt-Cytb; i7FgbPP953705; PP953714
UFPB9780W. pyrrhorhinosRightCanindé de São Francisco22Monte Alegre de SergipeSE−10,03−37,56mt-Cytb; i7FgbPP953702; PP953716
MUFAL0265/MJJS459W. pyrrhorhinosRightCanindé de São Francisco23Caninde de São FranciscoSE−9,64−37,79mt-Cytb; i7Fgb; IRBPPP953704; PP953732; PP953646
UFPB9764/ARB788W. pyrrhorhinosRightCanindé de São Francisco23Caninde de São FranciscoSE−9,64−37,79xmt-CytbPP953706
UNB2761W. pyrrhorhinosRightCanindé de São Francisco23Caninde de São FranciscoSE−9,64−37,79x
UNB2764W. pyrrhorhinosRightCanindé de São Francisco23Caninde de São FranciscoSE−9,64−37,79x
UNB2801W. pyrrhorhinosRightCanindé de São Francisco23Caninde de São FranciscoSE−9,64−37,79x
CIT1017W. pyrrhorhinosRightCanindé de São Francisco24CuraçáBA−8,98−39,90mt-Cytb; i7Fgb; IRBPPP953699; PP953730; PP953661
CIT959W. pyrrhorhinosRightCanindé de São Francisco24CuraçáBA−8,98−39,90mt-Cytb; IRBPPP953700; PP953644
CIT961W. pyrrhorhinosRightCanindé de São Francisco24CuraçáBA−8,98−39,90mt-Cytb; i7Fgb; IRBPPP953691; PP953733; PP953645
LBCE5202W. pyrrhorhinosRightCanindé de São Francisco24CuraçáBA−8,98−39,90mt-Cytb; i7FgbPP953701; PP953710
MUFAL0283/MJJS486W. pyrrhorhinosRightCanindé de São Francisco25Caninde de São FranciscoSE−9,64−37,79mt-Cytb; IRBPPP953703, PP953647
MN76145W. pyrrhorhinosRightBerilo5JuramentoBA−16,85−43,58xmt-CytbPP953696
MCN-M2182W. pyrrhorhinosRightBerilo6Jose Goncalves de MinasMG−16,91−42,60x
MCN-M1511W. pyrrhorhinosRightBerilo6Jose Goncalves de MinasMG−16,74−42,65x
MCN-M2459W. pyrrhorhinosRightBerilo6Jose Goncalves de MinasMG−16,74−42,65x
MCN-M2893W. pyrrhorhinosRightBerilo6Jose Goncalves de MinasMG−16,74−42,65x
MCN-M2902W. pyrrhorhinosRightBerilo6Jose Goncalves de MinasMG−16,74−42,65x
MCN-M2945W. pyrrhorhinosRightBerilo6Jose Goncalves de MinasMG−16,74−42,65x
MCN-M2952W. pyrrhorhinosRightBerilo6Jose Goncalves de MinasMG−16,74−42,65x
MCN-M1052W. pyrrhorhinosRightBerilo7Grao MogolMG−16,56−42,89x
MCN-M2699W. pyrrhorhinosRightBerilo8PorteirinhaMG−15,74−43,03x
MN34412W. pyrrhorhinosRightBerilo9JaíbaMG−15,33−43,67x
MN34413W. pyrrhorhinosRightBerilo9JaíbaMG−15,33−43,67x
MN62180W. pyrrhorhinosRightBerilo9JaíbaMG−15,33−43,67x
MN62181W. pyrrhorhinosRightBerilo9JaíbaMG−15,33−43,67x
MN18751W. pyrrhorhinosRightMorro do Chapéu16PalmeirasBA−12,52−41,55x
MN18428W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18498W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18502W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18503W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18506W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18508W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18509W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18510W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18511W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18512W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18513W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18516W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18517W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18521W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18522W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18523W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18525W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN60772W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN60778W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN71607W. pyrrhorhinosRightMorro do Chapéu18Morro do ChapeuBA−11,55−41,16xmt-Cytb; i7FgbPP953697; PP953712
MN71608W. pyrrhorhinosRightMorro do Chapéu18Morro do ChapéuBA−11,55−41,16xmt-Cytb; i7FgbPP953692; PP953711
MN18715W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18716W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18717W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18718W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18719W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18720W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18722W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18723W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18760W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18761W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18762W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18763W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18764W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18765W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN60791W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN60792W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN60793W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN11661W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18722W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18445W. pyrrhorhinosRightSerrinha20SerrinhaBA−11,65−39,00x
MN18752W. pyrrhorhinosRightSerrinha20SerrinhaBA−11,65−39,00x
MN18753W. pyrrhorhinosRightSerrinha20SerrinhaBA−11,65−39,00x
MN18754W. pyrrhorhinosRightSerrinha20SerrinhaBA−11,65−39,00x
MN18755W. pyrrhorhinosRightSerrinha20SerrinhaBA−11,65−39,00x
MN60789W. pyrrhorhinosRightSerrinha20SerrinhaBA−11,65−39,00x
MN18454W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18457W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18459W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18460W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18461W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18463W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18466W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18468W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18469W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18470W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18474W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18475W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18476W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18477W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18480W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18481W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18482W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18483W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18484W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18485W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18486W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18622W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18624W. cerradensisLeftCaruaru38CaruaruPE−7,28−35,97x
MN18656W. cerradensisLeftCaruaru38CaruaruPE−7,28−35,97x
UFPB4043W. cerradensisLeftCaruaru39BezerrosPE−9,17−37,37mt-Cytb; i7FgbPP953678, PP953708
CIT1680/SA01W. cerradensisLeftCaruaru40Sítio AlfredoPE−7,85−35,58mt-Cytb; i7Fgb; IRBPPP953665; PP953659; PP953729
CIT1681/SA02W. cerradensisLeftCaruaru40Sítio AlfredoPE−7,85−35,58mt-Cytb; i7Fgb; IRBPPP953677; PP953741; 953,660
MN18586W. cerradensisLeftCeará41TriunfoPE−7,83−38,10x
MN18587W. cerradensisLeftCeará41TriunfoPE−7,83−38,10x
MN18588W. cerradensisLeftCeará41TriunfoPE−7,83−38,10x
MN18745W. cerradensisLeftCeará41TriunfoPE−7,83−38,10x
MN18747W. cerradensisLeftCeará41TriunfoPE−7,83−38,10x
MN41412W. cerradensisLeftCeará41TriunfoPE−7,83−38,10x
MN25456W. cerradensisLeftCeará41TriunfoPE−7,83−38,10x
MN41413W. cerradensisLeftCeará41TriunfoPE−7,83−38,10x
MN60756W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN60757W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN60761W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN60763W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN18451W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN18496W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN18592W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN60752W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN60753W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN60754W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
UNB2710W. cerradensisLeftCeará43JardimCE−7,58−39,30x
MN18790W. cerradensisLeftCeará44CratoCE−8,23−39,67x
MN17449W. cerradensisLeftCeará45Missao VelhaCE−7,23−39,13x
MN18808W. cerradensisLeftCeará45Missão VelhaCE−7,23−39,13x
MN60563W. cerradensisLeftCeará45Missão VelhaCE−7,23−39,13x
MN60568W. cerradensisLeftCeará45Missão VelhaCE−7,23−39,13x
MN60561W. cerradensisLeftCeará46Campos SalesCE−7,23−39,13x
MN18729W. cerradensisLeftCeará46Campos SalesCE−7,07−40,37x
MN18789W. cerradensisLeftCeará46Campos SalesCE−7,07−40,37x
MN60559W. cerradensisLeftCeará46Campos SalesCE−7,07−40,37x
MN60560W. cerradensisLeftCeará46Campos SalesCE−7,07−40,37x
LBCE13942W. cerradensisLeftCeará47RussasCE−4,93−37,97mt-Cytb; i7FgbPP953679; PP953718
LBCE10412W. cerradensisLeftCeará48JaguaruanaCE−4,82−37,77mt-Cytb; i7FgbPP953672; PP953723
LBCE5255W. cerradensisLeftCeará48JaguaruanaCE−4,82−37,77mt-Cytb; i7FgbPP953670; PP953707
MN1531W. cerradensisLeftCeará49Monte AlegreCE−4,35−39,30x
MN1532W. cerradensisLeftCeará49Monte AlegreCE−4,35−39,30x
MN1764W. cerradensisLeftCeará49Monte AlegreCE−4,35−39,30x
MN60657W. cerradensisLeftCeará50Guaraciaba do NorteCE−41,67−40,75x
MN18737W. cerradensisLeftCeará51São BeneditoCE−4,04−40,88x
MN18738W. cerradensisLeftCeará51São BeneditoCE−4,04−40,88x
MN18739W. cerradensisLeftCeará51São BeneditoCE−4,04−40,88x
MN60569W. cerradensisLeftCeará51São BeneditoCE−4,04−40,88x
MN60654W. cerradensisLeftCeará51São BeneditoCE−4,04−40,88x
