Abstract

Aims

Antimicrobial resistance in Pseudomonas aeruginosa represents a major global challenge in public and veterinary health, particularly from a One Health perspective. This study aimed to investigate antimicrobial resistance, the presence of virulence genes, and the genetic diversity of P. aeruginosa isolates from diverse sources.

Methods and results

The study utilized antimicrobial susceptibility testing, genomic analysis for resistance and virulence genes, and multilocus sequence typing to characterize a total of 737 P. aeruginosa isolates that were collected from humans, domestic animals, and aquatic environments in Northern Portugal. Antimicrobial resistance profiles were analyzed, and genomic approaches were employed to detect resistance and virulence genes. The study found a high prevalence of multidrug-resistant isolates, including high-risk clones such as ST244 and ST446, particularly in hospital sources and wastewater treatment plants. Key genes associated with resistance and virulence, including efflux pumps (e.g. MexA and MexB) and secretion systems (T3SS and T6SS), were identified.

Conclusions

This work highlights the intricate dynamics of multidrug-resistant P. aeruginosa across interconnected ecosystems in Northern Portugal. It underscores the importance of genomic studies in revealing the mechanisms of resistance and virulence, contributing to the broader understanding of resistance dynamics and informing future mitigation strategies.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://dbpia.nl.go.kr/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
You do not currently have access to this article.