Abstract

Insecticides and genetically modified Bt crops are the main tools for control of the fall armyworm, Spodoptera frugiperda (J.E. Smith). Since its invasion of Africa, the Far East, and Australia where Bt crops are largely absent, insecticide use has increased and reduced susceptibility to several insecticides used for decades in its native distribution area have been reported. Poor efficacy at field-level is sometimes incorrectly ascribed to pest resistance, while numerous other factors influence efficacy at field-level. In this paper, we review the history of insecticide resistance in S. frugiperda and discuss the influence that life history traits, migration ecology, and chemical control practices may have on control efficacy and resistance evolution. The indirect role that poor national policies have on pesticide use practices, and indirectly on control efficacy and selection pressure is discussed. Evidence shows that local selection for resistance drives resistance evolution. Integrated pest management, rather than reliance on a single tactic, is the best way to suppress S. frugiperda numbers and the over-use of insecticides which selects for resistance.

The fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), which is native to the Neotropical areas of Central and South America (Luginbill 1928), was first reported on the African continent in 2016 (Goergen et al. 2016). Since then, it spread throughout sub-Sahara Africa (Nagoshi et al. 2022), India, Asia (Guo et al. 2018, Nagoshi et al. 2020), and Australia (Maino et al. 2021) and is now regarded as the most important pest of maize in the world. The distribution range of this pest is still expanding and its pest status will likely increase further due to climate change (Timilsena et al. 2022).

Although a huge range of yield losses due to S. frugiperda damage to maize have been reported in the literature, indications are that on-farm losses are over-estimated. Yield loss assessments conducted on experimental farms show that losses may be negligible (Osae et al. 2022) to as high as 90% (Evans and Stansly 1990, Hruska and Gould 1997, Overton et al. 2021, Van den Berg et al. 2021). On the other hand, farmers’ perceptions of yield loss in different African countries are lower, ranging between 11 and 54% (Day et al. 2017, Rwomushana et al. 2018, Babendreier et al. 2020, De Groote et al. 2020, Kansiime et al. 2019). Actual on-farm assessments recorded losses of only 11% (Baudron et al. 2019). To mitigate the impact of S. frugiperda in Africa, governments subsidized the use of synthetic insecticides and launched emergency programs to control this pest (Rwomushana et al. 2018, Tambo et al. 2020a, Makgoba et al. 2021, Zhou et al. 2021). In newly invaded regions in Asia and the Far East, insecticide application is the main method used for its control (Li et al. 2022).

Spodoptera frugiperda is highly adaptable and well known to evolve resistance against synthetic pesticides (Huang et al. 2014, Carvalho et al. 2013, Santos-Amaya et al. 2015). Genetically modified (GM) crops producing Bacillus thuringiensis (Bt) insecticidal proteins are a valuable tool to reduce the use of insecticides and manage insecticide resistance (Burtet et al. 2017). For example, insecticide use for control of S. frugiperda and other lepidopteran pests in the USA was reduced by 47.8% following the introduction of Bt crops (Brookes and Barfoot 2018). This benefit is, however, lost in regions where S. frugiperda evolves resistance against the insecticidal proteins expressed in Bt crop plants (Blanco et al. 2016).

Evolution of resistance in S. frugiperda threatens the sustained use of pesticides. Resistance was described by Tabashnik et al. (2014) as a genetically based decrease in susceptibility to a pesticide, and the definition of ‘field-evolved resistance,’ as a genetically-based decrease in susceptibility to a pesticide in a population caused by exposure to the pesticide in the field. Field-evolved resistance may result in reduced pesticide efficacy and has practical consequences for pest control (Tabashnik et al. 2014) since effectiveness of treatments is reduced and the expected level of control is not achieved even when the insecticide is used according to label recommendations. The role of natural variation in susceptibility can however not be ruled out as a factor in the different levels of insecticide susceptibility (Gutiérrez-Moreno et al. 2019). Care should therefore be taken when slight decreases in susceptibility levels are ascribed to natural variation because pesticides have been continuously used for approximately seven decades (Gutiérrez-Moreno et al. 2019). The long history of chemical control undoubtedly exerted selection pressure on S. frugiperda populations in its native areas, and consequently also on the populations that invaded the Western Hemisphere. Cross-resistance due to past selection by other insecticides (Georghiou and Taylor 1977) also influences the evolution of resistance, highlighting cross-resistance as a possible important area to investigate in S. frugiperda populations in newly invaded areas.

The first reports of resistance of this pest were in 1976, in S. frugiperda populations in Georgia (USA) (Young and McMillan 1979) and in 1978 in Alabama (USA) where synthetic pyrethroids could not provide effective control with standard chemical recommendations (Bass 1978). Resistance to carbaryl, methyl parathion, and trichlorfon was reported soon thereafter by Wood et al. (1981) after which the proverbial insecticide resistance treadmill commenced. There has been a rapid rise in insecticide resistance cases of S. frugiperda over the last five years (Fig. 1). In 2017, this pest was resistant to at least 29 insecticidal active ingredients in six mode of action groups in the Americas (Young 1979; Yu 1991, 1992; Al-Sarar et al. 2006; Carvalho et al. 2013; Nascimento et al. 2016; Blanco et al. 2010; Mota-Sanchez and Wise 2017; Okuma et al. 2018). Since then, resistance to 43 active ingredients in different chemical classes have been reported in the Arthropod Pesticide Resistance Database (APRD 2021, https://www.pesticideresistance.org/). The APRD currently reports 204 cases of insecticide resistance in S. frugiperda globally. Of these different active substances, 32% of the cases are Cry proteins expressed in Bt crops. Some populations have developed insecticide resistance to only a few or no active ingredients from several different classes while others evolved multiple resistance. For example, a single S. frugiperda population in Puerto Rico was found to have resistance against flubendiamide, chlorantraniliprole, methomyl, thiodicarb, permethrin, chlorpyriphos, zeta-cypermethrin, deltamethrin, triflumuron and spinetoram (Gutiérrez-Moreno et al. 2019).

The number of insecticides and Cry proteins to which resistance has been recorded for Spodoptera frugiperda (https://www.pesticideresistance.org/).
Fig. 1.

The number of insecticides and Cry proteins to which resistance has been recorded for Spodoptera frugiperda (https://www.pesticideresistance.org/).

Insecticide Use Patterns and Factors That Promote Resistance Evolution

While numerous factors influence insecticide efficacy at field-level, poor efficacy is sometimes incorrectly ascribed to pest resistance (Gutiérrez-Moreno et al. 2019, Ahissou et al. 2021). Factors that influence insecticide use, and which influence resistance evolution are listed in Table 1 and are discussed under different headings below. These factors, which are often interrelated, and include pest biology and ecology, pest management practices, insecticide application methods, and policy issues (Table 1). For example, poor infrastructure and the absence of a well-developed developed agrochemical industry may lead to indiscriminate use of insecticides and inappropriate application methods/practices. The overestimation of risk, which is largely due to the lack of knowledge and insufficient on-farm loss assessments, together with African farmers not being familiar with insecticide use in maize (Osae et al. 2022) also contributes to unnecessary insecticide use.

Table 1.

Factors that contribute to increased risk of resistance evolution of fall armyworm to pesticides in newly invaded areas

FactorSource
Policy issues
  Government-subsidized use of synthetic insecticides
  Common and indiscriminate use of insecticidesTambo et al. 2020a, b
  Poor regulatory systemsOluwole and Cheke 2009, Karungi et al. 2011, Goergen et al. 2016, Day et al. 2017, Bateman et al. 2018, Suguiyama et al. 2020, Jepson et al. 2020, Ahissou et al. 2021
  Poor policy regarding IPM and agrochemicalsBateman et al. 2018, Wightman 2018, Lamsal et al. 2020, Koffi et al. 2020a
  Over estimation of riskWightman 2018, Baudron et al. 2019, Van den Berg et al. 2021, Osae et al. 2022
Pest management practices
  Disruption of existing IRM/IPM strategies for other pestsBlanco et al. 2014, Yang et al. 2021, Bird et al. 2022
  Lack of economic thresholdsOverton et al. 2021, McGrath et al. 2021, Van den Berg et al. 2021
  Absence of proven effective alternative control methods, e.g., Bt cropsJepson et al. 2014, Blanco et al. 2016, Mota-Sanchez and Wise 2017, Rwomushana et al. 2018, Harrison et al. 2019, , Murray et al. 2019
  Smallholder farmers with little previous experience of handling or applying insecticidesChimweta et al. 2020, Osae et al. 2022
  Ignorance of management guidelines
  Uncontrolled and improper use of chemical pesticides
Pest biology and invasion patterns
  Seasonal and long-distance migrationRose et al. 1975, Sparks 1979, Pitre 1986, Johnson 1987, Arias et al. 2019, Nagoshi et al. 2022
  High fecundity and fertilitySparks 1979, Wan et al. 2021.
  Cryptic feeding behaviorDiez-Rodríguez and Omoto 2001, Wan et al. 2021
  Polyphagy/continuous availability and prevalence of host cropsDu Plessis et al. 2018, Wan et al. 2021
  Absence of diapause, multivoltine, overlapping generationsDu Plessis et al. 2018, Early et al. 2018, Qi et al. 2020
Insecticide application methods/practices and efficacy
  Poor efficacy due to incorrect timing of insecticide applications, too large larvae, sub-lethal exposure, low-volume applicationsMink and Luttrell 1989; Yu et al. 2003; Cook et al. 2004; Kranthi 2005; Al-Sarar et al. 2006; Fatoretto et al. 2017; Kumela et al. 2019; Suguiyama et al. 2020; Makale et al. 2021;
FactorSource
Policy issues
  Government-subsidized use of synthetic insecticides
  Common and indiscriminate use of insecticidesTambo et al. 2020a, b
  Poor regulatory systemsOluwole and Cheke 2009, Karungi et al. 2011, Goergen et al. 2016, Day et al. 2017, Bateman et al. 2018, Suguiyama et al. 2020, Jepson et al. 2020, Ahissou et al. 2021
  Poor policy regarding IPM and agrochemicalsBateman et al. 2018, Wightman 2018, Lamsal et al. 2020, Koffi et al. 2020a
  Over estimation of riskWightman 2018, Baudron et al. 2019, Van den Berg et al. 2021, Osae et al. 2022
Pest management practices
  Disruption of existing IRM/IPM strategies for other pestsBlanco et al. 2014, Yang et al. 2021, Bird et al. 2022
  Lack of economic thresholdsOverton et al. 2021, McGrath et al. 2021, Van den Berg et al. 2021
  Absence of proven effective alternative control methods, e.g., Bt cropsJepson et al. 2014, Blanco et al. 2016, Mota-Sanchez and Wise 2017, Rwomushana et al. 2018, Harrison et al. 2019, , Murray et al. 2019
  Smallholder farmers with little previous experience of handling or applying insecticidesChimweta et al. 2020, Osae et al. 2022
  Ignorance of management guidelines
  Uncontrolled and improper use of chemical pesticides
Pest biology and invasion patterns
  Seasonal and long-distance migrationRose et al. 1975, Sparks 1979, Pitre 1986, Johnson 1987, Arias et al. 2019, Nagoshi et al. 2022
  High fecundity and fertilitySparks 1979, Wan et al. 2021.
  Cryptic feeding behaviorDiez-Rodríguez and Omoto 2001, Wan et al. 2021
  Polyphagy/continuous availability and prevalence of host cropsDu Plessis et al. 2018, Wan et al. 2021
  Absence of diapause, multivoltine, overlapping generationsDu Plessis et al. 2018, Early et al. 2018, Qi et al. 2020
Insecticide application methods/practices and efficacy
  Poor efficacy due to incorrect timing of insecticide applications, too large larvae, sub-lethal exposure, low-volume applicationsMink and Luttrell 1989; Yu et al. 2003; Cook et al. 2004; Kranthi 2005; Al-Sarar et al. 2006; Fatoretto et al. 2017; Kumela et al. 2019; Suguiyama et al. 2020; Makale et al. 2021;
Table 1.