MN18544W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18546W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18548W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18549W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18550W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18551W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18552W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18553W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18554W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18555W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18556W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18557W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18558W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18559W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18560W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18561W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18562W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18563W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18564W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18669W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18670W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18671W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18672W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18673W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18674W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18676W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18677W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18678W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18680W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18681W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18741W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18800W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18802W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18803W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18805W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18806W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN27213W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
UNB2594W. cerradensisLeftJaborandi57ParanãTO−12,62−47,88xi7FgbPP953721
UNB2595W. cerradensisLeftJaborandi57ParanãTO−12,62−47,88xi7FgbPP953722
MN71267W. cerradensisLeftJaborandi57ParanãTO−12,62−47,89x
MRT3874W. cerradensisLeftJaborandi57ParanãTO−12,60−47,89mt-Cytb; IRBPPP953685; PP953664
CRB2716W. cerradensisLeftJaborandi58CorrentinaBA−13,34−44,64mt-CytbPP953689
CRB2718W. cerradensisLeftJaborandi58CorrentinaBA−13,34−44,64mt-Cytb; i7FgbPP953686; PP953724
CRB2729W. cerradensisLeftJaborandi58CorrentinaBA−13,34−44,64mt-CytbPP953688
MN81688W. cerradensisLeftJaborandi58CorrentinaBA−13,34−44,64x
MN81694W. cerradensisLeftJaborandi58CorrentinaBA−13,34−44,64x
MN4169W. cerradensisLeftJaborandi59BarreirasBA−12,15−44,59x
MN4170W. cerradensisLeftJaborandi59BarreirasBA−12,15−44,59x
MN67022W. cerradensisLeftJaborandi62JaborandiBA−13,62−44,44xi7FgbPP953726
MN67023W. cerradensisLeftJaborandi62JaborandiBA−13,62−44,44x
UNB1614W. cerradensisLeftJaborandi62JaborandiBA−13,62−44,44x
UNB1617W. cerradensisLeftJaborandi62JaborandiBA−13,62−44,44x
UNB2064W. cerradensisLeftJaborandi62JaborandiBA−13,62−44,44x
UNB1776W. cerradensisLeftJaborandi63FormosoMG−14,95−46,23x
MN61657W. cerradensisLeftJaborandi63JaborandiBA−13,62−44,44i7FgbPP953720
MN83081W. cerradensisLeftMaranhão56MiradorMA−6,36−44,35xi7FgbPP953728
LEM63W. cerradensisLeftPesqueira34BuíquePE−8,51−37,28mt-Cytb; i7FgbPP953681; PP953719
LEM75W. cerradensisLeftPesqueira34BuíquePE−8,51−37,28mt-Cytb; i7FgbPP953683; PP953727
MN18491W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18589W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18590W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18684W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18742W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18743W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18744W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18746W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18796W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18798W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18799W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18591W. cerradensisLeftPesqueira36Belo JardimPE−8,33−36,42x
MN18613W. cerradensisLeftPesqueira37São Bento de UnaPE−8,47−36,33x
MN18675W. cerradensisLeftPesqueira37São Bento de UnaPE−8,47−36,33x
MN18679W. cerradensisLeftPesqueira37São Bento de UnaPE−8,47−36,33x
MN18682W. cerradensisLeftPesqueira37São Bento de UnaPE−8,47−36,33x
UNB2706W. cerradensisLeftPiauí52Sao João do PiauiPI−8,36−42,25x
UNB2715W. cerradensisLeftPiauí52Sao João do PiauiPI−8,36−42,25x
MN75110W. cerradensisLeftPiauí53Canto do BuritiPI−8,10−42,93x
MN75111W. cerradensisLeftPiauí53Canto do BuritiPI−8,10−42,93x
MN75126W. cerradensisLeftPiauí54Eliseu MartinsPI−8,08−43,65x
MN75144W. cerradensisLeftPiauí54Eliseu MartinsPI−8,08−43,65x
CIT1708W. cerradensisLeftPiauí55Uruçui-UnaPI−886667,00−44,97mt-Cytb; i7Fgb; IRBPPP953674; PP953739; PP953649
MZUSP30453/UUPI174W. cerradensisLeftPiauí55Uruçui-UnaPI−886667,00−44,97mt-Cytb; i7Fgb; IRBPPP953687; PP953742; PP953652
MUFAL0249/MJJS414W. cerradensisLeftPiranhas25PiranhasAL−9,62−37,76x
MUFAL0250/MJJS415W. cerradensisLeftPiranhas25PiranhasAL−9,62−37,76mt-Cytb; i7Fgb; IRBPPP953669; PP953744; PP953643
MUFAL0255/MJJS431W. cerradensisLeftPiranhas25PiranhasAL−9,62−37,76xmt-Cytb; i7Fgb; IRBPPP953682; PP953740; PP953653
MUFAL0179/ALN294W. cerradensisLeftPiranhas26Delmiro GolveiaAL−9,38−37,98mt-Cytb; IRBPPP953666; PP953656
MUFAL0180/ALN295W. cerradensisLeftPiranhas26Delmiro GolveiaAL−9,38−37,98xmt-Cytb; IRBPPP953676; PP953651
MUFAL0184/ALN299W. cerradensisLeftPiranhas26Delmiro GolveiaAL−9,38−37,98mt-Cytb; i7Fgb; IRBPPP953675; PP953734; PP953657
MUFAL0190/ALN305W. cerradensisLeftPiranhas26Delmiro GolveiaAL−9,38−37,98mt-Cytb; i7Fgb; IRBPPP953667; PP953736; PP953663
MUFAL0195/ALN310W. cerradensisLeftPiranhas26Delmiro GolveiaAL−9,38−37,98mt-Cytb; i7Fgb; IRBPPP953671; PP953738; PP953650
MUFAL0199/ALN314W. cerradensisLeftPiranhas26Delmiro GolveiaAL−9,38−37,98mt-Cytb; i7Fgb; IRBPPP953673; PP953743; PP953658
MUFAL0182/ALN297W. cerradensisLeftPiranhas27Delmiro GolveiaAL−9,38−37,98mt-Cytb; i7Fgb; IRBPPP953668; PP953735; PP953654
UNB2762W. cerradensisLeftPiranhas27Olho d’Agua do CasadoAL−9,54−37,29x
UNB2763W. cerradensisLeftPiranhas27Olho d’Agua do CasadoAL−9,54−37,29x
MUFAL0286/MJJS489W. cerradensisLeftPiranhas28InhapiAL−9,22−37,75mt-Cytb; IRBPPP953684; PP953655
MUFAL0287/MJJS490W. cerradensisLeftPiranhas28InhapiAL−9,22−37,75mt-Cytb; i7Fgb; IRBPPP953680; PP953737; PP953662
MN18776W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18778W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18779W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18780W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18781W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18782W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18783W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18784W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18785W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18786W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18787W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18493W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18593W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18598W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18599W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18688W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18689W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN17382W. cerradensisLeftQuebrangulo31Palmeira dos ÍndiosAL−9,40−36,70x
MN18788W. cerradensisLeftQuebrangulo32Limoeiro de AnadiaAL−9,73−36,50x
MN18594W. cerradensisLeftSantana do Ipanema29Santana do IpanemaAL−9,37−37,23x
MN18690W. cerradensisLeftSantana do Ipanema29Santana do IpanemaAL−9,37−37,23x
MN18767W. cerradensisLeftSantana do Ipanema29Santana do IpanemaAL−9,37−37,23x
MN18768W. cerradensisLeftSantana do Ipanema29Santana do IpanemaAL−9,37−37,23x
MN18769W. cerradensisLeftSantana do Ipanema29Santana do IpanemaAL−9,37−37,23x
MN18771W. cerradensisLeftSantana do Ipanema29Santana do IpanemaAL−9,37−37,23x
MN18773W. cerradensisLeftSantana do Ipanema29Santana do IpanemaAL−9,37−37,23x
MN18811W. cerradensisLeftSantana do Ipanema29Santana do IpanemaAL−9,37−37,23x
Reg. numberSpeciesSF riversideOTUGazetteerLocalityStateLat100Long100Morphological dataGenetic dataGenBank number
JBC16W. pyrrhorhinosRightBerilo1Jenipapo de MinasMG−17,08−42,26mt-Cytb; i7FgbPP953694; PP953717
JBC18W. pyrrhorhinosRightBerilo1Jenipapo de MinasMG−17,08−42,26mt-Cytb; i7FgbPP953690; PP953725
JBC26W. pyrrhorhinosRightBerilo1Jenipapo de MinasMG−17,08−42,26mt-Cytb; i7FgbPP953693; PP953715
MCN-M1968W. pyrrhorhinosRightBerilo2Leme do PradoMG−17,08−42,69x
MCN-M1507W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MCN-M1700W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MCN-M2013W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MCN-M2262W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73314W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73416W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73419W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73431W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73435W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73437W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73438W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73442W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73453W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73461W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73477W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73520W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MCN−M1053W. pyrrhorhinosRightBerilo4AraçuaíMG−16,81−41,98x
MCN−M1054W. pyrrhorhinosRightBerilo4AraçuaíMG−16,81−41,98x
MN68601W. pyrrhorhinosRightCaetité10PiripáBA−14,93−41,72x
MN18441W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN18442W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN18725W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN18726W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN18727W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN18756W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN18758W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN60780W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN60783W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN60784W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN63357W. pyrrhorhinosRightCaetité12CaetitéBA−14,07−42,47xi7FgbPP953713
MN63420W. pyrrhorhinosRightCaetité12CaetitéBA−14,07−42,47xmt-Cytb; i7FgbPP953695; PP953709
MN18527W. pyrrhorhinosRightCaetité13JequiéBA−13,85−40,08x
MN18528W. pyrrhorhinosRightCaetité13JequiéBA−13,85−40,08x
