Abstract

In this work, we are interested in a class of numerical schemes for certain phase field models. It is well known that unconditional energy stability (energy decays in time regardless of the size of the time step) provides a fidelity check in practical numerical simulations. In recent work (Li, D. (2022b, Why large time-stepping methods for the Cahn–Hilliard equation is stable. Math. Comp., 91, 2501–2515)), a type of semi-implicit scheme for the Cahn–Hilliard (CH) equation with regular potential was developed satisfying the energy-decay property. In this paper, we extend such semi-implicit schemes to the Allen–Cahn equation and the fractional CH equation with a rigorous proof of similar energy stability. Models in two spatial dimensions are discussed.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://dbpia.nl.go.kr/pages/standard-publication-reuse-rights)
You do not currently have access to this article.