Factors that contribute to increased risk of resistance evolution of fall armyworm to pesticides in newly invaded areas

FactorSource
Policy issues
  Government-subsidized use of synthetic insecticides
  Common and indiscriminate use of insecticidesTambo et al. 2020a, b
  Poor regulatory systemsOluwole and Cheke 2009, Karungi et al. 2011, Goergen et al. 2016, Day et al. 2017, Bateman et al. 2018, Suguiyama et al. 2020, Jepson et al. 2020, Ahissou et al. 2021
  Poor policy regarding IPM and agrochemicalsBateman et al. 2018, Wightman 2018, Lamsal et al. 2020, Koffi et al. 2020a
  Over estimation of riskWightman 2018, Baudron et al. 2019, Van den Berg et al. 2021, Osae et al. 2022
Pest management practices
  Disruption of existing IRM/IPM strategies for other pestsBlanco et al. 2014, Yang et al. 2021, Bird et al. 2022
  Lack of economic thresholdsOverton et al. 2021, McGrath et al. 2021, Van den Berg et al. 2021
  Absence of proven effective alternative control methods, e.g., Bt cropsJepson et al. 2014, Blanco et al. 2016, Mota-Sanchez and Wise 2017, Rwomushana et al. 2018, Harrison et al. 2019, , Murray et al. 2019
  Smallholder farmers with little previous experience of handling or applying insecticidesChimweta et al. 2020, Osae et al. 2022
  Ignorance of management guidelines
  Uncontrolled and improper use of chemical pesticides
Pest biology and invasion patterns
  Seasonal and long-distance migrationRose et al. 1975, Sparks 1979, Pitre 1986, Johnson 1987, Arias et al. 2019, Nagoshi et al. 2022
  High fecundity and fertilitySparks 1979, Wan et al. 2021.
  Cryptic feeding behaviorDiez-Rodríguez and Omoto 2001, Wan et al. 2021
  Polyphagy/continuous availability and prevalence of host cropsDu Plessis et al. 2018, Wan et al. 2021
  Absence of diapause, multivoltine, overlapping generationsDu Plessis et al. 2018, Early et al. 2018, Qi et al. 2020
Insecticide application methods/practices and efficacy
  Poor efficacy due to incorrect timing of insecticide applications, too large larvae, sub-lethal exposure, low-volume applicationsMink and Luttrell 1989; Yu et al. 2003; Cook et al. 2004; Kranthi 2005; Al-Sarar et al. 2006; Fatoretto et al. 2017; Kumela et al. 2019; Suguiyama et al. 2020; Makale et al. 2021;
FactorSource
Policy issues
  Government-subsidized use of synthetic insecticides
  Common and indiscriminate use of insecticidesTambo et al. 2020a, b
  Poor regulatory systemsOluwole and Cheke 2009, Karungi et al. 2011, Goergen et al. 2016, Day et al. 2017, Bateman et al. 2018, Suguiyama et al. 2020, Jepson et al. 2020, Ahissou et al. 2021
  Poor policy regarding IPM and agrochemicalsBateman et al. 2018, Wightman 2018, Lamsal et al. 2020, Koffi et al. 2020a
  Over estimation of riskWightman 2018, Baudron et al. 2019, Van den Berg et al. 2021, Osae et al. 2022
Pest management practices
  Disruption of existing IRM/IPM strategies for other pestsBlanco et al. 2014, Yang et al. 2021, Bird et al. 2022
  Lack of economic thresholdsOverton et al. 2021, McGrath et al. 2021, Van den Berg et al. 2021
  Absence of proven effective alternative control methods, e.g., Bt cropsJepson et al. 2014, Blanco et al. 2016, Mota-Sanchez and Wise 2017, Rwomushana et al. 2018, Harrison et al. 2019, , Murray et al. 2019
  Smallholder farmers with little previous experience of handling or applying insecticidesChimweta et al. 2020, Osae et al. 2022
  Ignorance of management guidelines
  Uncontrolled and improper use of chemical pesticides
Pest biology and invasion patterns
  Seasonal and long-distance migrationRose et al. 1975, Sparks 1979, Pitre 1986, Johnson 1987, Arias et al. 2019, Nagoshi et al. 2022
  High fecundity and fertilitySparks 1979, Wan et al. 2021.
  Cryptic feeding behaviorDiez-Rodríguez and Omoto 2001, Wan et al. 2021
  Polyphagy/continuous availability and prevalence of host cropsDu Plessis et al. 2018, Wan et al. 2021
  Absence of diapause, multivoltine, overlapping generationsDu Plessis et al. 2018, Early et al. 2018, Qi et al. 2020
Insecticide application methods/practices and efficacy
  Poor efficacy due to incorrect timing of insecticide applications, too large larvae, sub-lethal exposure, low-volume applicationsMink and Luttrell 1989; Yu et al. 2003; Cook et al. 2004; Kranthi 2005; Al-Sarar et al. 2006; Fatoretto et al. 2017; Kumela et al. 2019; Suguiyama et al. 2020; Makale et al. 2021;

Pest Biology, Ecology, and Behavior

The cryptic feeding behavior of larvae and their rapid development are likely the most important factors that impact insecticide efficacy at the field level. Insecticides provide poor control when not applied during the susceptible stages of the insect’s life cycle (Yu et al. 2003) and are known to exhibit variable toxicity to different developmental stages of insects (Kranthi, 2005). Larvae become more tolerant to insecticides as larval age and size increases (Yu 1983, Mink and Luttrell 1989). For example, Yu (1983) reported a decrease in S. frugiperda susceptibility to insecticides with increased larval age and mass, with LD50 values of up to 5.6 and 236 times higher on a body weight basis, for third- and sixth-instar larvae respectively.

The efficacy of chemical control is influenced by larval behavior since they feed deep inside maize whorls, making it difficult to reach the target by means of spray applications (Young, 1979, Carvalho et al. 2013). Under such conditions, larvae may be exposed to sub-lethal doses of insecticides which select for resistance. Similarly, older larvae remain inside maize whorls, and in older plants, larger larvae can be found in leaf bases or inside maize ears where they are protected from spray applications. This behavior makes their control more difficult, especially where efficacy depends upon contact action (Bateman et al. 2018). In broad-leaf crops such as cotton, control may be difficult due to a lack of sufficient insecticide deposition in the lower region of the cotton canopy (Morrill and Greene 1973, Young 1979, Pitre 1986, Ali et al. 1989, Hardke et al. 2015). Larger instar larvae also feed inside fruiting structures further reducing their exposure to insecticide applications (Morrill and Greene 1973, Young 1979, Pitre 1986).

High reproductive potential and multi-voltinism, which is characteristic of several lepidopteran species that rapidly evolve resistance (Bernardi et al. 2015, Van den Berg et al. 2022) also contribute to increased selection pressure. Georghiou (1980) and Tabashnik and Croft (1985) showed that the shorter the generation time of a pest the faster the evolution of resistance. Pest species that thrive in warm climates have a high potential for resistance evolution since the many generations per season leads to rapid selection of resistant individuals (Farias et al. 2014, Leite et al. 2016). Furthermore, sequential planting of host crops, for example maize and sorghum in tropical regions of Africa and Asia, followed by insecticide applications, increases pest pressure, similar to what was reported by Gutiérrez-Moreno et al. (2019) in Puerto Rico and Mexico.

The highly polyphagous nature of S. frugiperda (Montezano et al. 2018) also affects the rate of resistance evolution and since wild hosts are not sprayed with insecticides, they may provide a refuge for susceptible individuals (Gutiérrez-Moreno et al. 2019) to develop and contribute to delay resistance evolution. The value of wild host plants and even minor crops on which S. frugiperda is not chemically controlled may however have limited value in newly invaded areas. The host range of this pest in newly invaded areas is largely limited to plant species associated with the corn strain of this pest, i.e., maize, rice, and sorghum (Juárez et al. 2014, Nagoshi et al. 2022). If, in future, S. frugiperda adapts its host range and becomes more polyphagous in invaded regions, integrated pest management (IPM), and integrated resistance management (IRM) strategies should take advantage of these conditions to prolong the lifespan of the available control tools, similar to what was recommended by Gutiérrez-Moreno et al. (2019) in regions where this pest is resistant to insecticides.

Migration Ecology

The migration ecology of S. frugiperda populations may have significant effects on the evolution of resistance. Pitre (1986) reported that the susceptibility S. frugiperda to a particular insecticide in a specific region is influenced by the extent of its migration from overwintering areas into regions that are invaded on an annual basis. However, although gene flow may contribute to the spread and evolution of resistance (Arias et al. 2019), it may also delay resistance evolution. For resistance to not increase over time an influx of individuals that was not subjected to selection pressure is needed into the population that is under selection pressure, and no emigration of moths back into that untreated population (Arias et al. 2019, Nagoshi et al. 2019). Modeling of the rate of resistance evolution of insect pest species with varying life history and migratory abilities showed that with high immigration, resistance can be suppressed (Helps et al. 2017). The valuable role that migratory populations which are not under selection pressure can play in reducing the rate of evolution was described by Downes and Mahon (2012) for Helicoverpa punctigera (Wallengren) (Lepidoptera: Noctuidae). This pest remains susceptible to insecticides applied onto cotton in Australia, in contrast to H. armigera which does not have a seasonal influx of moths and which is resistant to many insecticides. Although migratory populations of S. frugiperda which contain resistant alleles could result in the spread of resistance to newly invaded areas (Yainna et al. 2021), it is not the key factor responsible for the evolution of insecticide resistant populations. The key factors driving selection for resistance are local pest management practices and cropping strategies (Arias et al. 2019). A study conducted on gene flow between S. frugiperda populations in Paraguay and Brazil (Arias et al. 2019) showed that insecticide selection, dose, and frequency of application define the susceptibility landscape. The importance of regional coordination and alignment in terms of pesticide use is evident from the latter study which showed that resistant moths which immigrate into a particular region do not necessarily cause increasing LC50 values to a particular insecticide in a new location if that insecticide is not commonly used in the new location. Challenges to resistance management arise when the insecticides which are overused for control of the source populations of migrant moths, are also used in the areas that are invaded on a seasonal basis (Arias et al. 2019).

Although the geographic distribution of resistance mutations is poorly understood (Boaventura et al. 2020a), interesting information regarding the spread of resistance mutations have recently been published. Boaventura et al. (2020a) observed that a similar resistance mutation was frequently observed in the invasive populations in Kenya and Indonesia as well as in populations in the area of origin of the pest (Brazil and Puerto Rico), while another mutation was still only present in the Brazilian population. The presence of an insecticide resistance allele was also reported in an Indonesian population which has not previously been reported in other invasive populations (Boaventura et al. 2020b), possibly indicating local evolution. The S. frugiperda population that invaded China also carried resistance to organophosphates, pyrethroids (Zhang et al. 2020), and chlorantraniliprole (Lv et al. 2021).

Persistent geographic differences occur in S. frugiperda haplotype frequencies between west and east Africa (Nagoshi et al. 2018, 2019), suggesting that transcontinental movements of large numbers of FAW by natural migration are limited (Nagoshi et al. 2022). Evidence of a second incursion of S. frugiperda into Africa, indicates that continued introductions are plausible, which could rapidly alter the composition of the African population with respect to pesticide resistance and host range (Nagoshi et al. 2022). Nagoshi et al. (2019) reported that S. frugiperda in Africa may be a novel interstrain hybrid population, with possible novel behavioral characteristics. As a result, data on potential resistance to pesticides depending on the origin of the initial population are lacking, which could complicate its control in Africa (Nagoshi et al. 2019).

Chemical Control Practices

The excessive and off-label use of pesticides, which is described below, is the most important driver of resistance evolution (León-Garcia et al. 2012, Carvalho et al. 2013, Gutiérrez-Moreno et al. 2019). In Brazil, chemical insecticides remain an important tool to control S. frugiperda in regions where it became resistant to Bt maize (Fatoretto et al. 2017). Further evidence of intensive insecticide use for S. frugiperda control was reported in Brazil where between three and eight insecticide applications per maize cycle may be applied (Ribeiro et al. 2014, Resende et al. 2016). In Puerto Rico up to 29 insecticide sprays from nine modes of action groups are applied per season to control S. frugiperda in high-value maize seed production systems (Belay et al. 2012, IRAC 2016). In Mexico, two or three applications of mostly organophosphates and pyrethroids are made against several lepidopteran species per crop cycle (Blanco et al. 2016), resulting in continuous exposure of S. frugiperda to insecticides. As many as 12 applications per crop cycle have been reported in Mexico (Gutiérrez-Moreno et al. 2020), leading to approximately 3,000 tons of synthetic insecticides that are applied annually to control these pests (Blanco et al. 2010).