MN18529W. pyrrhorhinosRightCaetité13JequiéBA−13,85−40,08x
MN18530W. pyrrhorhinosRightCaetité13JequiéBA−13,85−40,08x
MN18531W. pyrrhorhinosRightCaetité13JequiéBA−13,85−40,08x
MN18532W. pyrrhorhinosRightCaetité13JequiéBA−13,85−40,08x
MN18698W. pyrrhorhinosRightCaetité14JaguaquaraBA−39,97−39,97x
MN18699W. pyrrhorhinosRightCaetité14JaguaquaraBA−39,97−39,97x
MN18700W. pyrrhorhinosRightCaetité14JaguaquaraBA−39,97−39,97x
MN18701W. pyrrhorhinosRightCaetité14JaguaquaraBA−13,52−39,97x
MN18702W. pyrrhorhinosRightCaetité14JaguaquaraBA−13,52−39,97x
MTR2980W. pyrrhorhinosRightCaetité15Santo InácioBA−11,10−39,90mt-Cytb; i7Fgb; IRBPPP953698; PP953731; PP953648
UFPB9790W. pyrrhorhinosRightCanindé de São Francisco21Nossa Senhora da GlóriaSE−10,21−37,42mt-Cytb; i7FgbPP953705; PP953714
UFPB9780W. pyrrhorhinosRightCanindé de São Francisco22Monte Alegre de SergipeSE−10,03−37,56mt-Cytb; i7FgbPP953702; PP953716
MUFAL0265/MJJS459W. pyrrhorhinosRightCanindé de São Francisco23Caninde de São FranciscoSE−9,64−37,79mt-Cytb; i7Fgb; IRBPPP953704; PP953732; PP953646
UFPB9764/ARB788W. pyrrhorhinosRightCanindé de São Francisco23Caninde de São FranciscoSE−9,64−37,79xmt-CytbPP953706
UNB2761W. pyrrhorhinosRightCanindé de São Francisco23Caninde de São FranciscoSE−9,64−37,79x
UNB2764W. pyrrhorhinosRightCanindé de São Francisco23Caninde de São FranciscoSE−9,64−37,79x
UNB2801W. pyrrhorhinosRightCanindé de São Francisco23Caninde de São FranciscoSE−9,64−37,79x
CIT1017W. pyrrhorhinosRightCanindé de São Francisco24CuraçáBA−8,98−39,90mt-Cytb; i7Fgb; IRBPPP953699; PP953730; PP953661
CIT959W. pyrrhorhinosRightCanindé de São Francisco24CuraçáBA−8,98−39,90mt-Cytb; IRBPPP953700; PP953644
CIT961W. pyrrhorhinosRightCanindé de São Francisco24CuraçáBA−8,98−39,90mt-Cytb; i7Fgb; IRBPPP953691; PP953733; PP953645
LBCE5202W. pyrrhorhinosRightCanindé de São Francisco24CuraçáBA−8,98−39,90mt-Cytb; i7FgbPP953701; PP953710
MUFAL0283/MJJS486W. pyrrhorhinosRightCanindé de São Francisco25Caninde de São FranciscoSE−9,64−37,79mt-Cytb; IRBPPP953703, PP953647
MN76145W. pyrrhorhinosRightBerilo5JuramentoBA−16,85−43,58xmt-CytbPP953696
MCN-M2182W. pyrrhorhinosRightBerilo6Jose Goncalves de MinasMG−16,91−42,60x
MCN-M1511W. pyrrhorhinosRightBerilo6Jose Goncalves de MinasMG−16,74−42,65x
MCN-M2459W. pyrrhorhinosRightBerilo6Jose Goncalves de MinasMG−16,74−42,65x
MCN-M2893W. pyrrhorhinosRightBerilo6Jose Goncalves de MinasMG−16,74−42,65x
MCN-M2902W. pyrrhorhinosRightBerilo6Jose Goncalves de MinasMG−16,74−42,65x
MCN-M2945W. pyrrhorhinosRightBerilo6Jose Goncalves de MinasMG−16,74−42,65x
MCN-M2952W. pyrrhorhinosRightBerilo6Jose Goncalves de MinasMG−16,74−42,65x
MCN-M1052W. pyrrhorhinosRightBerilo7Grao MogolMG−16,56−42,89x
MCN-M2699W. pyrrhorhinosRightBerilo8PorteirinhaMG−15,74−43,03x
MN34412W. pyrrhorhinosRightBerilo9JaíbaMG−15,33−43,67x
MN34413W. pyrrhorhinosRightBerilo9JaíbaMG−15,33−43,67x
MN62180W. pyrrhorhinosRightBerilo9JaíbaMG−15,33−43,67x
MN62181W. pyrrhorhinosRightBerilo9JaíbaMG−15,33−43,67x
MN18751W. pyrrhorhinosRightMorro do Chapéu16PalmeirasBA−12,52−41,55x
MN18428W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18498W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18502W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18503W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18506W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18508W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18509W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18510W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18511W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18512W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18513W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18516W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18517W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18521W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18522W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18523W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18525W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN60772W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN60778W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN71607W. pyrrhorhinosRightMorro do Chapéu18Morro do ChapeuBA−11,55−41,16xmt-Cytb; i7FgbPP953697; PP953712
MN71608W. pyrrhorhinosRightMorro do Chapéu18Morro do ChapéuBA−11,55−41,16xmt-Cytb; i7FgbPP953692; PP953711
MN18715W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18716W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18717W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18718W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18719W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18720W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18722W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18723W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18760W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18761W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18762W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18763W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18764W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18765W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN60791W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN60792W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN60793W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN11661W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18722W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18445W. pyrrhorhinosRightSerrinha20SerrinhaBA−11,65−39,00x
MN18752W. pyrrhorhinosRightSerrinha20SerrinhaBA−11,65−39,00x
MN18753W. pyrrhorhinosRightSerrinha20SerrinhaBA−11,65−39,00x
MN18754W. pyrrhorhinosRightSerrinha20SerrinhaBA−11,65−39,00x
MN18755W. pyrrhorhinosRightSerrinha20SerrinhaBA−11,65−39,00x
MN60789W. pyrrhorhinosRightSerrinha20SerrinhaBA−11,65−39,00x
MN18454W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18457W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18459W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18460W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18461W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18463W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18466W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18468W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18469W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18470W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18474W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18475W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18476W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18477W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18480W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18481W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18482W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18483W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18484W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18485W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18486W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18622W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18624W. cerradensisLeftCaruaru38CaruaruPE−7,28−35,97x
MN18656W. cerradensisLeftCaruaru38CaruaruPE−7,28−35,97x
UFPB4043W. cerradensisLeftCaruaru39BezerrosPE−9,17−37,37mt-Cytb; i7FgbPP953678, PP953708
CIT1680/SA01W. cerradensisLeftCaruaru40Sítio AlfredoPE−7,85−35,58mt-Cytb; i7Fgb; IRBPPP953665; PP953659; PP953729
CIT1681/SA02W. cerradensisLeftCaruaru40Sítio AlfredoPE−7,85−35,58mt-Cytb; i7Fgb; IRBPPP953677; PP953741; 953,660
MN18586W. cerradensisLeftCeará41TriunfoPE−7,83−38,10x
MN18587W. cerradensisLeftCeará41TriunfoPE−7,83−38,10x
MN18588W. cerradensisLeftCeará41TriunfoPE−7,83−38,10x
MN18745W. cerradensisLeftCeará41TriunfoPE−7,83−38,10x
MN18747W. cerradensisLeftCeará41TriunfoPE−7,83−38,10x
MN41412W. cerradensisLeftCeará41TriunfoPE−7,83−38,10x
MN25456W. cerradensisLeftCeará41TriunfoPE−7,83−38,10x
MN41413W. cerradensisLeftCeará41TriunfoPE−7,83−38,10x
MN60756W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN60757W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN60761W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN60763W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN18451W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN18496W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN18592W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN60752W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN60753W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN60754W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
UNB2710W. cerradensisLeftCeará43JardimCE−7,58−39,30x
MN18790W. cerradensisLeftCeará44CratoCE−8,23−39,67x
MN17449W. cerradensisLeftCeará45Missao VelhaCE−7,23−39,13x
MN18808W. cerradensisLeftCeará45Missão VelhaCE−7,23−39,13x
MN60563W. cerradensisLeftCeará45Missão VelhaCE−7,23−39,13x
MN60568W. cerradensisLeftCeará45Missão VelhaCE−7,23−39,13x
MN60561W. cerradensisLeftCeará46Campos SalesCE−7,23−39,13x
MN18729W. cerradensisLeftCeará46Campos SalesCE−7,07−40,37x
MN18789W. cerradensisLeftCeará46Campos SalesCE−7,07−40,37x
MN60559W. cerradensisLeftCeará46Campos SalesCE−7,07−40,37x
MN60560W. cerradensisLeftCeará46Campos SalesCE−7,07−40,37x
LBCE13942W. cerradensisLeftCeará47RussasCE−4,93−37,97mt-Cytb; i7FgbPP953679; PP953718
LBCE10412W. cerradensisLeftCeará48JaguaruanaCE−4,82−37,77mt-Cytb; i7FgbPP953672; PP953723
LBCE5255W. cerradensisLeftCeará48JaguaruanaCE−4,82−37,77mt-Cytb; i7FgbPP953670; PP953707
MN1531W. cerradensisLeftCeará49Monte AlegreCE−4,35−39,30x
MN1532W. cerradensisLeftCeará49Monte AlegreCE−4,35−39,30x
MN1764W. cerradensisLeftCeará49Monte AlegreCE−4,35−39,30x
MN60657W. cerradensisLeftCeará50Guaraciaba do NorteCE−41,67−40,75x
MN18737W. cerradensisLeftCeará51São BeneditoCE−4,04−40,88x
MN18738W. cerradensisLeftCeará51São BeneditoCE−4,04−40,88x
MN18739W. cerradensisLeftCeará51São BeneditoCE−4,04−40,88x
MN60569W. cerradensisLeftCeará51São BeneditoCE−4,04−40,88x
MN60654W. cerradensisLeftCeará51São BeneditoCE−4,04−40,88x
