Abstract

This study presents a novel approach for the state and output feedback exponential control of cascaded unstable ODE-wave equations with nonlinear boundary condition. The new approach can be also used to investigate the state and output feedback stabilization of other cascaded ODE-partial differential equation (PDE) systems with nonlinear boundary condition. The interconnection between the ODE and wave PDE with the nonlinear boundary is bi-directional at two points. First, an exponential controller is planned and the well-posed and exponential stability of the closed-loop system is derived. Next, an exponential observer is designed, whereby the exponential stability of the overall error system is shown. Then, an observer-based output feedback control that causes the overall real system to be exponentially stable is built. The existence and exponential stability of the solution to the overall closed-loop system are further deduced. Finally, simulation results are given to verify the effectiveness, feasibility and validity of the proposed technique.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://dbpia.nl.go.kr/pages/standard-publication-reuse-rights)
You do not currently have access to this article.