The recent world-wide spread of S. frugiperda also resulted in large-scale use of synthetic pesticides to mitigate losses in Africa, India, and China (Sisay et al. 2019, Njuguna et al. 2021, Overton et al. 2021, Yainna et al. 2021). The initial response to S. frugiperda in sub-Sahara Africa included excessive, government-subsidized use of synthetic insecticides (Njuguna et al. 2021). For example, 60% of maize-growing households in Ghana, Rwanda, Uganda, Zambia, and Zimbabwe reported the use of insecticides (Tambo et al. 2020a). Koffi et al. (2020b) also reported that that in Ghana during 2017 and 2018, 89% of farmers applied insecticides and that the frequency of number of applications ranged from two to four, while the application frequencies varied between every week to every other week. In Zambia, 277,000 liter of insecticides were acquired for control of S. frugiperda in the 2017 cropping season (Kassie et al. 2020). In Burkina Faso, approximately 12,000 liter of synthetic insecticides were sprayed onto 14,000 ha of S. frugiperda infested fields, during the 2018/2019 cropping season (MAAH 2018). Kumela et al. (2019) recorded 48% of farmers used chemical sprays in Ethiopia and Kenya. In Botswana 27% of farmers applied insecticides (Makale et al. 2021) and Cameroon 26% of farmers applied insecticides twice per week for the duration of the crop cycle, without reducing the incidence of damaged plants or severity of damage (Kuate et al. 2019). In Nigeria, cypermethrin, deltamethrin, lambda-cyhalothrin, permethrin, and chlorpyrifos are applied onto maize for control (Togola et al. 2018). Although the large-scale insecticide usage reported above cannot be extrapolated to all the affected countries in Africa, it illustrates the actions taken to mitigate the threat of S. frugiperda in some countries or localized regions within countries. In East Asia, including China there is large-scale use of insecticides in general (Wu 2018, Li et al. 2022) with spray frequencies of up to seven sprays per cropping cycle (Wu et al. 2020).

Insecticide Application Methodology

Poor field-level performance and repeated applications of insecticides for S. frugiperda control may often be ascribed to the inappropriate use of insecticides, poor calibration of spray equipment (Al-Sarar et al. 2006, Suguiyama et al. 2020, Makale et al. 2021). Reports from various African countries indicate that farmers apply pesticides at varying application rates, mix chemicals into single sprays or apply these at incorrect dosage rates (Kansiime et al. 2019, Kassie et al. 2020, Tambo et al. 2020b).

The impact of insecticide application methodology on resistance evolution by S. frugiperda was highlighted by Al-Sarar et al. (2006). Spray distribution and deposition over plants differ with different types of application equipment, providing varying coverage and doses of insecticides, that select for resistance. Application rate and deposition structure on plant leaves influence selection pressure and resistance evolution. For example, insecticide droplet sizes, number, and distribution affected efficacy results with larval mortality being higher with small droplet patterns compared to large droplet patterns. Consumption by S. frugiperda larvae was also lower on leaves with small droplet patterns than those with large droplet patterns. Praat et al. (1996) indicated differences in larval feeding behavior on leaves with either small or large droplet patterns, which lead to larvae encountering insecticides at different dosages. In the case of small deposit patterns, larvae encounter the insecticide largely by contact and feeding, while in large deposit patterns larvae encounter sub-lethal doses, which selects for the development of resistance.

Chemical control does, however, remain largely effective if used according to label directions (Jepson et al. 2018). Insecticide application at the correct time and crop growth stage provides effective control of S. frugiperda, provided the pest population is not resistant to the particular pesticide. It is also important to consider that only an estimated 0.00001–1% of the pesticides that are applied, actually reaches the target pests (Pimentel 1995).

Disruption of Existing IPM and IRM Programs

Although the agrochemical industry responsibly addressed the importance of IRM during the past decades (Sparks and Nauen 2015), resistance evolution may also be affected by ecological changes that occur in pest communities. For example, a complicating factor that may increasingly contribute to resistance evolution is the disruption of existing pest management practices and insect resistance management (IRM) programs. Yang et al. (2021) described significant changes in the pest management regimes and increased dependency on insecticides following the S. frugiperda invasion in China. The arrival of a new pest species firstly changes the pest community composition in the crop (Krüger et al. 2008, Ntiri et al. 2019, Visser and Van den Berg 2020, Sokame et al. 2021), often by displacing or dominating the indigenous pests. In Uganda, Hailu et al. (2021) reported that S. frugiperda may be displacing indigenous stemborers from maize, but not from sorghum. In many cases such changes in pest complex may lead to changes in frequency of insecticide applications which disrupts existing biological control processes. For example, Chilo partellus (Swinhoe) (Lepidoptera: Crambidae) was reported to displace the indigenous African maize stemborer (Busseola fusca (Fuller) (Lepidoptera: Noctuidae)) (Kfir 1997) in sorghum in parts of South Africa. Management of B. fusca prior to C. partellus becoming part of the pest species complex was relatively easy, due to its highly predictable moth flight pattern (Van den Berg et al. 1991).

Similarly, S. frugiperda (Mutyambai et al. 2022) is the dominating lepidopteran pest in maize in Kenya, only four years after its arrival in the country. Because farmers are unfamiliar with such new pests and the perception is that it threatens yield, it leads to increased pesticide applications. This may lead to multi-species selection for resistance if the frequency of insecticide applications increases where S. frugiperda co-occur with other pests. For example, in Australia, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) occurs together with S. frugiperda in maize and sorghum cropping systems (Bird et al. 2022), as well as in areas where these and other host crops are grown in rotational systems and where Helicoverpa punctigera (Wallengren) (Lepidoptera: Noctuidae) occurs (Maino et al. 2021). A similar situation exists with the co-occurrence of S. frugiperda and Spodoptera litura (F.) (Lepidoptera: Noctuidae) in China. In Africa, S. frugiperda is one of several lepidopteran pests that co-inhabit maize and sorghum crops (Ntiri et al. 2019, Sokame et al. 2021, Mutyambai et al. 2022). Challenges in terms of insect resistance management (IRM) within a multi-species pest complex have been described by Visser and Van den Berg (2020).

Infrastructure, Insecticide Availability, and Policy Issues

In the response to S. frugiperda in Africa, governments purchased and distributed insecticides worth millions of dollars, often favoring cheaper and higher risk products. For example, pesticides used for S. frugiperda control in Africa include methomyl, methyl parathion, endosulfan, and lindane, all of which are classified as highly hazardous pesticides (FAO 2018). Most African countries, until recently, had no insecticide formulations specifically recommended or registered for the protection of maize against S. frugiperda (Sisay et al. 2019, Koffi et al. 2020a, Suguiyama et al. 2020). In only two African countries (South Africa and Kenya) emergency registrations of insecticides were done, despite the Pesticide Emergency Use Authorization (PEUA) regulatory tool that exists in many countries (Suguiyama et al. 2020). This regulatory tool allows for emergency registration of insecticides until the necessary registration process is completed. Without this due process, farmers are left with few control options other than using off-label application of older and in many cases more toxic chemical insecticides (Suguiyama et al. 2020). Pesticide use therefore often occurs in a poorly regulated environment (Oluwole and Cheke 2009, Karungi et al. 2011), where input providers and farmers are uninformed regarding their appropriate use (Karungi et al. 2011) and where the agrochemical industry is under-developed (Makale et al. 2021).

Effective chemical control of S. frugiperda largely depends on farmers’ knowledge of the pest, insecticides, and application methods. Unfortunately, smallholder farmers in Africa have little previous experience in the handling and application of insecticides (Bateman et al. 2018, Jepson et al. 2020) and insect resistance management is a huge challenge (Van den Berg et al. 2022). Poor knowledge of basic biology and ecology of insect pests and the use of pesticides, especially in developing regions such as Africa and other newly invaded regions is a challenge in terms of resistance management.

Knowledge of aspects such as mode of action (MoA) and insecticide rotation programs is largely absent at farm-level in Africa (Van den Berg et al. 2021). Williamson et al. (2008) summarised the supply chain of agrochemical products in several African counties as follows: (1) authorized retail outlets of agricultural supply companies, (2) government extension services, (3) small-scale informal traders operating via local shops, (4) visitors to villages and weekly markets, and (5) bulk supplies from general markets in larger towns. The last three channels frequently repackage products, with the contents that often do not correspond to the product label. These factors, together with the poor availability of active ingredients from different insecticide groups to allow for the rotation of different MoAs, may also contribute to resistance evolution Williamson et al. (2008).

In total, 44 different products, and 22 different active ingredients (excluding Bacillus thuringiensis and Beauveria bassiana), belonging to 10 mode of action (MoA) groups were registered in South Africa. After the emergency registrations of these active ingredients lapsed, several were not registered for control, resulting in 17 active ingredients, belonging to nine MoA groups currently registered for control of FAW in South Africa. Eleven of these active ingredients belong to 8 IRAC groups and are registered to be applied on their own against S. frugiperda (Agri-Intel 2022) while registered mixtures contain various combinations from 11 active ingredients belonging to 7 groups (Agri-Intel 2022) (Table 2).

Table 2.

Chemical insecticides registered for control of Spodoptera frugiperda in Africa. (adapted from Otim et al. 2021)

ClassIRAC GroupActive ingredientCountry
Avermectins6Abamectin + Emamectin benzoateUganda
AbamectinMalawi
Emamectin benzoateMalawi, Uganda, South Africa, Zambia
Benzoylureas15LufenuronKenya
DiflubenzuronaSouth Africaa
Carbamates1AMethomylSouth Africa
CarbosulfanKenya
Cartap hydrochlorideSouth Africaa
Organophosphates1BChorpyrifosMalawi, South Africa
ProfenofosMalawi
Mercaptothion [syn. Malathion]South Africa
AcephateKenya
Oxadiazine22AIndoxacarbMalawi, South Africa, Zambia, Kenya, Sudan
Pyrethroids3ABeta-cypermethrinSouth Africa
Alpha-cypermethrinKenya
Deltamethrin
Cypermethrin
Malawi, Zambia
Cameroon, Malawi
Lambda-cyhalothrinKenya
Teflubenzuron + CypermethrinMalawi
Gamma-cyhalothrinKenya
Diamides28FlubendiamideMalawi, South Africa, Kenya
ChlorantraniliproleSouth Africa, Kenya, Zambia
Spinosyns5ASpinetoramSouth Africa, Kenya
Pesticide combinations
  Avermectin + Diamide6 + 28Abamectin + ChlorantraniliproleKenya
  Avermectins + Benzoylureas15 + 6Lufenuron + Emamectin benzoateMalawi, Sudan
  Avermectins + Benzoylureas15 + 6Lufenuron + Emamectin benzoateaSouth Africaa
  Benzoylureas + Oxadiazine15 + 22Novaluron + IndoxacarbSouth Africa
  Carbamate + Pyrethroids1A + 3ABenfuracarb + FenvalerateSouth Africa
  Organophosphates + Pyrethroids1B + 3AProfenofos + CypermethrinUganda
Pirimiphos methyl + DeltamethrinMalawi, Zimbabwe
Chlorpyrifos + CypermethrinSouth Africa, Zambia
Chlorpyrifos + Lambda-cyhalothrinSouth Africa
  Pyrethroids + Neonicotenoids3A + 4ALambda-cyhalothrin + ThiamethoxamUganda
  Diamides + Neonicotenoids28 + 4AChlorantraniliprole + ThiamethoxamZambia, Zimbabwe
  Diamide + Pyrethroid28 + 3AChlorantraniliprole + Lambda-cyhalothrinSouth Africa, Zambia
  Spinosyn + Benzoylureas5A + 18Spinetoram + MethoxyfenozideSouth Africa
  Spinosyn + Diamide5A + 28Spinotetramat + FlubendiamideSudan
ClassIRAC GroupActive ingredientCountry
Avermectins6Abamectin + Emamectin benzoateUganda
AbamectinMalawi
Emamectin benzoateMalawi, Uganda, South Africa, Zambia
Benzoylureas15LufenuronKenya
DiflubenzuronaSouth Africaa
Carbamates1AMethomylSouth Africa
CarbosulfanKenya
Cartap hydrochlorideSouth Africaa
Organophosphates1BChorpyrifosMalawi, South Africa
ProfenofosMalawi
Mercaptothion [syn. Malathion]South Africa
AcephateKenya
Oxadiazine22AIndoxacarbMalawi, South Africa, Zambia, Kenya, Sudan
Pyrethroids3ABeta-cypermethrinSouth Africa
Alpha-cypermethrinKenya
Deltamethrin
Cypermethrin
Malawi, Zambia
Cameroon, Malawi
Lambda-cyhalothrinKenya
Teflubenzuron + CypermethrinMalawi
Gamma-cyhalothrinKenya
Diamides28FlubendiamideMalawi, South Africa, Kenya
ChlorantraniliproleSouth Africa, Kenya, Zambia
Spinosyns5ASpinetoramSouth Africa, Kenya
Pesticide combinations
  Avermectin + Diamide6 + 28Abamectin + ChlorantraniliproleKenya
  Avermectins + Benzoylureas15 + 6Lufenuron + Emamectin benzoateMalawi, Sudan
  Avermectins + Benzoylureas15 + 6Lufenuron + Emamectin benzoateaSouth Africaa
  Benzoylureas + Oxadiazine15 + 22Novaluron + IndoxacarbSouth Africa
  Carbamate + Pyrethroids1A + 3ABenfuracarb + FenvalerateSouth Africa
  Organophosphates + Pyrethroids1B + 3AProfenofos + CypermethrinUganda
Pirimiphos methyl + DeltamethrinMalawi, Zimbabwe
Chlorpyrifos + CypermethrinSouth Africa, Zambia
Chlorpyrifos + Lambda-cyhalothrinSouth Africa
  Pyrethroids + Neonicotenoids3A + 4ALambda-cyhalothrin + ThiamethoxamUganda
  Diamides + Neonicotenoids28 + 4AChlorantraniliprole + ThiamethoxamZambia, Zimbabwe
  Diamide + Pyrethroid28 + 3AChlorantraniliprole + Lambda-cyhalothrinSouth Africa, Zambia
  Spinosyn + Benzoylureas5A + 18Spinetoram + MethoxyfenozideSouth Africa
  Spinosyn + Diamide5A + 28Spinotetramat + FlubendiamideSudan