MN18544W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18546W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18548W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18549W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18550W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18551W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18552W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18553W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18554W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18555W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18556W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18557W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18558W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18559W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18560W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18561W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18562W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18563W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18564W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18669W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18670W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18671W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18672W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18673W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18674W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18676W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18677W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18678W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18680W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18681W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18741W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18800W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18802W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18803W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18805W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18806W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN27213W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
UNB2594W. cerradensisLeftJaborandi57ParanãTO−12,62−47,88xi7FgbPP953721
UNB2595W. cerradensisLeftJaborandi57ParanãTO−12,62−47,88xi7FgbPP953722
MN71267W. cerradensisLeftJaborandi57ParanãTO−12,62−47,89x
MRT3874W. cerradensisLeftJaborandi57ParanãTO−12,60−47,89mt-Cytb; IRBPPP953685; PP953664
CRB2716W. cerradensisLeftJaborandi58CorrentinaBA−13,34−44,64mt-CytbPP953689
CRB2718W. cerradensisLeftJaborandi58CorrentinaBA−13,34−44,64mt-Cytb; i7FgbPP953686; PP953724
CRB2729W. cerradensisLeftJaborandi58CorrentinaBA−13,34−44,64mt-CytbPP953688
MN81688W. cerradensisLeftJaborandi58CorrentinaBA−13,34−44,64x
MN81694W. cerradensisLeftJaborandi58CorrentinaBA−13,34−44,64x
MN4169W. cerradensisLeftJaborandi59BarreirasBA−12,15−44,59x
MN4170W. cerradensisLeftJaborandi59BarreirasBA−12,15−44,59x
MN67022W. cerradensisLeftJaborandi62JaborandiBA−13,62−44,44xi7FgbPP953726
MN67023W. cerradensisLeftJaborandi62JaborandiBA−13,62−44,44x
UNB1614W. cerradensisLeftJaborandi62JaborandiBA−13,62−44,44x
UNB1617W. cerradensisLeftJaborandi62JaborandiBA−13,62−44,44x
UNB2064W. cerradensisLeftJaborandi62JaborandiBA−13,62−44,44x
UNB1776W. cerradensisLeftJaborandi63FormosoMG−14,95−46,23x
MN61657W. cerradensisLeftJaborandi63JaborandiBA−13,62−44,44i7FgbPP953720
MN83081W. cerradensisLeftMaranhão56MiradorMA−6,36−44,35xi7FgbPP953728
LEM63W. cerradensisLeftPesqueira34BuíquePE−8,51−37,28mt-Cytb; i7FgbPP953681; PP953719
LEM75W. cerradensisLeftPesqueira34BuíquePE−8,51−37,28mt-Cytb; i7FgbPP953683; PP953727
MN18491W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18589W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18590W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18684W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18742W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18743W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18744W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18746W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18796W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18798W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18799W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18591W. cerradensisLeftPesqueira36Belo JardimPE−8,33−36,42x
MN18613W. cerradensisLeftPesqueira37São Bento de UnaPE−8,47−36,33x
MN18675W. cerradensisLeftPesqueira37São Bento de UnaPE−8,47−36,33x
MN18679W. cerradensisLeftPesqueira37São Bento de UnaPE−8,47−36,33x
MN18682W. cerradensisLeftPesqueira37São Bento de UnaPE−8,47−36,33x
UNB2706W. cerradensisLeftPiauí52Sao João do PiauiPI−8,36−42,25x
UNB2715W. cerradensisLeftPiauí52Sao João do PiauiPI−8,36−42,25x
MN75110W. cerradensisLeftPiauí53Canto do BuritiPI−8,10−42,93x
MN75111W. cerradensisLeftPiauí53Canto do BuritiPI−8,10−42,93x
MN75126W. cerradensisLeftPiauí54Eliseu MartinsPI−8,08−43,65x
MN75144W. cerradensisLeftPiauí54Eliseu MartinsPI−8,08−43,65x
CIT1708W. cerradensisLeftPiauí55Uruçui-UnaPI−886667,00−44,97mt-Cytb; i7Fgb; IRBPPP953674; PP953739; PP953649
MZUSP30453/UUPI174W. cerradensisLeftPiauí55Uruçui-UnaPI−886667,00−44,97mt-Cytb; i7Fgb; IRBPPP953687; PP953742; PP953652
MUFAL0249/MJJS414W. cerradensisLeftPiranhas25PiranhasAL−9,62−37,76x
MUFAL0250/MJJS415W. cerradensisLeftPiranhas25PiranhasAL−9,62−37,76mt-Cytb; i7Fgb; IRBPPP953669; PP953744; PP953643
MUFAL0255/MJJS431W. cerradensisLeftPiranhas25PiranhasAL−9,62−37,76xmt-Cytb; i7Fgb; IRBPPP953682; PP953740; PP953653
MUFAL0179/ALN294W. cerradensisLeftPiranhas26Delmiro GolveiaAL−9,38−37,98mt-Cytb; IRBPPP953666; PP953656
MUFAL0180/ALN295W. cerradensisLeftPiranhas26Delmiro GolveiaAL−9,38−37,98xmt-Cytb; IRBPPP953676; PP953651
MUFAL0184/ALN299W. cerradensisLeftPiranhas26Delmiro GolveiaAL−9,38−37,98mt-Cytb; i7Fgb; IRBPPP953675; PP953734; PP953657
MUFAL0190/ALN305W. cerradensisLeftPiranhas26Delmiro GolveiaAL−9,38−37,98mt-Cytb; i7Fgb; IRBPPP953667; PP953736; PP953663
MUFAL0195/ALN310W. cerradensisLeftPiranhas26Delmiro GolveiaAL−9,38−37,98mt-Cytb; i7Fgb; IRBPPP953671; PP953738; PP953650
MUFAL0199/ALN314W. cerradensisLeftPiranhas26Delmiro GolveiaAL−9,38−37,98mt-Cytb; i7Fgb; IRBPPP953673; PP953743; PP953658
MUFAL0182/ALN297W. cerradensisLeftPiranhas27Delmiro GolveiaAL−9,38−37,98mt-Cytb; i7Fgb; IRBPPP953668; PP953735; PP953654
UNB2762W. cerradensisLeftPiranhas27Olho d’Agua do CasadoAL−9,54−37,29x
UNB2763W. cerradensisLeftPiranhas27Olho d’Agua do CasadoAL−9,54−37,29x
MUFAL0286/MJJS489W. cerradensisLeftPiranhas28InhapiAL−9,22−37,75mt-Cytb; IRBPPP953684; PP953655
MUFAL0287/MJJS490W. cerradensisLeftPiranhas28InhapiAL−9,22−37,75mt-Cytb; i7Fgb; IRBPPP953680; PP953737; PP953662
MN18776W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18778W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18779W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18780W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18781W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18782W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18783W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18784W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18785W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18786W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18787W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18493W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18593W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18598W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18599W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18688W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18689W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN17382W. cerradensisLeftQuebrangulo31Palmeira dos ÍndiosAL−9,40−36,70x
MN18788W. cerradensisLeftQuebrangulo32Limoeiro de AnadiaAL−9,73−36,50x
MN18594W. cerradensisLeftSantana do Ipanema29Santana do IpanemaAL−9,37−37,23x
MN18690W. cerradensisLeftSantana do Ipanema29Santana do IpanemaAL−9,37−37,23x
MN18767W. cerradensisLeftSantana do Ipanema29Santana do IpanemaAL−9,37−37,23x
MN18768W. cerradensisLeftSantana do Ipanema29Santana do IpanemaAL−9,37−37,23x
MN18769W. cerradensisLeftSantana do Ipanema29Santana do IpanemaAL−9,37−37,23x
MN18771W. cerradensisLeftSantana do Ipanema29Santana do IpanemaAL−9,37−37,23x
MN18773W. cerradensisLeftSantana do Ipanema29Santana do IpanemaAL−9,37−37,23x
MN18811W. cerradensisLeftSantana do Ipanema29Santana do IpanemaAL−9,37−37,23x
Reg. numberSpeciesSF riversideOTUGazetteerLocalityStateLat100Long100Morphological dataGenetic dataGenBank number
JBC16W. pyrrhorhinosRightBerilo1Jenipapo de MinasMG−17,08−42,26mt-Cytb; i7FgbPP953694; PP953717
JBC18W. pyrrhorhinosRightBerilo1Jenipapo de MinasMG−17,08−42,26mt-Cytb; i7FgbPP953690; PP953725
JBC26W. pyrrhorhinosRightBerilo1Jenipapo de MinasMG−17,08−42,26mt-Cytb; i7FgbPP953693; PP953715
MCN-M1968W. pyrrhorhinosRightBerilo2Leme do PradoMG−17,08−42,69x
MCN-M1507W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MCN-M1700W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MCN-M2013W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MCN-M2262W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73314W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73416W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73419W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73431W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73435W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73437W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73438W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73442W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73453W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73461W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73477W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73520W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MCN−M1053W. pyrrhorhinosRightBerilo4AraçuaíMG−16,81−41,98x
MCN−M1054W. pyrrhorhinosRightBerilo4AraçuaíMG−16,81−41,98x
MN68601W. pyrrhorhinosRightCaetité10PiripáBA−14,93−41,72x