The active ingredients previously listed by Otim et al. (2021) for South Africa represented emergency registrations in 2017.

aActive ingredients of which the emergency registration received in 2017 lapsed, and which are not currently registered for control of S. frugiperda South Africa (see: https://www.agri-intel.com/label-information/search-registration-information/).

Table 2.

Chemical insecticides registered for control of Spodoptera frugiperda in Africa. (adapted from Otim et al. 2021)

ClassIRAC GroupActive ingredientCountry
Avermectins6Abamectin + Emamectin benzoateUganda
AbamectinMalawi
Emamectin benzoateMalawi, Uganda, South Africa, Zambia
Benzoylureas15LufenuronKenya
DiflubenzuronaSouth Africaa
Carbamates1AMethomylSouth Africa
CarbosulfanKenya
Cartap hydrochlorideSouth Africaa
Organophosphates1BChorpyrifosMalawi, South Africa
ProfenofosMalawi
Mercaptothion [syn. Malathion]South Africa
AcephateKenya
Oxadiazine22AIndoxacarbMalawi, South Africa, Zambia, Kenya, Sudan
Pyrethroids3ABeta-cypermethrinSouth Africa
Alpha-cypermethrinKenya
Deltamethrin
Cypermethrin
Malawi, Zambia
Cameroon, Malawi
Lambda-cyhalothrinKenya
Teflubenzuron + CypermethrinMalawi
Gamma-cyhalothrinKenya
Diamides28FlubendiamideMalawi, South Africa, Kenya
ChlorantraniliproleSouth Africa, Kenya, Zambia
Spinosyns5ASpinetoramSouth Africa, Kenya
Pesticide combinations
  Avermectin + Diamide6 + 28Abamectin + ChlorantraniliproleKenya
  Avermectins + Benzoylureas15 + 6Lufenuron + Emamectin benzoateMalawi, Sudan
  Avermectins + Benzoylureas15 + 6Lufenuron + Emamectin benzoateaSouth Africaa
  Benzoylureas + Oxadiazine15 + 22Novaluron + IndoxacarbSouth Africa
  Carbamate + Pyrethroids1A + 3ABenfuracarb + FenvalerateSouth Africa
  Organophosphates + Pyrethroids1B + 3AProfenofos + CypermethrinUganda
Pirimiphos methyl + DeltamethrinMalawi, Zimbabwe
Chlorpyrifos + CypermethrinSouth Africa, Zambia
Chlorpyrifos + Lambda-cyhalothrinSouth Africa
  Pyrethroids + Neonicotenoids3A + 4ALambda-cyhalothrin + ThiamethoxamUganda
  Diamides + Neonicotenoids28 + 4AChlorantraniliprole + ThiamethoxamZambia, Zimbabwe
  Diamide + Pyrethroid28 + 3AChlorantraniliprole + Lambda-cyhalothrinSouth Africa, Zambia
  Spinosyn + Benzoylureas5A + 18Spinetoram + MethoxyfenozideSouth Africa
  Spinosyn + Diamide5A + 28Spinotetramat + FlubendiamideSudan
ClassIRAC GroupActive ingredientCountry
Avermectins6Abamectin + Emamectin benzoateUganda
AbamectinMalawi
Emamectin benzoateMalawi, Uganda, South Africa, Zambia
Benzoylureas15LufenuronKenya
DiflubenzuronaSouth Africaa
Carbamates1AMethomylSouth Africa
CarbosulfanKenya
Cartap hydrochlorideSouth Africaa
Organophosphates1BChorpyrifosMalawi, South Africa
ProfenofosMalawi
Mercaptothion [syn. Malathion]South Africa
AcephateKenya
Oxadiazine22AIndoxacarbMalawi, South Africa, Zambia, Kenya, Sudan
Pyrethroids3ABeta-cypermethrinSouth Africa
Alpha-cypermethrinKenya
Deltamethrin
Cypermethrin
Malawi, Zambia
Cameroon, Malawi
Lambda-cyhalothrinKenya
Teflubenzuron + CypermethrinMalawi
Gamma-cyhalothrinKenya
Diamides28FlubendiamideMalawi, South Africa, Kenya
ChlorantraniliproleSouth Africa, Kenya, Zambia
Spinosyns5ASpinetoramSouth Africa, Kenya
Pesticide combinations
  Avermectin + Diamide6 + 28Abamectin + ChlorantraniliproleKenya
  Avermectins + Benzoylureas15 + 6Lufenuron + Emamectin benzoateMalawi, Sudan
  Avermectins + Benzoylureas15 + 6Lufenuron + Emamectin benzoateaSouth Africaa
  Benzoylureas + Oxadiazine15 + 22Novaluron + IndoxacarbSouth Africa
  Carbamate + Pyrethroids1A + 3ABenfuracarb + FenvalerateSouth Africa
  Organophosphates + Pyrethroids1B + 3AProfenofos + CypermethrinUganda
Pirimiphos methyl + DeltamethrinMalawi, Zimbabwe
Chlorpyrifos + CypermethrinSouth Africa, Zambia
Chlorpyrifos + Lambda-cyhalothrinSouth Africa
  Pyrethroids + Neonicotenoids3A + 4ALambda-cyhalothrin + ThiamethoxamUganda
  Diamides + Neonicotenoids28 + 4AChlorantraniliprole + ThiamethoxamZambia, Zimbabwe
  Diamide + Pyrethroid28 + 3AChlorantraniliprole + Lambda-cyhalothrinSouth Africa, Zambia
  Spinosyn + Benzoylureas5A + 18Spinetoram + MethoxyfenozideSouth Africa
  Spinosyn + Diamide5A + 28Spinotetramat + FlubendiamideSudan

The active ingredients previously listed by Otim et al. (2021) for South Africa represented emergency registrations in 2017.

aActive ingredients of which the emergency registration received in 2017 lapsed, and which are not currently registered for control of S. frugiperda South Africa (see: https://www.agri-intel.com/label-information/search-registration-information/).

The bleak picture regarding large-scale use of insecticides described above could partly be ascribed to the emergency responses of the international community and governments to address threats to food security in regions where this pest attacked a staple crop. This situation seems, however, to be changing for the better. The investment in S. frugiperda research in newly invaded countries over the last six years has generated a significant body of information that will improve the management of this pest. The generation of field-data which indicate that the yield losses may be overestimated in some regions (Baudron et al. 2019, Koffi et al. 2022), is likely leading to reduced insecticide use in countries where the initial response to this pest was to subsidize the use synthetic insecticides. Farmers’ perceptions of infestation levels and the threat of crop losses may also be changing, for example, farmer surveys in Zambia (Kansiime et al. 2019), Ghana (Koffi et al. 2020b, Nboyine et al. 2020) and Kenya (De Groote et al. 2020) reported lower infestation levels in years following the initial observations of this pest on their farms. These observations do however differ between countries and agroecological zones and also in regions where this reduction has not been reported.

Investments in biological control programs, for example, those in Africa (Kenis et al. 2019, Chandish et al. 2021) and China (Chen et al. 2019, Xing et al. 2022) are highly likely to contribute significantly to a reduction in pest pressure over the long term, which will lead to reduced pesticide use. The many species of indigenous natural enemies that developed new associations with S. frugiperda in Africa (Sisay et al. 2018, Tepa-Yotto et al. 2022), China (Xing et al. 2022) and India (Chandish et al. 2021) will also in future contribute to the suppression of S. frugiperda populations.

Insect Resistance Management

Evolution of insecticide resistance can be delayed by minimizing their use and employing appropriate IRM programs (Carrière et al. 2020). The overall goal of IRM programs is to reduce pest pressure on the crops while simultaneously minimizing selection pressure toward any one specific group of insecticides, biological products, or transgenic insect resistance traits (Sparks et al. 2020). This importance of effective and proactive resistance management to maintain the efficacy of current and future insecticides has for a long time been recognized by the agrochemical industry (Jackson 1986, Voss 1988, McCaffery and Nauen 2006, Sparks and Nauen 2015).

IRM can take many forms, including the use of insecticide mixtures, mosaics or alternations/ rotations (Roush 1989, Zhao et al. 2010, IRAC 2012). Rotating of MoAs is the most used and effective IRM approach. Rotation of MoA avoids treating consecutive generations of the target pest with insecticides in the same MoA group, and employing the principle of MoA treatment windows which encompasses a full life-cycle of the targeted pest (Barbosa et al. 2020, Sparks et al. 2020). An IRM strategy should be pro-active and aimed at reducing selection pressure (Bielza 2008). The use of insecticides should be optimized and the use of insecticide mixtures with additional mode(s) of action may provide benefits for IRM when appropriately incorporated into insecticide rotation strategies. Furthermore, since the same active ingredients are often registered to control different species in a pest complex, an IRM strategy is often hampered by multiple insecticide applications against the respective pests, without taking into consideration the generation time of the various pests. This often results in successive generations exposed to active ingredients from the same MoA group, enhancing the evolution of resistance. For this reason, regular monitoring of susceptibility levels of S. frugiperda to insecticides should be done.

The promotion of chemical pesticides for S. frugiperda control, especially in regions where the agrochemical industry is poorly developed and where there is a lack of access to appropriate spray equipment and insecticides, jeopardizes the efficacy of control and promotes resistance evolution. There is a need to make effective, low-risk products available and given that biopesticides are generally considered to be lower risk options for pest management, these promising avenues should be explored further (Bateman et al. 2018).

Ultimately, IPM, rather than reliance on a single tactic, is the best way to control S. frugiperda. A combination of tactics is more reliable, effective, and safe to sustainably manage S. frugiperda and other maize pests, while minimizing the use of broad-spectrum insecticides (Midega et al. 2018, Harrison et al. 2019, Murray et al. 2019, Njuguna et al. 2021, Tepa-Yotto et al. 2022).