MN18441W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN18442W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN18725W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN18726W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN18727W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN18756W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN18758W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN60780W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN60783W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN60784W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN63357W. pyrrhorhinosRightCaetité12CaetitéBA−14,07−42,47xi7FgbPP953713
MN63420W. pyrrhorhinosRightCaetité12CaetitéBA−14,07−42,47xmt-Cytb; i7FgbPP953695; PP953709
MN18527W. pyrrhorhinosRightCaetité13JequiéBA−13,85−40,08x
MN18528W. pyrrhorhinosRightCaetité13JequiéBA−13,85−40,08x
MN18529W. pyrrhorhinosRightCaetité13JequiéBA−13,85−40,08x
MN18530W. pyrrhorhinosRightCaetité13JequiéBA−13,85−40,08x
MN18531W. pyrrhorhinosRightCaetité13JequiéBA−13,85−40,08x
MN18532W. pyrrhorhinosRightCaetité13JequiéBA−13,85−40,08x
MN18698W. pyrrhorhinosRightCaetité14JaguaquaraBA−39,97−39,97x
MN18699W. pyrrhorhinosRightCaetité14JaguaquaraBA−39,97−39,97x
MN18700W. pyrrhorhinosRightCaetité14JaguaquaraBA−39,97−39,97x
MN18701W. pyrrhorhinosRightCaetité14JaguaquaraBA−13,52−39,97x
MN18702W. pyrrhorhinosRightCaetité14JaguaquaraBA−13,52−39,97x
MTR2980W. pyrrhorhinosRightCaetité15Santo InácioBA−11,10−39,90mt-Cytb; i7Fgb; IRBPPP953698; PP953731; PP953648
UFPB9790W. pyrrhorhinosRightCanindé de São Francisco21Nossa Senhora da GlóriaSE−10,21−37,42mt-Cytb; i7FgbPP953705; PP953714
UFPB9780W. pyrrhorhinosRightCanindé de São Francisco22Monte Alegre de SergipeSE−10,03−37,56mt-Cytb; i7FgbPP953702; PP953716
MUFAL0265/MJJS459W. pyrrhorhinosRightCanindé de São Francisco23Caninde de São FranciscoSE−9,64−37,79mt-Cytb; i7Fgb; IRBPPP953704; PP953732; PP953646
UFPB9764/ARB788W. pyrrhorhinosRightCanindé de São Francisco23Caninde de São FranciscoSE−9,64−37,79xmt-CytbPP953706
UNB2761W. pyrrhorhinosRightCanindé de São Francisco23Caninde de São FranciscoSE−9,64−37,79x
UNB2764W. pyrrhorhinosRightCanindé de São Francisco23Caninde de São FranciscoSE−9,64−37,79x
UNB2801W. pyrrhorhinosRightCanindé de São Francisco23Caninde de São FranciscoSE−9,64−37,79x
CIT1017W. pyrrhorhinosRightCanindé de São Francisco24CuraçáBA−8,98−39,90mt-Cytb; i7Fgb; IRBPPP953699; PP953730; PP953661
CIT959W. pyrrhorhinosRightCanindé de São Francisco24CuraçáBA−8,98−39,90mt-Cytb; IRBPPP953700; PP953644
CIT961W. pyrrhorhinosRightCanindé de São Francisco24CuraçáBA−8,98−39,90mt-Cytb; i7Fgb; IRBPPP953691; PP953733; PP953645
LBCE5202W. pyrrhorhinosRightCanindé de São Francisco24CuraçáBA−8,98−39,90mt-Cytb; i7FgbPP953701; PP953710
MUFAL0283/MJJS486W. pyrrhorhinosRightCanindé de São Francisco25Caninde de São FranciscoSE−9,64−37,79mt-Cytb; IRBPPP953703, PP953647
MN76145W. pyrrhorhinosRightBerilo5JuramentoBA−16,85−43,58xmt-CytbPP953696
MCN-M2182W. pyrrhorhinosRightBerilo6Jose Goncalves de MinasMG−16,91−42,60x
MCN-M1511W. pyrrhorhinosRightBerilo6Jose Goncalves de MinasMG−16,74−42,65x
MCN-M2459W. pyrrhorhinosRightBerilo6Jose Goncalves de MinasMG−16,74−42,65x
MCN-M2893W. pyrrhorhinosRightBerilo6Jose Goncalves de MinasMG−16,74−42,65x
MCN-M2902W. pyrrhorhinosRightBerilo6Jose Goncalves de MinasMG−16,74−42,65x
MCN-M2945W. pyrrhorhinosRightBerilo6Jose Goncalves de MinasMG−16,74−42,65x
MCN-M2952W. pyrrhorhinosRightBerilo6Jose Goncalves de MinasMG−16,74−42,65x
MCN-M1052W. pyrrhorhinosRightBerilo7Grao MogolMG−16,56−42,89x
MCN-M2699W. pyrrhorhinosRightBerilo8PorteirinhaMG−15,74−43,03x
MN34412W. pyrrhorhinosRightBerilo9JaíbaMG−15,33−43,67x
MN34413W. pyrrhorhinosRightBerilo9JaíbaMG−15,33−43,67x
MN62180W. pyrrhorhinosRightBerilo9JaíbaMG−15,33−43,67x
MN62181W. pyrrhorhinosRightBerilo9JaíbaMG−15,33−43,67x
MN18751W. pyrrhorhinosRightMorro do Chapéu16PalmeirasBA−12,52−41,55x
MN18428W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18498W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18502W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18503W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18506W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18508W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18509W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18510W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18511W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18512W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18513W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18516W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18517W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18521W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18522W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18523W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18525W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN60772W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN60778W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN71607W. pyrrhorhinosRightMorro do Chapéu18Morro do ChapeuBA−11,55−41,16xmt-Cytb; i7FgbPP953697; PP953712
MN71608W. pyrrhorhinosRightMorro do Chapéu18Morro do ChapéuBA−11,55−41,16xmt-Cytb; i7FgbPP953692; PP953711
MN18715W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18716W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18717W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18718W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18719W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18720W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18722W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18723W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18760W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18761W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18762W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18763W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18764W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18765W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN60791W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN60792W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN60793W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN11661W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18722W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18445W. pyrrhorhinosRightSerrinha20SerrinhaBA−11,65−39,00x
MN18752W. pyrrhorhinosRightSerrinha20SerrinhaBA−11,65−39,00x
MN18753W. pyrrhorhinosRightSerrinha20SerrinhaBA−11,65−39,00x
MN18754W. pyrrhorhinosRightSerrinha20SerrinhaBA−11,65−39,00x
MN18755W. pyrrhorhinosRightSerrinha20SerrinhaBA−11,65−39,00x
MN60789W. pyrrhorhinosRightSerrinha20SerrinhaBA−11,65−39,00x
MN18454W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18457W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18459W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18460W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18461W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18463W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18466W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18468W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18469W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18470W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18474W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18475W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18476W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18477W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18480W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18481W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18482W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18483W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18484W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18485W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18486W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18622W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18624W. cerradensisLeftCaruaru38CaruaruPE−7,28−35,97x
MN18656W. cerradensisLeftCaruaru38CaruaruPE−7,28−35,97x
UFPB4043W. cerradensisLeftCaruaru39BezerrosPE−9,17−37,37mt-Cytb; i7FgbPP953678, PP953708
CIT1680/SA01W. cerradensisLeftCaruaru40Sítio AlfredoPE−7,85−35,58mt-Cytb; i7Fgb; IRBPPP953665; PP953659; PP953729
CIT1681/SA02W. cerradensisLeftCaruaru40Sítio AlfredoPE−7,85−35,58mt-Cytb; i7Fgb; IRBPPP953677; PP953741; 953,660
MN18586W. cerradensisLeftCeará41TriunfoPE−7,83−38,10x
MN18587W. cerradensisLeftCeará41TriunfoPE−7,83−38,10x
MN18588W. cerradensisLeftCeará41TriunfoPE−7,83−38,10x
MN18745W. cerradensisLeftCeará41TriunfoPE−7,83−38,10x
MN18747W. cerradensisLeftCeará41TriunfoPE−7,83−38,10x
MN41412W. cerradensisLeftCeará41TriunfoPE−7,83−38,10x
MN25456W. cerradensisLeftCeará41TriunfoPE−7,83−38,10x
MN41413W. cerradensisLeftCeará41TriunfoPE−7,83−38,10x
MN60756W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN60757W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN60761W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN60763W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN18451W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN18496W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN18592W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN60752W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN60753W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN60754W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
UNB2710W. cerradensisLeftCeará43JardimCE−7,58−39,30x
MN18790W. cerradensisLeftCeará44CratoCE−8,23−39,67x
MN17449W. cerradensisLeftCeará45Missao VelhaCE−7,23−39,13x
MN18808W. cerradensisLeftCeará45Missão VelhaCE−7,23−39,13x
MN60563W. cerradensisLeftCeará45Missão VelhaCE−7,23−39,13x
MN60568W. cerradensisLeftCeará45Missão VelhaCE−7,23−39,13x
MN60561W. cerradensisLeftCeará46Campos SalesCE−7,23−39,13x
MN18729W. cerradensisLeftCeará46Campos SalesCE−7,07−40,37x
MN18789W. cerradensisLeftCeará46Campos SalesCE−7,07−40,37x
MN60559W. cerradensisLeftCeará46Campos SalesCE−7,07−40,37x
MN60560W. cerradensisLeftCeará46Campos SalesCE−7,07−40,37x
LBCE13942W. cerradensisLeftCeará47RussasCE−4,93−37,97mt-Cytb; i7FgbPP953679; PP953718