References Cited

Agri-Intel.
https://www.agri-intel.com/ [Accessed
20 March 2022]
.

Ahissou
,
B. R.
,
W. M.
Sawadogo
,
A. H.
Bokonon-Ganta
,
I.
Somda
,
M. -P.
Kestemont
, and
F. J.
Verheggen
.
2021
.
Baseline toxicity data of different insecticides against the fall armyworm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) and control failure likelihood estimation in Burkina Faso
.
Afr. Entomol
.
29
:
435
444
.

Ali
,
A.
,
R. G.
Luttrell
,
H. N.
Pitre
, and
F. M.
Davis
.
1989
.
Distribution of fall armyworm (Lepidoptera: Noctuidae) egg masses on cotton
.
Environ. Entomol
.
18
:
881
885
.

Al-Sarar
,
A.
,
F. R.
Hall
, and
R. A.
Downer
.
2006
.
Impact of spray application methodology on the development of resistance to cypermethrin and spinosad by fall armyworm Spodoptera frugiperda (JE Smith)
.
Pest Manag. Sci
.
62
:
1023
1031
.

APRD. Arthropod Pesticide Resistance Database (APRD).
2021
. https://www.pesticideresistance.org/

Arias
,
O.
,
E.
Cordeiro
,
A. S.
Corrêa
,
F. A.
Domingues
,
A. S.
Guidolin
, and
C.
Omoto
.
2019
.
Population genetic structure and demographic history of Spodoptera frugiperda (Lepidoptera: Noctuidae): implications for insect resistance management programs
.
Pest Manag. Sci
.
75
:
2948
2957
.

Babendreier
,
D.
,
L. K.
Agboyi
,
P.
Beseh
,
M.
Osae
,
J. A.
Nboyine
,
S. E. K.
Ofori
,
J. O.
Frimpong
,
V. A.
Clottey
, and
M.
Kenis
.
2020
.
Efficacy of alternative, environmentally friendly plant protection measures for control of fall armyworm, Spodoptera frugiperda, in maize
.
Insects
.
11
:
240
.

Barbosa
,
M. G.
,
T. P. P.
André
,
A. D. S.
Pontes
,
S. A.
Souza
,
N. R. X.
Oliveira
, and
P. L.
Pastori
.
2020
.
Insecticide rotation and adaptive fitness cost underlying insecticide resistance management for Spodoptera frugiperda (Lepidoptera: Noctuidae)
.
Neotrop. Entomol
.
49
:
882
892
.

Bass
,
M. H.
1978
.
Fall Armyworm: evaluation of insecticides for control
.
Leaflet 93, Agricultural Experiment Station, Auburn University
,
Alabama
.

Bateman
,
M. L.
,
R. K.
Day
,
B.
Luke
,
S.
Edgington
,
U.
Kuhlmann
, and
M. J.
Cock
.
2018
.
Assessment of potential biopesticide options for managing fall armyworm (Spodoptera frugiperda) in Africa
.
J. Appl. Entomol
.
142
:
805
819
.

Baudron
,
F.
,
M. A.
Zaman-Allah
,
I.
Chaipa
,
N.
Chari
, and
P.
Chinwada
.
2019
.
Understanding the factors conditioning fall armyworm (Spodoptera frugiperda J.E. Smith) infestation in African smallholder maize fields and quantifying its impact on yield: a case study in Eastern Zimbabwe
.
Crop Prot
.
120
:
141
150
.

Belay
,
D. K.
,
R. M.
Huckaba
, and
J. E.
Foster
.
2012
.
Susceptibility of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), at Santa Isabel, Puerto Rico, to different insecticides
.
Fla. Entomol
.
95
:
476
478
.

Bernardi
,
O.
,
D.
Bernardi
,
R. S.
Ribeiro
,
D. M.
Okuma
,
E.
Salmeron
,
J.
Fatoretto
,
F. C. L.
Medeiros
,
T.
Burd
, and
C.
Omoto
.
2015
.
Frequency of resistance to Vip3Aa20 toxin from Bacillus thuringiensis in Spodoptera frugiperda (Lepidoptera: Noctuidae) populations in Brazil
.
Crop Prot
.
76
:
7
14
.

Bielza
,
P.
2008
.
Insecticide resistance management strategies against the western flower thrips, Frankliniella occidentalis
.
Pest Manag. Sci
.
64
:
1131
1138
.

Bird
,
L.
,
M.
Miles
,
A.
Quade
, and
H.
Spafford
.
2022
.
Insecticide resistance in Australian Spodoptera frugiperda (J.E. Smith) and development of testing procedures for resistance surveillance
.
PLoS One
.
17
:
e0263677
.

Blanco
,
C. A.
,
J. G.
Pellegaud
,
U.
Nava-Camberos
,
D.
Lugo-Barrera
,
P.
Vega-Aquino
,
J.
Coello
,
A. P.
Teran-Vargas
, and
J.
Vargas-Camplis
.
2014
.
Maize pests in Mexico and challenges for the adoption of integrated pest management programs
.
J. Integr. Pest Manag
.
5
:
E1
E9
.

Blanco
,
C. A.
,
M.
Portilla
,
J. L.
Jurat-Fuentes
,
J. F.
Sánchez
,
D.
Viteri
,
P.
Vega-Aquino
,
A. P.
Terán-Vargas
,
A.
Azuara-Domínguez
,
J. D.
López
,
R.
Arias
, et al. .
2010
.
Susceptibility of isofamilies of Spodoptera frugiperda (Lepidoptera: Noctuidae) to Cry1Ac and Cry1Fa proteins of Bacillus thuringiensis
.
Southwest. Entomol
.
35
:
409
415
.

Blanco
,
C. A.
,
W.
Chiaravalle
,
M.
Dalla-Rizza
,
J. R.
Farias
,
M. D. F.
Garcia
,
G.
Gastaminza
,
D.
Mota-Sánchez
,
M. G.
Murúa
,
C.
Omoto
,
B. K.
Pieralisi
, et al. .
2016
.
Current situation of pests targeted by Bt crops in Latin America
.
Curr. Opin. Insect Sci
.
15
:
131
138
.

Boaventura
,
D.
,
A.
Bolzan
,
F. E.
Padovez
,
D. M.
Okuma
,
C.
Omoto
, and
R.
Nauen
.
2020b
.
Detection of a ryanodine receptor target-site mutation in diamide insecticide resistant Fall Armyworm, Spodoptera frugiperda
.
Pest Manag. Sci
.
76
:
47
54
.

Boaventura
,
D.
,
M.
Martin
,
A.
Pozzebon
,
D.
Mota-Sanchez
, and
R.
Nauen
.
2020a
.
Monitoring of target-site mutations conferring insecticide resistance in Spodoptera frugiperda
.
Insects
.
11
:
545
.

Brookes
,
G.
, and
P.
Barfoot
.
2018
.
Farm income and production impacts of using GM crop technology 1996–2018
.
GM Crops Food
.
9
:
59
89
.

Burtet
,
L. M.
,
O.
Bernardi
,
A. A.
Melo
,
M. P.
Pes
,
T. T.
Strahl
, and
J. V.
Guedes
.
2017
.
Managing fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), with Bt maize and insecticides in southern Brazil
.
Pest Manag. Sci
.
73
:
25692577
.

Carrière
,
Y.
,
Z. S.
Brown
,
S. J.
Downes
,
G.
Gujar
,
G.
Epstein
,
C.
Omoto
,
N. P.
Storer
,
D.
Mota-Sanchez
,
P.
Søgaard Jørgensen
, and
S. P.
Carroll
.
2020
.
Governing evolution: A socioecological comparison of resistance management for insecticidal transgenic Bt crops among four countries
.
Ambio
.
49
:
1
16
.

Carvalho
,
R. A.
,
C.
Omoto
,
L. M.
Field
,
M. S.
Williamson
, and
C.
Bass
.
2013
.
Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda
.
PLoS One
.
8
:
e62268
.

Chandish
,
R. B.
,
A.
Kandan
,
R.
Varshney
,
A.
Gupta
,
A. N.
Shylesha
,
O. M. P.
Navik
,
T.
Venkatesan
,
G.
Gracy
,
B.
Ramanujam
,
R.
Rangeshwaran
, et al.
2021
.
Biological control for fall armyworm management in Asia. Chapter 5
, In
B. M.
Prasanna
,
J. E.
Huesing
,
V. M.
Peschke
,
R.
Eddy
(eds.),
Fall Armyworm in Asia: a guide for integrated pest management
.
Mexico, CDMX
:
CIMMYT
.

Chen
,
W. B.
,
Y. Y.
Li
,
M. Q.
Wang
,
C. X.
Liu
,
J. J.
Mao
,
H. Y.
Chen
, and
L. S.
Zhang
.
2019
.
Entomopathogen resources of the fall armyworm Spodoptera frugiperda, and their application station
.
Plant Prot
.
45
:
1
9
. (In Chinese).

Chimweta
,
M.
,
I. W.
Nyakudya
,
L.
Jimu
, and
A. B.
Mashingaidze
.
2020
.
Fall armyworm [Spodoptera frugiperda (J.E. Smith)] damage in maize: management options for flood-recession cropping smallholder farmers
.
Int. J. Pest Manag
.
66
:
142
154
.

Cook
,
D. R.
,
B. R.
Leonard
, and
J.
Gore
.
2004
.
Field and laboratory performance of novel insecticides against armyworms (Lepidoptera: Noctuidae)
.
Fla. Entomol
.
87
:
433
439
.

Day
,
R.
,
P.
Abrahams
,
M.
Bateman
,
T.
Beale
,
V.
Clottey
,
M.
Cock
,
Y.
Colmenarez
,
N.
Corniani
,
R.
Early
,
J.
Godwin
, et al. .
2017
.
Fall Armyworm: Impacts and Implications for Africa
.
Outl. Pest Manag
.
28
:
196
201
.

De Groote
,
H.
,
S. C.
Kimenju
,
B.
Munyua
,
S.
Palmas
,
M.
Kassie
, and
A.
Bruce
.
2020
.
Spread and impact of fall armyworm (Spodoptera frugiperda J.E. Smith) in maize production areas of Kenya
.
Agric. Ecosyst. Environ
.
292
:
106804
.

Diez-Rodríguez
,
G. I.
, and
C.
Omoto
.
2001
.
Inheritance of lambda-cyhalothrin resistance in Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae)
.
Neotrop. Entomol
.
30
:
311
316
.

Downes
,
S.
, and
R.
Mahon R
.
2012
.
Evolution, ecology and management of resistance in Helicoverpa spp. to Bt cotton in Australia
.
J. Invertebr. Pathol
.
110
:
281
286
.

Du Plessis
,
H.
,
J.
van den Berg
,
N.
Ota
, and
D. J.
Kriticos
.
2018
.
Spodoptera frugiperda
. Available online: http://natural-sciences.nwu.ac.za/uesm/news [Accessed
23 January 2022
].

Early
,
R.
,
P.
Gonzalez-Moreno
,
S. T.
Murphy
, and
R.
Day
.
2018
.
Forecasting the global extent of invasion of the cereal pest Spodoptera frugiperda, the fall armyworm
.
NeoBiota
.
40
:
25
50
.

Evans
,
D. C.
, and
P. A.
Stansly
.
1990
.
Weekly-economic injury levels for fall armyworm (Lepidoptera: Noctuidae) infestation of corn in lowland Ecuador
.
J. Econ. Entomol
.
83
:
2452
2454
.

FAO.
2018
.
Food and Agriculture Organization of the United Nations. Integrated management of the fall armyworm on maize: a guide for farmer field schools in Africa
.
FAO,
Rome, Italy
. Retrieved from http://www.fao.org/3/I8665EN/i8665en.pdf

Farias
,
J. R.
,
D. A.
Andow
,
R. J.
Horikoshi
,
R. J.
Sorgatto
,
P.
Fresia
,
A. C.
Santos
, and
C.
Omoto
.
2014
.
Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil
.
Crop Prot
.
64
:
150
158
.

Fatoretto
,
J. C.
,
A. P.
Michel
,
F. M. C.
Silva
, and
N.
Silva
.
2017
.
Adaptive potential of fall armyworm (Lepidoptera: Noctuidae) limits Bt trait durability in Brazil
.
J. Integr. Pest Manag
.
8
:
1
10
.

Georghiou
,
G. P.
1980
.
Insecticide resistance and prospects for its management
.
Residue Rev
.
76
:
131
145
.

Georghiou
,
G. P.
, and
C. E.
Taylor
.
1977
.
Genetic and biological influences in the evolution of insecticide resistance
.
J. Econ. Entomol
.
70
:
319
323
.

Goergen
,
G.
,
P. L.
Kumar
,
S. B.
Sankung
,
A.
Togola
, and
M.
Tamo
.
2016
.
First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa
.
PLoS One
.
11
:
1
10
.

Guo
,
J. F.
,
J. Z.
Zhao
,
K. L.
He
,
F.
Zhang
, and
Z. Y.
Wang
.
2018
.
Potential invasion of the crop-devastating insect pest fall armyworm Spodoptera frugiperda to China
.
Plant Prot
.
44
:
1
10
.

Gutiérrez-Moreno
,
R.
,
D.
Mota-Sanchez
,
C. A.
Blanco
,
M. E.
Whalon
,
H.
Teran-Santofimio
,
J. C.
Rodriguez-Maciel
, and
C.
DiFonzo
.
2019
.
Field-evolved resistance of the fall armyworm (Lepidoptera: Noctuidae) to synthetic insecticides in Puerto Rico and Mexico
.
J. Econ. Entomol
.
112
:
792
802
.

Gutiérrez-Moreno
,
R.
,
D.
Mota-Sanchez
,
C. A.
Blanco
,
D.
Chandrasena
,
C.
Difonzo
,
J.
Conner
,
G.
Head
,
K.
Berman
, and
J.
Wise
.
2020
.
Susceptibility of fall armyworms (Spodoptera frugiperda) from Mexico and Puerto Rico to Bt proteins
.
Insects
.
11
:
831
.

Hailu
,
G.
,
S.
Niassy
,
T.
Bässler
,
N.
Ochatum
,
C.
Studer
,
D.
Salifu
,
M. K.
Agbodzavu
,
Z. R.
Khan
,
C.
Midega
, and
S.
Subramanian
.
2021
.
Could fall armyworm, Spodoptera frugiperda (JE Smith) invasion in Africa contribute to the displacement of cereal stemborers in maize and sorghum cropping systems.
Int. J. Trop. Insect Sci
.
41
:
1753
1762
.

Hardke
,
J. T.
,
G. M.
Lorenz
, and
B. R.
Leonard
.
2015
.
Fall armyworm (Lepidoptera: Noctuidae) ecology in Southeastern cotton
.
J. Integr. Pest Manag
.
6
:
10
. doi:10.1093/jipm/pmv009

Harrison
,
R. D.
,
C.
Thierfelder
,
F.
Baudron
,
P.
Chinwada
,
C.
Midega
,
U.
Schaffner
, and
J.
Van den Berg
.
2019
.
Agro-ecological options for fall armyworm (Spodoptera frugiperda JE Smith) management: Providing low-cost, smallholder friendly solutions to an invasive pest
.
J. Environ. Manag
.
243
:
318
330
.

Helps
,
J. C.
,
N. D.
Paveley
, and
F.
Van Den Bosch
.
2017
.
Identifying circumstances under which high insecticide dose increases or decreases resistance selection
.
J. Theor. Biol
.
428
:
183
167
.

Hruska
,
A. J.
, and
F.
Gould
.
1997
.
Fall armyworm (Lepidoptera: Noctuidae) and Diatraea lineolata (Lepidoptera: Pyralidae): impact of larval population level and temporal occurrence on maize yield in Nicaragua
.
J. Econ. Entomol
.
90
:
611
612
.

Huang
,
F.
,
J. A.
Qureshi
,
R. L.
Meagher
, Jr
,
D. D.
Reisig
,
G. P.
Head
,
D. A.
Andow
,
X.
Ni
,
D.
Kerns
,
D.
Buntin
,
Y.
Niu
, et al. .
2014
.
Cry1F resistance in fall armyworm Spodoptera frugiperda: single gene versus pyramided Bt maize
.
PLoS One
.
9
:
e112958
.

IRAC.
2012
.
IRAC International Mixture Statement, 2012
. https://www.irac-online.org/?s=mixtures.

IRAC.
2016
.
Insecticide Resistance Action Committee. 2016. IRAC-US efforts in Puerto Rico
. www.irac-online.org/documents/puerto-rico-task-team/.

Jackson
,
G. L.
1986
.
Insecticide resistance – what is industry doing about it?
pp.
943
949
. In 1986 British Crop Protection Conference - Pests and Diseases, 8B-2. British Crop Protection Council.

Jepson
,
P. C.
,
M.
Guzy
,
K.
Blaustein
,
M.
Sow
,
M.
Sarr
,
P.
Mineau
, and
S.
Kegley
.
2014
.
Measuring pesticide ecological and health risks in west African agriculture to establish an enabling environment for sustainable intensification.
Phil. Trans. R. Soc. Lond. B. Biol. Sci
.
369
:
20130491
.

Jepson
,
P. C.
,
K.
Murray
,
O.
Bach
,
D.
Kachigamba
,
F.
Ndeithi
,
J. K.
Miano
,
T.
McCracken
,
D.
Onyango
,
I.
Nthenga
,
K.
Agboka
,
S.
Byantwala
, and
H.
De Groote
.
2018
.
Pesticide Hazard and Risk Management, and Compatibility with IPM.
pp.
29
44
. In
B. M.
Prasanna
,
J. E.
Huesing
,
R.
Eddy
,
V. M.
Peschke
(eds.),
Fall Armyworm in Africa: A Guide for Integrated Pest Management
, 1st ed.
Mexico
,
CDMX: CIMMYT
.

Jepson
,
P. C.
,
K.
Murray
,
O.
Bach
,
M. A.
Bonilla
, and
L.
Neumeister
.
2020
.
Selection of pesticides to reduce human and environmental health risks: a global guideline and minimum pesticides list
.
Lancet Planet Health
.
4
:
e56
e63
.

Johnson
,
S. J.
1987
.
Migration and the life history strategy of the fall armyworm, Spodoptera frugiperda in the western hemisphere
.
Insect Sci. Appl
.
8
:
543
549
.

Juárez
,
M. L.
,
G.
Schöfl
,
M. T.
Vera
,
J. C.
Vilardi
,
M. G.
Murúa
,
E.
Willink
,
S.
Hänniger
,
D. G.
Heckel
, and
A. T.
Groot
.
2014
.
Population structure of Spodoptera frugiperda maize and rice host forms in South America: are they host strains?
Entomol. Exp. Appl
.
152
:
182
199
.

Kansiime
,
M. K.
,
I.
Mugambi
,
I.
Rwomushana
,
W.
Nunda
,
J.
Lamontagne-Godwin
, and
H.
Rwar
.
2019
.
Farmer perception of fall armyworm (Spodoptera frugiperda J.E. Smith) and farm-level management practices in Zambia
.
Pest Manag. Sci
.
75
:
2840
2850
.

Karungi
,
J.
,
S.
Kyamanywa
,
E.
Adipala
, and
M.
Erbaugh
.
2011
.
Pesticide utilization, regulation and future prospects in small scale horticultural crop production systems in a developing country.
pp.
19
34
. In
M.
Stoytcheva
(ed.),
Pesticides in the modern world–pesticides use and management
.
IntechOpen
,
London, UK
. https://doi.org/10.5772/950

Kassie
,
M.
,
T.
Wossen
,
H.
De Groote
,
T.
Tefera
,
S.
Sevgan
, and
S.
Balew
.
2020
.
Economic impacts of fall armyworm and its management strategies: evidence from southern Ethiopia.
Eur. Rev. Agric. Econ
.
47
:
1473
1501
.

Kenis
,
M.
,
H.
Du Plessis
,
J.
Van den Berg
,
M. N.
Ba
,
G.
Goergen
,
K. E.
Kwadjo
,
I.
Baoua
,
T.
Tefera
,
A.
Buddie
,
G.
Cafà
, et al. .
2019
.
Telenomus remus, a candidate parasitoid for the biological control of Spodoptera frugiperda in Africa, is already present on the continent
.
Insects
.
10
:
92
.

Kfir
,
R.
1997
.
Competitive displacement of Busseola fusca (Lepidoptera: Noctuidae) by Chilo partellus (Lepidoptera: Pyralidae)
.
Ann. Entomol. Soc. Am
.
90
:
619
624
.

Koffi
,
D.
,
K.
Agboka
,
D. K.
Adenka
,
M.
Osae
,
A. K.
Tounou
,
A. M. K.
Anani
,
K. O.
Fening
, and
R. L.
Meagher
, Jr
.
2020a
.
Maize infestation of fall armyworm (Lepidoptera: Noctuidae) within agro-ecological zones of Togo and Ghana in West Africa 3 yr after its invasion
.
Environ. Entomol
.
49
:
645
650
.

Koffi
,
D.
,
R.
Kyerematen
,
V. Y.
Eziah
,
Y. O.
Osei-Mensah
,
K.
Afreh-Nuamah
,
E.
Aboagye
,
M.
Osae
, and
R. L.
Meagher
.
2020b
.
Assessment of impacts of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) on maize production in Ghana
.
J. Integr. Pest Manag
.
11
:
20
.

Koffi
,
D.
,
R.
Kyerematen
,
M.
Osae
,
K.
Amouzou
, and
V. Y.
Eziah
.
2022
.
Assessment of Bacillus thuringiensis and emamectin benzoate on the fall armyworm Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) severity on maize under farmers’ fields in Ghana.
Int. J. Trop. Insect Sci
.
42
:
1619
1626
.

Kranthi
,
K. R.
2005
.
Insecticide resistance: monitoring, mechanisms and management manual
. 1st ed.
Central Institute for Cotton Research
,
Nagpur
.

Krüger
,
W.
,
J.
Van den Berg
, and
H.
Van Hamburg
.
2008
.
The relative abundance of maize stem borers and their parasitoids at the Tshiombo irrigation scheme in Venda, South Africa
.
S. Afr. J. Plant Soil
.
25
:
144
151
.

Kuate
,
A. F.
,
R.
Hanna
,
A. R. P.
Doumtsop Fotio
,
A. F.
Abang
,
S. N.
Nanga
,
S.
Ngatat
,
M.
Tindo
,
C.
Masso
,
R.
Ndemah
,
C.
Suh
, et al. .
2019
.
Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) in Cameroon: case study on its distribution, damage, pesticide use, genetic differentiation and host plants
.
PLoS One
.
14
:
e0215749
.

Kumela
,
T.
,
J.
Simiyu
,
B.
Sisay
,
P.
Likhayo
,
E.
Mendesil
,
L.
Gohole
, and
T.
Tefera
.
2019
.
Farmers’ knowledge, perceptions, and management practices of the new invasive pest, fall armyworm (Spodoptera frugiperda) in Ethiopia and Kenya
.
Int. J. Pest Manag
.
65
:
1
9
.

León-García
,
I.
,
E.
Rodríguez-Leyva
,
L. D.
Ortega-Arenas
, and
J. F.
Solís-Aguilar
.
2012
.
Susceptibilidad de Spodoptera frugiperda (JE Smith)(Lepidoptera: Noctuidae) a insecticidas asociada a césped en Quintana Roo, México
.
Agrociencia
.
46
:
279
287
.

Leite
,
N. A.
,
S. M.
Mendes
,
O. F.
Santos-Amaya
,
C. A.
Santos
,
T. P. M.
Teixeira
,
R. N. C.
Guedes
, and
E. J.
Pereira
.
2016
.
Rapid selection and characterization of Cry1F resistance in a Brazilian strain of fall armyworm
.
Entomol. Exp. Appl
.
158
:
236
247
.

Lamsal
,
S.
,
S.
Sibi
, and
S.
Yadav
.
2020
.
Fall armyworm in South Asia: threats and management.
Asian J. Adv. Agric. Res
.
13
:
21
34
.