LBCE10412W. cerradensisLeftCeará48JaguaruanaCE−4,82−37,77mt-Cytb; i7FgbPP953672; PP953723
LBCE5255W. cerradensisLeftCeará48JaguaruanaCE−4,82−37,77mt-Cytb; i7FgbPP953670; PP953707
MN1531W. cerradensisLeftCeará49Monte AlegreCE−4,35−39,30x
MN1532W. cerradensisLeftCeará49Monte AlegreCE−4,35−39,30x
MN1764W. cerradensisLeftCeará49Monte AlegreCE−4,35−39,30x
MN60657W. cerradensisLeftCeará50Guaraciaba do NorteCE−41,67−40,75x
MN18737W. cerradensisLeftCeará51São BeneditoCE−4,04−40,88x
MN18738W. cerradensisLeftCeará51São BeneditoCE−4,04−40,88x
MN18739W. cerradensisLeftCeará51São BeneditoCE−4,04−40,88x
MN60569W. cerradensisLeftCeará51São BeneditoCE−4,04−40,88x
MN60654W. cerradensisLeftCeará51São BeneditoCE−4,04−40,88x
MN18544W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18546W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18548W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18549W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18550W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18551W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18552W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18553W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18554W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18555W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18556W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18557W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18558W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18559W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18560W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18561W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18562W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18563W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18564W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18669W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18670W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18671W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18672W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18673W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18674W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18676W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18677W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18678W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18680W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18681W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18741W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18800W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18802W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18803W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18805W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18806W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN27213W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
UNB2594W. cerradensisLeftJaborandi57ParanãTO−12,62−47,88xi7FgbPP953721
UNB2595W. cerradensisLeftJaborandi57ParanãTO−12,62−47,88xi7FgbPP953722
MN71267W. cerradensisLeftJaborandi57ParanãTO−12,62−47,89x
MRT3874W. cerradensisLeftJaborandi57ParanãTO−12,60−47,89mt-Cytb; IRBPPP953685; PP953664
CRB2716W. cerradensisLeftJaborandi58CorrentinaBA−13,34−44,64mt-CytbPP953689
CRB2718W. cerradensisLeftJaborandi58CorrentinaBA−13,34−44,64mt-Cytb; i7FgbPP953686; PP953724
CRB2729W. cerradensisLeftJaborandi58CorrentinaBA−13,34−44,64mt-CytbPP953688
MN81688W. cerradensisLeftJaborandi58CorrentinaBA−13,34−44,64x
MN81694W. cerradensisLeftJaborandi58CorrentinaBA−13,34−44,64x
MN4169W. cerradensisLeftJaborandi59BarreirasBA−12,15−44,59x
MN4170W. cerradensisLeftJaborandi59BarreirasBA−12,15−44,59x
MN67022W. cerradensisLeftJaborandi62JaborandiBA−13,62−44,44xi7FgbPP953726
MN67023W. cerradensisLeftJaborandi62JaborandiBA−13,62−44,44x
UNB1614W. cerradensisLeftJaborandi62JaborandiBA−13,62−44,44x
UNB1617W. cerradensisLeftJaborandi62JaborandiBA−13,62−44,44x
UNB2064W. cerradensisLeftJaborandi62JaborandiBA−13,62−44,44x
UNB1776W. cerradensisLeftJaborandi63FormosoMG−14,95−46,23x
MN61657W. cerradensisLeftJaborandi63JaborandiBA−13,62−44,44i7FgbPP953720
MN83081W. cerradensisLeftMaranhão56MiradorMA−6,36−44,35xi7FgbPP953728
LEM63W. cerradensisLeftPesqueira34BuíquePE−8,51−37,28mt-Cytb; i7FgbPP953681; PP953719
LEM75W. cerradensisLeftPesqueira34BuíquePE−8,51−37,28mt-Cytb; i7FgbPP953683; PP953727
MN18491W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18589W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18590W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18684W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18742W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18743W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18744W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18746W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18796W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18798W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18799W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18591W. cerradensisLeftPesqueira36Belo JardimPE−8,33−36,42x
MN18613W. cerradensisLeftPesqueira37São Bento de UnaPE−8,47−36,33x
MN18675W. cerradensisLeftPesqueira37São Bento de UnaPE−8,47−36,33x
MN18679W. cerradensisLeftPesqueira37São Bento de UnaPE−8,47−36,33x
MN18682W. cerradensisLeftPesqueira37São Bento de UnaPE−8,47−36,33x
UNB2706W. cerradensisLeftPiauí52Sao João do PiauiPI−8,36−42,25x
UNB2715W. cerradensisLeftPiauí52Sao João do PiauiPI−8,36−42,25x
MN75110W. cerradensisLeftPiauí53Canto do BuritiPI−8,10−42,93x
MN75111W. cerradensisLeftPiauí53Canto do BuritiPI−8,10−42,93x
MN75126W. cerradensisLeftPiauí54Eliseu MartinsPI−8,08−43,65x
MN75144W. cerradensisLeftPiauí54Eliseu MartinsPI−8,08−43,65x
CIT1708W. cerradensisLeftPiauí55Uruçui-UnaPI−886667,00−44,97mt-Cytb; i7Fgb; IRBPPP953674; PP953739; PP953649
MZUSP30453/UUPI174W. cerradensisLeftPiauí55Uruçui-UnaPI−886667,00−44,97mt-Cytb; i7Fgb; IRBPPP953687; PP953742; PP953652
MUFAL0249/MJJS414W. cerradensisLeftPiranhas25PiranhasAL−9,62−37,76x
MUFAL0250/MJJS415W. cerradensisLeftPiranhas25PiranhasAL−9,62−37,76mt-Cytb; i7Fgb; IRBPPP953669; PP953744; PP953643
MUFAL0255/MJJS431W. cerradensisLeftPiranhas25PiranhasAL−9,62−37,76xmt-Cytb; i7Fgb; IRBPPP953682; PP953740; PP953653
MUFAL0179/ALN294W. cerradensisLeftPiranhas26Delmiro GolveiaAL−9,38−37,98mt-Cytb; IRBPPP953666; PP953656
MUFAL0180/ALN295W. cerradensisLeftPiranhas26Delmiro GolveiaAL−9,38−37,98xmt-Cytb; IRBPPP953676; PP953651
MUFAL0184/ALN299W. cerradensisLeftPiranhas26Delmiro GolveiaAL−9,38−37,98mt-Cytb; i7Fgb; IRBPPP953675; PP953734; PP953657
MUFAL0190/ALN305W. cerradensisLeftPiranhas26Delmiro GolveiaAL−9,38−37,98mt-Cytb; i7Fgb; IRBPPP953667; PP953736; PP953663
MUFAL0195/ALN310W. cerradensisLeftPiranhas26Delmiro GolveiaAL−9,38−37,98mt-Cytb; i7Fgb; IRBPPP953671; PP953738; PP953650
MUFAL0199/ALN314W. cerradensisLeftPiranhas26Delmiro GolveiaAL−9,38−37,98mt-Cytb; i7Fgb; IRBPPP953673; PP953743; PP953658
MUFAL0182/ALN297W. cerradensisLeftPiranhas27Delmiro GolveiaAL−9,38−37,98mt-Cytb; i7Fgb; IRBPPP953668; PP953735; PP953654
UNB2762W. cerradensisLeftPiranhas27Olho d’Agua do CasadoAL−9,54−37,29x
UNB2763W. cerradensisLeftPiranhas27Olho d’Agua do CasadoAL−9,54−37,29x
MUFAL0286/MJJS489W. cerradensisLeftPiranhas28InhapiAL−9,22−37,75mt-Cytb; IRBPPP953684; PP953655
MUFAL0287/MJJS490W. cerradensisLeftPiranhas28InhapiAL−9,22−37,75mt-Cytb; i7Fgb; IRBPPP953680; PP953737; PP953662
MN18776W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18778W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18779W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18780W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18781W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18782W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18783W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18784W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18785W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18786W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18787W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18493W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18593W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18598W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18599W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18688W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18689W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN17382W. cerradensisLeftQuebrangulo31Palmeira dos ÍndiosAL−9,40−36,70x
MN18788W. cerradensisLeftQuebrangulo32Limoeiro de AnadiaAL−9,73−36,50x
MN18594W. cerradensisLeftSantana do Ipanema29Santana do IpanemaAL−9,37−37,23x
MN18690W. cerradensisLeftSantana do Ipanema29Santana do IpanemaAL−9,37−37,23x
MN18767W. cerradensisLeftSantana do Ipanema29Santana do IpanemaAL−9,37−37,23x
MN18768W. cerradensisLeftSantana do Ipanema29Santana do IpanemaAL−9,37−37,23x
MN18769W. cerradensisLeftSantana do Ipanema29Santana do IpanemaAL−9,37−37,23x
MN18771W. cerradensisLeftSantana do Ipanema29Santana do IpanemaAL−9,37−37,23x
MN18773W. cerradensisLeftSantana do Ipanema29Santana do IpanemaAL−9,37−37,23x
MN18811W. cerradensisLeftSantana do Ipanema29Santana do IpanemaAL−9,37−37,23x
Reg. numberSpeciesSF riversideOTUGazetteerLocalityStateLat100Long100Morphological dataGenetic dataGenBank number
JBC16W. pyrrhorhinosRightBerilo1Jenipapo de MinasMG−17,08−42,26mt-Cytb; i7FgbPP953694; PP953717
JBC18W. pyrrhorhinosRightBerilo1Jenipapo de MinasMG−17,08−42,26mt-Cytb; i7FgbPP953690; PP953725
JBC26W. pyrrhorhinosRightBerilo1Jenipapo de MinasMG−17,08−42,26mt-Cytb; i7FgbPP953693; PP953715
MCN-M1968W. pyrrhorhinosRightBerilo2Leme do PradoMG−17,08−42,69x
MCN-M1507W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MCN-M1700W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MCN-M2013W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MCN-M2262W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73314W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73416W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73419W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73431W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73435W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73437W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73438W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73442W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73453W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73461W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73477W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MN73520W. pyrrhorhinosRightBerilo3BeriloMG−16,95−42,45x