Li
,
Q.
,
M.
Jin
,
S.
Yu
,
Y.
Cheng
,
Y.
Shan
,
P.
Wang
,
H.
Yuan
, and
Y.
Xiao
.
2022
.
Knockout of the ABCB1 gene increases susceptibility to emamectin benzoate, beta-cypermethrin and chlorantraniliprole in Spodoptera frugiperda
.
Insects
.
13
:
137
.

Luginbill
,
P.
1928
.
The Fall Armyworm
.
United States Department of Agriculture
,
Washington, DC, USA
.

Lv
,
C. S.
,
Y.
Shi
,
J. -C.
Zhang
,
P.
Liang
,
L.
Zhang
, and
X. -W.
Gao
.
2021
.
Detection of ryanodine receptor target-site mutations in diamide insecticide-resistant Spodoptera frugiperda in China
.
Insect Sci
.
28
:
639
648
.

MAAH.
2018
.
Lutte contre la chenille legionnaire d’automne au Burkina Faso (Campagne Agricole, 2018-2019).
Rapport Général - Ministère de l’Agriculture et des Aménagements Hydrauliques.
https://www.ippc.int/static/media/files/cn_publication/2019/05/15/Rapport_chenille_2018_vf.pdf

Maino
,
J. L.
,
R.
Schouten
,
K.
Overton
,
R.
Day
,
S.
Ekesi
,
B.
Bett
,
M.
Barton
,
P. C.
Gregg
,
P. A.
Umina
, and
O. L.
Reynolds
.
2021
.
Regional and seasonal activity predictions for fall armyworm in Australia.
Curr. Res. Insect Sci
.
1
:
100010
.

Makale
,
F.
,
I.
Mugambi
,
M. K.
Kansiime
,
I.
Yuka
,
M.
Abang
,
B. S.
Lechina
,
M.
Rampeba
, and
I.
Rwomushana
.
2021
.
Fall armyworm in Botswana: impacts, farmer management practices and implications for sustainable pest management
.
Pest Manag. Sci
.
78
:
1060
1070
.

Makgoba
,
M. C.
,
P. P.
Tshikhudo
,
L. R.
Nnzeru
, and
R. A.
Makhado
.
2021
.
Impact of fall armyworm (Spodoptera frugiperda) (J.E. Smith) on small-scale maize farmers and its control strategies in the Limpopo province, South Africa
.
Jàmbá: J. Disaster Risk Stud
.
13
:
a1016
.

McCaffery
,
A.
, and
R.
Nauen
.
2006
.
The insecticide resistance action committee (IRAC); Public responsibility and enlightened industrial self-interest
.
Outl. Pest Manag
.
7
:
11
14
.

McGrath
,
D. M.
,
J. E.
Huesing
,
P. C.
Jepson
,
V. M.
Peschke
,
B. M.
Prasanna
, and
T. J.
Krupnik
.
2021
.
Fall armyworm scouting, action thresholds, and monitoring. Chapter 2
, In
B.M.
Prasanna
,
J. E.
Huesing
,
V. M.
Peschke
,
R.
Eddy
(eds),
Fall Armyworm in Asia: a guide for integrated pest management
.
Mexico
,
CDMX: CIMMYT
.

Midega
,
C. A. O.
,
J. O.
Pittchar
,
J. A.
Pickett
,
G. W.
Hailu
, and
Z. R.
Khan
.
2018
.
A climate-adapted push-pull system effectively controls fall armyworm, Spodoptera frugiperda (J E Smith), in maize in East Africa
.
Crop Prot
.
105
:
10
15
.

Mink
,
J. S.
, and
R. G.
Luttrell
.
1989
.
Mortality of fall armyworm (Lepidoptera: Noctuidae) eggs, larvae, and adults exposed to several insecticides on cotton
.
J. Entomol. Sci
.
24
:
563
571
.

Montezano
,
D. G.
,
A.
Specht
,
D. R.
Sosa-Gómez
,
V. F.
Roque-Specht
,
J. C.
Sousa-Silva
,
S. V.
Paula-Moraes
,
J. A.
Peterson
, and
T. E.
Hunt
.
2018
.
Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas
.
Afr. Entomol
.
26
:
286
300
.

Morrill
,
W.
, and
G. L.
Greene
.
1973
.
Distribution of fall armyworm larvae. 1. Regions of field corn plants infested by larvae
.
Environ. Entomol
.
2
:
195
198
.

Mota-Sanchez
,
D.
, and
J.
Wise
.
2017
.
Arthropod pesticide resistance database
.
Michigan State University
. https://www.pesticideresistance.org/

Murray
,
K.
,
P.C.
Jepson
, and
M.
Chaola
2019
.
Fall armyworm management by maize smallholders in Malawi: an integrated pest management strategic plan
. February,
2019
. https://repository.cimmyt.org/bitstream/handle/10883/20170/60695.pdf?sequence=1&isAllowed=y [Accessed 6
January 2020
].

Mutyambai
,
D. M.
,
S.
Niassy
,
P. -A.
Calatayud
, and
S.
Subramanian
.
2022
.
Agronomic factors influencing fall armyworm (Spodoptera frugiperda) infestation and damage and its co-occurrence with stemborers in maize cropping systems in Kenya
.
Insects
.
13
:
266
.

Nagoshi
,
R. N.
,
N. N.
Htain
,
D.
Boughton
,
L.
Zhang
,
Y.
Xiao
,
B. Y.
Nagoshi
, and
D.
Mota-Sanchez
.
2020
.
Southeastern Asia fall armyworms are closely related to populations in Africa and India, consistent with common origin and recent migration
.
Sci. Rep
.
10
:
1
10
.

Nagoshi
,
R. N.
,
G.
Goergen
,
D.
Koffi
,
K.
Agboka
,
A. K. M.
Adjevi
,
H.
Du Plessis
,
J.
Van den Berg
,
G. P.
Tepa-Yotto
,
W. K.
Winsou
,
R. L.
Meagher
, and
T.
Brevault
.
2022
.
Genetic studies of fall armyworm indicate a new introduction into Africa and identify limits to its migratory behavior
.
Sci. Rep
.
12
:
1941
.

Nagoshi
,
R. N.
,
G.
Goergen
,
K. A.
Tounou
,
K.
Agboka
,
D.
Koffi
, and
R. L.
Meagher
.
2018
.
Analysis of strain distribution, migratory potential, and invasion history of fall armyworm populations in northern Sub-Saharan Africa
.
Sci. Rep
.
8
:
1
10
.

Nagoshi
,
R. N.
,
G.
Goergen
,
H.
Du Plessis
,
J.
van den Berg
,
R.
Meagher.
2019
.
Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors
.
Sci. Rep
.
9
:
1
11
.

Nascimento
,
A. R. B.
,
J. R.
Farias
,
D.
Bernardi
,
R. J.
Horikoshi
, and
C.
Omoto
.
2016
.
Genetic basis of Spodoptera frugiperda (Lepidoptera: Noctuidae) resistance to the chitin synthesis inhibitor lufenuron
.
Pest Manag. Sci
.
72
:
810
815
.

Nboyine
,
J. A.
,
F.
Kusi
,
M.
Abudulai
,
B. K.
Badii
,
M.
Zakaria
,
G. B.
Adu
,
A.
Haruna
,
A.
Seidu
,
V.
Osei
,
S.
Alhassan,
et al. .
2020
.
A new pest, Spodoptera frugiperda (JE Smith), in tropical Africa: Its seasonal dynamics and damage in maize fields in northern Ghana
.
Crop Prot
.
127
:
104960
.

Njuguna
,
E.
,
P.
Nethononda
,
K.
Maredia
,
R.
Mbabazi
,
P.
Kachapulula
,
A.
Rowe
, and
D.
Ndolo
.
2021
.
Experiences and perspectives on Spodoptera frugiperda (Lepidoptera: Noctuidae) Management in Sub-Saharan Africa
.
J. Integr. Pest Manag
.
12
:
1
9
.

Ntiri
,
E. S.
,
P. A.
Calatayud
,
J.
Van den Berg
, and
B. P.
Le Ru
.
2019
.
Spatio-temporal interactions between maize lepidopteran stemborer communities and possible implications from the recent invasion of Spodoptera frugiperda (Lepidoptera: Noctuidae) in Sub-Saharan Africa
.
Environ. Entomol
.
48
:
573
582
.

Okuma
,
D. M.
,
D.
Bernardi
,
R. J.
Horikoshi
,
O.
Bernardi
,
A. P.
Silva
, and
C.
Omoto
.
2018
.
Inheritance and fitness costs of Spodoptera frugiperda (Lepidoptera: Noctuidae) resistance to spinosad in Brazil
.
Pest Manag. Sci
.
74
:
1441
1448
.

Oluwole
,
O.
, and
R. A.
Cheke
.
2009
.
Health and environmental impacts of pesticide use practices: a case study of farmers in Ekiti State, Nigeria
.
Int. J. Agric. Sustain
.
7
:
153
163
.

Osae
,
M. Y.
,
J. O.
Frimpong
,
J. O.
Sintim
,
B. K.
Offei
,
D.
Marri
, and
S. E. K.
Ofori
.
2022
.
Evaluation of different rates of Ampligo insecticide against fall armyworm (Spodoptera frugiperda (JE Smith); Lepidoptera: Noctuidae) in the Coastal Savannah Agroecological Zone of Ghana
.
Adv. Agric
22
:
1
14
. doi: 10.1155/2022/5059865

Otim
,
M. H.
,
K. K. M.
Fiaboe
,
J.
Akello
,
B.
Mudde
,
A. T.
Obonyom
,
A. Y.
Bruce
,
W. A.
Opio
,
P.
Chinwada
,
G.
Hauli
, and
P.
Paparu
.
2021
.
Managing a transboundary pest: the fall armyworm on maize in Africa
. http://dx.doi.org/10.5772/intechopen.96637

Overton
,
K.
,
J. L.
Maino
,
R.
Day
,
P. A.
Umina
,
B.
Bett
,
D.
Carnovale
,
S.
Ekesi
,
R.
Meagher
, and
O. L.
Reynolds
.
2021
.
Global crop impacts, yield losses and action thresholds for fall armyworm (Spodoptera frugiperda): A review
.
Crop Prot
.
145
:
105641
.

Pimentel
,
D.
1995
.
Amounts of pesticides reaching target pests: Environmental impacts and ethics.
J. Agric. Environ. Ethics
.
8
:
17
29
.

Pitre
,
H. N.
1986
.
Chemical control of the fall armyworm (Lepidoptera: Noctuidae): an update
.
Fla. Entomol
.
69
:
570
578
.

Praat
,
J-P.
,
D.
Manktelow
,
D. M.
Suckling
, and
J.
Maber
.
1996
.
Can application technology help to manage pesticide resistance?
pp.
177
182
. In Proceedings of the 49th New Zealand Plant Protection Conference,
1996
. http://www.hortnet.co.nz/publications/nzpps/journal/49/nzpp49-177.pdf

Qi
,
G. J.
,
D. C.
Huang
,
L.
Wang
,
Y. P.
Zhang
,
X. H.
Xiao
,
Q. X.
Sh
,
Y.
Xiao
,
X. N.
Su
,
S. H.
Huang
,
S. F.
Zou
, et al. .
2020
.
The occurrence characteristic in winter and year-round breeding region of the fall armyworm, Spodoptera frugiperda (J. E. Smith) in Guangdong Province
.
J.Environ. Entomol
.
42
:
573
582
.

Resende
,
D. C.
,
S. M.
Mendes
,
R. C.
Marucci
,
A. D. C.
Silva
,
M. M.
Campanha
, and
J. M.
Waquil
.
2016
.
Does Bt maize cultivation affect the non-target insect community in the agro ecosystem?
Rev. Brasil. Entomol
.
60
:
82
93
.

Ribeiro
,
L. P.
,
S. T.
Dequech
,
C.
Camera
,
V. S.
Sturza
,
S.
Poncio
, and
J. D.
Vendramim
.
2014
.
Vertical and temporal distribution of Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) egg masses, parasitized and non-parasitized, on maize plants
.
Maydica
.
59
:
315
320
.