MCN−M1053W. pyrrhorhinosRightBerilo4AraçuaíMG−16,81−41,98x
MCN−M1054W. pyrrhorhinosRightBerilo4AraçuaíMG−16,81−41,98x
MN68601W. pyrrhorhinosRightCaetité10PiripáBA−14,93−41,72x
MN18441W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN18442W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN18725W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN18726W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN18727W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN18756W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN18758W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN60780W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN60783W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN60784W. pyrrhorhinosRightCaetité11Vitoria da ConquistaBA−14,85−40,83x
MN63357W. pyrrhorhinosRightCaetité12CaetitéBA−14,07−42,47xi7FgbPP953713
MN63420W. pyrrhorhinosRightCaetité12CaetitéBA−14,07−42,47xmt-Cytb; i7FgbPP953695; PP953709
MN18527W. pyrrhorhinosRightCaetité13JequiéBA−13,85−40,08x
MN18528W. pyrrhorhinosRightCaetité13JequiéBA−13,85−40,08x
MN18529W. pyrrhorhinosRightCaetité13JequiéBA−13,85−40,08x
MN18530W. pyrrhorhinosRightCaetité13JequiéBA−13,85−40,08x
MN18531W. pyrrhorhinosRightCaetité13JequiéBA−13,85−40,08x
MN18532W. pyrrhorhinosRightCaetité13JequiéBA−13,85−40,08x
MN18698W. pyrrhorhinosRightCaetité14JaguaquaraBA−39,97−39,97x
MN18699W. pyrrhorhinosRightCaetité14JaguaquaraBA−39,97−39,97x
MN18700W. pyrrhorhinosRightCaetité14JaguaquaraBA−39,97−39,97x
MN18701W. pyrrhorhinosRightCaetité14JaguaquaraBA−13,52−39,97x
MN18702W. pyrrhorhinosRightCaetité14JaguaquaraBA−13,52−39,97x
MTR2980W. pyrrhorhinosRightCaetité15Santo InácioBA−11,10−39,90mt-Cytb; i7Fgb; IRBPPP953698; PP953731; PP953648
UFPB9790W. pyrrhorhinosRightCanindé de São Francisco21Nossa Senhora da GlóriaSE−10,21−37,42mt-Cytb; i7FgbPP953705; PP953714
UFPB9780W. pyrrhorhinosRightCanindé de São Francisco22Monte Alegre de SergipeSE−10,03−37,56mt-Cytb; i7FgbPP953702; PP953716
MUFAL0265/MJJS459W. pyrrhorhinosRightCanindé de São Francisco23Caninde de São FranciscoSE−9,64−37,79mt-Cytb; i7Fgb; IRBPPP953704; PP953732; PP953646
UFPB9764/ARB788W. pyrrhorhinosRightCanindé de São Francisco23Caninde de São FranciscoSE−9,64−37,79xmt-CytbPP953706
UNB2761W. pyrrhorhinosRightCanindé de São Francisco23Caninde de São FranciscoSE−9,64−37,79x
UNB2764W. pyrrhorhinosRightCanindé de São Francisco23Caninde de São FranciscoSE−9,64−37,79x
UNB2801W. pyrrhorhinosRightCanindé de São Francisco23Caninde de São FranciscoSE−9,64−37,79x
CIT1017W. pyrrhorhinosRightCanindé de São Francisco24CuraçáBA−8,98−39,90mt-Cytb; i7Fgb; IRBPPP953699; PP953730; PP953661
CIT959W. pyrrhorhinosRightCanindé de São Francisco24CuraçáBA−8,98−39,90mt-Cytb; IRBPPP953700; PP953644
CIT961W. pyrrhorhinosRightCanindé de São Francisco24CuraçáBA−8,98−39,90mt-Cytb; i7Fgb; IRBPPP953691; PP953733; PP953645
LBCE5202W. pyrrhorhinosRightCanindé de São Francisco24CuraçáBA−8,98−39,90mt-Cytb; i7FgbPP953701; PP953710
MUFAL0283/MJJS486W. pyrrhorhinosRightCanindé de São Francisco25Caninde de São FranciscoSE−9,64−37,79mt-Cytb; IRBPPP953703, PP953647
MN76145W. pyrrhorhinosRightBerilo5JuramentoBA−16,85−43,58xmt-CytbPP953696
MCN-M2182W. pyrrhorhinosRightBerilo6Jose Goncalves de MinasMG−16,91−42,60x
MCN-M1511W. pyrrhorhinosRightBerilo6Jose Goncalves de MinasMG−16,74−42,65x
MCN-M2459W. pyrrhorhinosRightBerilo6Jose Goncalves de MinasMG−16,74−42,65x
MCN-M2893W. pyrrhorhinosRightBerilo6Jose Goncalves de MinasMG−16,74−42,65x
MCN-M2902W. pyrrhorhinosRightBerilo6Jose Goncalves de MinasMG−16,74−42,65x
MCN-M2945W. pyrrhorhinosRightBerilo6Jose Goncalves de MinasMG−16,74−42,65x
MCN-M2952W. pyrrhorhinosRightBerilo6Jose Goncalves de MinasMG−16,74−42,65x
MCN-M1052W. pyrrhorhinosRightBerilo7Grao MogolMG−16,56−42,89x
MCN-M2699W. pyrrhorhinosRightBerilo8PorteirinhaMG−15,74−43,03x
MN34412W. pyrrhorhinosRightBerilo9JaíbaMG−15,33−43,67x
MN34413W. pyrrhorhinosRightBerilo9JaíbaMG−15,33−43,67x
MN62180W. pyrrhorhinosRightBerilo9JaíbaMG−15,33−43,67x
MN62181W. pyrrhorhinosRightBerilo9JaíbaMG−15,33−43,67x
MN18751W. pyrrhorhinosRightMorro do Chapéu16PalmeirasBA−12,52−41,55x
MN18428W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18498W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18502W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18503W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18506W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18508W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18509W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18510W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18511W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18512W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18513W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18516W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18517W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18521W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18522W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18523W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN18525W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN60772W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN60778W. pyrrhorhinosRightMorro do Chapéu17SeabraBA−12,42−41,77x
MN71607W. pyrrhorhinosRightMorro do Chapéu18Morro do ChapeuBA−11,55−41,16xmt-Cytb; i7FgbPP953697; PP953712
MN71608W. pyrrhorhinosRightMorro do Chapéu18Morro do ChapéuBA−11,55−41,16xmt-Cytb; i7FgbPP953692; PP953711
MN18715W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18716W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18717W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18718W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18719W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18720W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18722W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18723W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18760W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18761W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18762W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18763W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18764W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18765W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN60791W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN60792W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN60793W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN11661W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18722W. pyrrhorhinosRightMorro do Chapéu19Feira de SantanaBA−12,27−38,97x
MN18445W. pyrrhorhinosRightSerrinha20SerrinhaBA−11,65−39,00x
MN18752W. pyrrhorhinosRightSerrinha20SerrinhaBA−11,65−39,00x
MN18753W. pyrrhorhinosRightSerrinha20SerrinhaBA−11,65−39,00x
MN18754W. pyrrhorhinosRightSerrinha20SerrinhaBA−11,65−39,00x
MN18755W. pyrrhorhinosRightSerrinha20SerrinhaBA−11,65−39,00x
MN60789W. pyrrhorhinosRightSerrinha20SerrinhaBA−11,65−39,00x
MN18454W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18457W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18459W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18460W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18461W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18463W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18466W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18468W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18469W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18470W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18474W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18475W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18476W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18477W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18480W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18481W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18482W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18483W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18484W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18485W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18486W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18622W. cerradensisLeftCaruaru38CaruaruPE−8,28−35,97x
MN18624W. cerradensisLeftCaruaru38CaruaruPE−7,28−35,97x
MN18656W. cerradensisLeftCaruaru38CaruaruPE−7,28−35,97x
UFPB4043W. cerradensisLeftCaruaru39BezerrosPE−9,17−37,37mt-Cytb; i7FgbPP953678, PP953708
CIT1680/SA01W. cerradensisLeftCaruaru40Sítio AlfredoPE−7,85−35,58mt-Cytb; i7Fgb; IRBPPP953665; PP953659; PP953729
CIT1681/SA02W. cerradensisLeftCaruaru40Sítio AlfredoPE−7,85−35,58mt-Cytb; i7Fgb; IRBPPP953677; PP953741; 953,660
MN18586W. cerradensisLeftCeará41TriunfoPE−7,83−38,10x
MN18587W. cerradensisLeftCeará41TriunfoPE−7,83−38,10x
MN18588W. cerradensisLeftCeará41TriunfoPE−7,83−38,10x
MN18745W. cerradensisLeftCeará41TriunfoPE−7,83−38,10x
MN18747W. cerradensisLeftCeará41TriunfoPE−7,83−38,10x
MN41412W. cerradensisLeftCeará41TriunfoPE−7,83−38,10x
MN25456W. cerradensisLeftCeará41TriunfoPE−7,83−38,10x
MN41413W. cerradensisLeftCeará41TriunfoPE−7,83−38,10x
MN60756W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN60757W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN60761W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN60763W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN18451W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN18496W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN18592W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN60752W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN60753W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
MN60754W. cerradensisLeftCeará42BodocóPE−7,77−36,93x
UNB2710W. cerradensisLeftCeará43JardimCE−7,58−39,30x
MN18790W. cerradensisLeftCeará44CratoCE−8,23−39,67x
MN17449W. cerradensisLeftCeará45Missao VelhaCE−7,23−39,13x
MN18808W. cerradensisLeftCeará45Missão VelhaCE−7,23−39,13x
MN60563W. cerradensisLeftCeará45Missão VelhaCE−7,23−39,13x
MN60568W. cerradensisLeftCeará45Missão VelhaCE−7,23−39,13x
MN60561W. cerradensisLeftCeará46Campos SalesCE−7,23−39,13x
MN18729W. cerradensisLeftCeará46Campos SalesCE−7,07−40,37x
MN18789W. cerradensisLeftCeará46Campos SalesCE−7,07−40,37x
MN60559W. cerradensisLeftCeará46Campos SalesCE−7,07−40,37x
MN60560W. cerradensisLeftCeará46Campos SalesCE−7,07−40,37x
LBCE13942W. cerradensisLeftCeará47RussasCE−4,93−37,97mt-Cytb; i7FgbPP953679; PP953718
LBCE10412W. cerradensisLeftCeará48JaguaruanaCE−4,82−37,77mt-Cytb; i7FgbPP953672; PP953723
LBCE5255W. cerradensisLeftCeará48JaguaruanaCE−4,82−37,77mt-Cytb; i7FgbPP953670; PP953707
MN1531W. cerradensisLeftCeará49Monte AlegreCE−4,35−39,30x
MN1532W. cerradensisLeftCeará49Monte AlegreCE−4,35−39,30x
MN1764W. cerradensisLeftCeará49Monte AlegreCE−4,35−39,30x
MN60657W. cerradensisLeftCeará50Guaraciaba do NorteCE−41,67−40,75x
MN18737W. cerradensisLeftCeará51São BeneditoCE−4,04−40,88x
MN18738W. cerradensisLeftCeará51São BeneditoCE−4,04−40,88x
MN18739W. cerradensisLeftCeará51São BeneditoCE−4,04−40,88x
MN60569W. cerradensisLeftCeará51São BeneditoCE−4,04−40,88x
MN60654W. cerradensisLeftCeará51São BeneditoCE−4,04−40,88x
MN18544W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18546W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18548W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18549W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18550W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18551W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18552W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18553W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18554W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18555W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18556W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18557W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18558W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18559W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18560W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18561W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18562W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18563W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18564W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18669W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18670W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18671W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18672W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18673W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18674W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18676W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18677W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18678W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18680W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18681W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18741W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18800W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18802W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18803W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18805W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN18806W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
MN27213W. cerradensisLeftGaranhuns33GaranhunsPE−8,88−36,48x
UNB2594W. cerradensisLeftJaborandi57ParanãTO−12,62−47,88xi7FgbPP953721
UNB2595W. cerradensisLeftJaborandi57ParanãTO−12,62−47,88xi7FgbPP953722
MN71267W. cerradensisLeftJaborandi57ParanãTO−12,62−47,89x
MRT3874W. cerradensisLeftJaborandi57ParanãTO−12,60−47,89mt-Cytb; IRBPPP953685; PP953664
CRB2716W. cerradensisLeftJaborandi58CorrentinaBA−13,34−44,64mt-CytbPP953689
CRB2718W. cerradensisLeftJaborandi58CorrentinaBA−13,34−44,64mt-Cytb; i7FgbPP953686; PP953724
CRB2729W. cerradensisLeftJaborandi58CorrentinaBA−13,34−44,64mt-CytbPP953688
MN81688W. cerradensisLeftJaborandi58CorrentinaBA−13,34−44,64x
MN81694W. cerradensisLeftJaborandi58CorrentinaBA−13,34−44,64x
MN4169W. cerradensisLeftJaborandi59BarreirasBA−12,15−44,59x
MN4170W. cerradensisLeftJaborandi59BarreirasBA−12,15−44,59x
MN67022W. cerradensisLeftJaborandi62JaborandiBA−13,62−44,44xi7FgbPP953726
MN67023W. cerradensisLeftJaborandi62JaborandiBA−13,62−44,44x
UNB1614W. cerradensisLeftJaborandi62JaborandiBA−13,62−44,44x
UNB1617W. cerradensisLeftJaborandi62JaborandiBA−13,62−44,44x
UNB2064W. cerradensisLeftJaborandi62JaborandiBA−13,62−44,44x
UNB1776W. cerradensisLeftJaborandi63FormosoMG−14,95−46,23x
MN61657W. cerradensisLeftJaborandi63JaborandiBA−13,62−44,44i7FgbPP953720
MN83081W. cerradensisLeftMaranhão56MiradorMA−6,36−44,35xi7FgbPP953728
LEM63W. cerradensisLeftPesqueira34BuíquePE−8,51−37,28mt-Cytb; i7FgbPP953681; PP953719
LEM75W. cerradensisLeftPesqueira34BuíquePE−8,51−37,28mt-Cytb; i7FgbPP953683; PP953727
MN18491W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18589W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18590W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18684W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18742W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18743W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18744W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18746W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18796W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18798W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18799W. cerradensisLeftPesqueira35PesqueiraPE−8,35−36,68x
MN18591W. cerradensisLeftPesqueira36Belo JardimPE−8,33−36,42x
MN18613W. cerradensisLeftPesqueira37São Bento de UnaPE−8,47−36,33x
MN18675W. cerradensisLeftPesqueira37São Bento de UnaPE−8,47−36,33x
MN18679W. cerradensisLeftPesqueira37São Bento de UnaPE−8,47−36,33x
MN18682W. cerradensisLeftPesqueira37São Bento de UnaPE−8,47−36,33x
UNB2706W. cerradensisLeftPiauí52Sao João do PiauiPI−8,36−42,25x
UNB2715W. cerradensisLeftPiauí52Sao João do PiauiPI−8,36−42,25x
MN75110W. cerradensisLeftPiauí53Canto do BuritiPI−8,10−42,93x
MN75111W. cerradensisLeftPiauí53Canto do BuritiPI−8,10−42,93x
MN75126W. cerradensisLeftPiauí54Eliseu MartinsPI−8,08−43,65x
MN75144W. cerradensisLeftPiauí54Eliseu MartinsPI−8,08−43,65x
CIT1708W. cerradensisLeftPiauí55Uruçui-UnaPI−886667,00−44,97mt-Cytb; i7Fgb; IRBPPP953674; PP953739; PP953649
MZUSP30453/UUPI174W. cerradensisLeftPiauí55Uruçui-UnaPI−886667,00−44,97mt-Cytb; i7Fgb; IRBPPP953687; PP953742; PP953652
MUFAL0249/MJJS414W. cerradensisLeftPiranhas25PiranhasAL−9,62−37,76x
MUFAL0250/MJJS415W. cerradensisLeftPiranhas25PiranhasAL−9,62−37,76mt-Cytb; i7Fgb; IRBPPP953669; PP953744; PP953643
MUFAL0255/MJJS431W. cerradensisLeftPiranhas25PiranhasAL−9,62−37,76xmt-Cytb; i7Fgb; IRBPPP953682; PP953740; PP953653
MUFAL0179/ALN294W. cerradensisLeftPiranhas26Delmiro GolveiaAL−9,38−37,98mt-Cytb; IRBPPP953666; PP953656
MUFAL0180/ALN295W. cerradensisLeftPiranhas26Delmiro GolveiaAL−9,38−37,98xmt-Cytb; IRBPPP953676; PP953651
MUFAL0184/ALN299W. cerradensisLeftPiranhas26Delmiro GolveiaAL−9,38−37,98mt-Cytb; i7Fgb; IRBPPP953675; PP953734; PP953657
MUFAL0190/ALN305W. cerradensisLeftPiranhas26Delmiro GolveiaAL−9,38−37,98mt-Cytb; i7Fgb; IRBPPP953667; PP953736; PP953663
MUFAL0195/ALN310W. cerradensisLeftPiranhas26Delmiro GolveiaAL−9,38−37,98mt-Cytb; i7Fgb; IRBPPP953671; PP953738; PP953650
MUFAL0199/ALN314W. cerradensisLeftPiranhas26Delmiro GolveiaAL−9,38−37,98mt-Cytb; i7Fgb; IRBPPP953673; PP953743; PP953658
MUFAL0182/ALN297W. cerradensisLeftPiranhas27Delmiro GolveiaAL−9,38−37,98mt-Cytb; i7Fgb; IRBPPP953668; PP953735; PP953654
UNB2762W. cerradensisLeftPiranhas27Olho d’Agua do CasadoAL−9,54−37,29x
UNB2763W. cerradensisLeftPiranhas27Olho d’Agua do CasadoAL−9,54−37,29x
MUFAL0286/MJJS489W. cerradensisLeftPiranhas28InhapiAL−9,22−37,75mt-Cytb; IRBPPP953684; PP953655
MUFAL0287/MJJS490W. cerradensisLeftPiranhas28InhapiAL−9,22−37,75mt-Cytb; i7Fgb; IRBPPP953680; PP953737; PP953662
MN18776W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18778W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18779W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18780W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18781W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18782W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18783W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18784W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18785W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18786W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18787W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18493W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18593W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18598W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18599W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18688W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN18689W. cerradensisLeftQuebrangulo30QuebranguloAL−9,32−36,47x
MN17382W. cerradensisLeftQuebrangulo31Palmeira dos ÍndiosAL−9,40−36,70x
MN18788W. cerradensisLeftQuebrangulo32Limoeiro de AnadiaAL−9,73−36,50x
MN18594W. cerradensisLeftSantana do Ipanema29Santana do IpanemaAL−9,37−37,23x
MN18690W. cerradensisLeftSantana do Ipanema29Santana do IpanemaAL−9,37−37,23x
MN18767W. cerradensisLeftSantana do Ipanema29Santana do IpanemaAL−9,37−37,23x
MN18768W. cerradensisLeftSantana do Ipanema29Santana do IpanemaAL−9,37−37,23x
MN18769W. cerradensisLeftSantana do Ipanema29Santana do IpanemaAL−9,37−37,23x
MN18771W. cerradensisLeftSantana do Ipanema29Santana do IpanemaAL−9,37−37,23x
MN18773W. cerradensisLeftSantana do Ipanema29Santana do IpanemaAL−9,37−37,23x
MN18811W. cerradensisLeftSantana do Ipanema29Santana do IpanemaAL−9,37−37,23x

Author notes

Camilla B Di-Nizo, Ana Lazar and Carlos A Cunha-Filho contributed equally to the manuscript.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://dbpia.nl.go.kr/pages/standard-publication-reuse-rights)