Rose
,
A. H.
,
R. H.
Silversides
, and
O. H.
Lindquist
.
1975
.
Migration flight by an aphid, Rhopalosiphum maidis (Hemiptera: Aphididae), and a noctuid, Spodoptera frugiperda (Lepidoptera: Noctuidae)
.
Can. Entomol
.
107
:
567
576
.

Roush
,
R.
1989
.
Designing resistance management programs: how can you choose?
Pestic. Sci
.
26
:
423
440
.

Rwomushana
,
I.
,
M.
Bateman
,
T.
Beale
,
P.
Beseh
,
K.
Cameron
,
M.
Chiluba
,
V.
Clottey
,
T.
Davis
,
R.
Day
,
R.
Early
, et al.
2018
.
Fall armyworm: impacts and implications for Africa
.
CABI
. https://www.invasive-species.org/wp-content/uploads/sites/2/2019/02/FAW-Evidence-Note-October-2018.pdf

Santos-Amaya
,
O. F.
,
J. V. C.
Rodrigues
,
T. C.
Souza
,
C. S.
Tavares
,
S. O.
Campos
,
R. N. C.
Guedes
, and
E. J. G.
Pereira
.
2015
.
Resistance to dual-gene Bt maize in Spodoptera frugiperda: selection, inheritance, and cross-resistance to other transgenic events
.
Sci. Rep
.
5
:
1
10
.

Sisay
,
B.
,
J.
Simiyu
,
P.
Malusi
,
P.
Likhayo
,
E.
Mendesil
,
N.
Elibariki
,
M.
Wakgari
,
G.
Ayalew
, and
T.
Tefera
.
2018
.
First report of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), natural enemies from Africa
.
J. Appl. Entomol
.
142
:
800
804
.

Sisay
,
B.
,
T.
Tefera
,
M.
Wakgari
,
G.
Ayalew
, and
E.
Mendesil
.
2019
.
The efficacy of selected synthetic insecticides and botanicals against fall armyworm, Spodoptera frugiperda, in maize
.
Insects
.
10
:
1
14
.

Sokame
,
B. M.
,
B.
Musyoka
,
J.
Obonyo
,
F.
Rebaudo
,
E. M.
Abdel-Rahman
,
S.
Subramanian
,
D. C.
Kilalo
,
G.
Juma
, and
P. -A.
Calatayud
.
2021
.
Impact of an exotic invasive pest, Spodoptera frugiperda (Lepidoptera: Noctuidae), on resident communities of pest and natural enemies in maize fields in Kenya
.
Agronomy
.
11
:
1074
.

Sparks
,
A. N.
1979
.
A review of the biology of the fall armyworm.
Fla. Entomol
.
62
:
82
87
.

Sparks
,
T. C.
,
A. J.
Crossthwaite
,
R.
Nauen
,
S.
Banba
,
D.
Cordova
,
F.
Earley
,
U.
Ebbinghaus-Kintscher
,
S.
Fujioka
,
A.
Hirao
,
D.
Karmon
, et al. .
2020
.
Insecticides, biologics and nematicides: Updates to IRAC’s mode of action classification-A tool for resistance management
.
Pestic. Biochem. Physiol
.
167
:
104587
.

Sparks
,
T. C.
, and
R.
Nauen
.
2015
.
IRAC: Mode of action classification and insecticide resistance management
.
Pestic. Biochem. Physiol
.
21
:
122
128
.

Suguiyama
,
L.
,
S.
Haggblade
,
J. E.
Huesing
,
R.
Eddy
,
S. R.
Whiten
, and
D.
McGrath
.
2020
.
Pesticide emergency use authorization: an underutilized tool for controlling invasive pests in Africa. Feed the Future, Innovation Lab for Food Security Policy, Policy Research Brief 124
.
Michigan State University
,
Michigan, USA
.

Tabashnik
,
B. E.
, and
B. A.
Croft
.
1985
.
Evolution of pesticide resistance in apple pests and their natural enemies
.
Entomophaga
.
30
:
37
49
.

Tabashnik
,
B. E.
,
D.
Mota-Sanchez
,
M. E.
Whalon
,
M.
Hollingworth
, and
Y.
Carrière
.
2014
.
Defining terms for proactive management of resistance to Bt crops and pesticides
.
J. Econ. Entomol
.
107
:
496
507
.

Tambo
,
J. A.
,
M. K.
Kansiime
,
I.
Mugambi
,
I.
Rwomushana
,
M.
Kenis
,
R. K.
Day
, and
J.
Lamontagne-Godwin
.
2020a
.
Understanding smallholders’ responses to fall armyworm (Spodoptera frugiperda) invasion: evidence from five African countries
.
Sci. Total Environ
.
740
:
140015
.

Tambo
,
J. A.
,
R. K.
Day
,
J.
Lamontagne-Godwin
,
R.
Silvestri
,
P. K.
Beseh
,
B.
Oppong-Mensah
,
N. A.
Phiri
, and
M.
Matimelo
.
2020b
.
Tackling fall armyworm (Spodoptera frugiperda) outbreak in Africa: an analysis of farmers’ control actions
.
Int. J. Pest Manag
.
66
:
298
310
.

Tepa-Yotto
,
G. T.
,
P.
Chinwada
,
I.
Rwomushana
,
G.
Goergen
, and
S.
Subramanian
.
2022
.
Integrated management of Spodoptera frugiperda six years post-detection in Africa: a review
.
Curr. Opin. Insect Sci.
52
:
100928
.

Timilsena
,
B.
,
S.
Niassy
,
E.
Kimathi
,
E. M.
Abdel-Rahman
,
I.
Seidl-Adams
,
M.
Wamalwa
,
H. E. Z.
Tonnang
,
S.
Ekesi
,
D. P.
Hughes
,
E. G.
Rajotte
, et al. .
2022
.
Potential distribution of fall armyworm in Africa and beyond, considering climate change and irrigation patterns
.
Sci. Rep
.
12
:
539
.

Togola
,
A.
,
S.
Meseka
, and
A.
Menkir
.
2018
.
Measurement of pesticide residues from chemical control of the invasive Spodoptera frugiperda (Lepidoptera: Noctuidae) in a maize experimental field in Mokwa, Nigeria
.
Int. J. Environ. Res. Public Health
.
15
:
849
.

Van den Berg
,
J.
,
B.
Greyvenstein
, and
H.
Du Plessis
.
2022
.
Insect resistance management facing African smallholder farmers under climate change
.
Curr. Opin. Insect Sci.
50
:
100849
.

Van den Berg
,
J.
,
B. M.
Prasanna
,
C. A. O.
Midega
,
P. C.
Ronald
,
Y.
Carrière
, and
B. E.
Tabashnik
.
2021
.
Managing fall armyworm in Africa: Can Bt maize sustainably improve control?
J. Econ. Entomol
.
114
:
1934
1949
.

Van den Berg
,
J.
,
J. B. J.
Van Rensburg
, and
K. L.
Pringle
.
1991
.
Comparative injuriousness of Busseola fusca (Lepidoptera: Noctuidae) and Chilo partellus (Lepidoptera: Pyralidae) on grain sorghum
.
Bull. Entomol. Res
.
82
:
137
143
.

Visser
,
A.
, and
J.
Van den Berg
.
2020
.
Bigger, faster, stronger: implications of biology, competition and inter-species interactions within mixed populations of lepidopteran pests for Bt maize IRM in Africa
.
J. Integr. Pest Manag
.
11
:
1
21
.

Voss
,
G.
1988
.
Insecticide/acaricide resistance: Industry’s efforts and plans to cope
.
Pestic. Sci
.
23
:
149
156
.

Wan
,
J.
,
C.
Huang
,
C. Y.
Li
,
H. X.
Zhou
,
Y. L.
Ren
,
Z. Y.
Zy
,
L. S.
Xing
,
B.
Zhang
,
Q. I.
Xi
,
L. I.
Bo
, et al. .
2021
.
Biology, invasion and management of the agricultural invader: Fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae)
.
J. Integr. Agric
.
20
:
646
663
.

Wightman
,
J.
2018
.
Can lessons learned 30 years ago contribute to reducing the impact of the fall army worm Spodoptera frugiperda in Africa and India?
Outl. Agric
.
47
:
259
269
.

Williamson
,
S.
,
A.
Ball
, and
J.
Pretty
.
2008
.
Trends in pesticide use and drivers for safer pest management in four African countries
.
J. Crop Prot
.
27
:
1327
1334
.

Wood
,
K. A.
,
B. H.
Wilson
, and
J. B.
Graves
.
1981
.
Influence of host plant on the susceptibility of the fall armyworm to insecticides
.
J. Econ. Entomol
.
74
:
96
98
.

Wu
,
K. M.
2018
.
Development direction of crop pest control science and technology in China
.
J. Agric
.
8
:
35
38
. (In Chinese).

Wu
,
K. M.
2020
.
Management strategies of fall armyworm (Spodoptera frugiperda) in China
.
Plant Prot
.
46
:
1
5
. (In Chinese).

Xing
,
B.
,
L.
Yang
,
A.
Gulinuer
,
F.
Li
, and
S.
Wu
.
2022
.
Effect of pupal cold storage on reproductive performance of Microplitis manilae (Hymenoptera: Braconidae), a larval parasitoid of Spodoptera frugiperda (Lepidoptera: Noctuidae).
Insects
13
:
449
.

Yainna
,
S.
,
N.
Nègre
,
P. J.
Silvie
,
T.
Brévault
,
W. T.
Tay
,
K.
Gordon
,
E.
Dalençon
,
T.
Walsh
, and
K.
Nam
.
2021
.
Geographic monitoring of insecticide resistance mutations in native and invasive populations of the Fall armyworm
.
Insects
.
12
:
468
.

Yang
,
X.
,
K. A.
Wyckhuys
,
X.
Jia
,
F.
Nie
, and
K.
Wu
.
2021
.
Fall armyworm invasion heightens pesticide expenditure among Chinese smallholder farmers
.
J. Environ. Manag
.
282
:
111949
.

Young
,
J. R.
1979
.
Fall armyworm: control with insecticides
.
Fla. Entomol
.
62
:
130
133
.

Young
,
J. R.
, and
W. W.
McMillan
.
1979
.
Differential feeding by two strains of fall armyworm larvae on carbaryl treated surfaces
.
J. Econ. Entomol
.
72
:
202
203
.

Yu
,
S. J.
1983
.
Age variation in insecticide susceptibility and detoxification capacity of fall armyworm (Lepidoptera: Noctuidae) larvae
.
J. Econ. Entomol
.
76
:
219
222
.

Yu
,
S. J.
1991
.
Insecticide resistance in the fall armyworm, Spodoptera frugiperda (J. E. Smith)
.
Pestic. Biochem. Physiol
.
39
:
84
91
.

Yu
,
S. J.
1992
.
Detection and biochemical characterization of insecticide resistance in Fall Armyworm (Lepidoptera: Noctuidae)
.
J. Econ. Entomol
.
85
:
675
682
.

Yu
,
S. J.
,
S. N.
Nguyen
, and
G. E.
Abo-Elghar
.
2003
.
Biochemical characteristics of insecticide resistance in the fall armyworm, Spodoptera frugiperda (J.E. Smith)
.
Pestic. Biochem. Physiol
.
77
:
1
11
.

Zhang
,
L.
,
B.
Liu
,
W.
Zheng
,
C.
Liu
,
D.
Zhang
,
S.
Zhao
,
Z.
Li
,
P.
Xu
,
K.
Wilson
,
A.
Withers
, et al. .
2020
.
Genetic structure and insecticide resistance characteristics of fall armyworm populations invading China. Mol
.
Ecol. Res
.
20
:
1682
1696
.

Zhao
,
J. -Z.
,
H. T.
Collins
, and
A. M.
Shelton
.
2010
.
Testing insecticide resistance management strategies: mosaic versus rotations
.
Pest Manag. Sci
.
66
:
1101
1105
.

Zhou
,
Y.
,
Q. -L.
Wu
,
H. -W.
Zhang
, and
K. -M.
Wu
.
2021
.
Spread of invasive migratory pest Spodoptera frugiperda and management practices throughout China
.
J. Integr. Agric
,
20
:
637
645
.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://dbpia.nl.go.kr/pages/standard-publication-reuse-rights)