-
PDF
- Split View
-
Views
-
Cite
Cite
Melinda K Rostal, Janice E Liang, David Zimmermann, Roy Bengis, Janusz Paweska, William B Karesh, Rift Valley Fever: Does Wildlife Play a Role?, ILAR Journal, Volume 58, Issue 3, 2017, Pages 359–370, https://doi.org/10.1093/ilar/ilx023
- Share Icon Share
Abstract
Rift Valley fever (RVF) virus (RVFV) is an emerging vector-borne pathogen that causes sporadic epizootics and epidemics with multi-year, apparently quiescent, inter-epidemic periods. The epidemiology and ecology of the virus during these inter-epidemic periods is poorly understood. There is evidence for low-level circulation of the virus in livestock and wild ruminants; however, as of yet there is no evidence to identify a specific mammalian reservoir host. Using a systematic approach, this review synthesizes results from serosurveys, attempts at viral detection, and experimental infection of wildlife. These data demonstrate there is a gap in research conducted on RVF in wild ruminants. Specifically, there is very little published data on the pathogenicity of an RVFV infection in various wildlife species, validation of diagnostic assays for exposure to RVFV and understanding of epizootic or endemic disease dynamics in wild ruminants. We recommend that future research on RVFV incorporate a more systematic approach to understand the low-level cycling of the virus during inter-epidemic periods in both wild and domestic ruminant species.
Introduction
Rift Valley fever virus (RVFV) is a vector-borne pathogen that is known to affect multiple species, including wildlife, domestic ruminants, and people. Once confined to Africa, it has spread to the Arabian peninsula (Balkhy et al. 2003) and threatens other regions in the world where competent vectors exist (Turell et al. 2008). Despite a significant amount of research focused on periodic outbreaks, the role wildlife plays in the ecology of the virus continues to be undescribed, particularly whether or not there is a vertebrate reservoir host. The clinical epidemiology of the virus in wildlife is poorly represented in peer-reviewed literature (Davies and Karstad 1981), though anecdotal reports and international disease reporting (OIE 2008; ProMED mail 1999) have demonstrated that several wild ruminant species can have clinical signs, including abortion. This review seeks to use a systematic approach to compile literature relevant to the occurrence, clinical course, and ecology of RVFV in wildlife species. It synthesizes this information and recommends future directions for continued research of the virus in an ecological system that includes both wildlife and livestock.
Rvfv Vector Ecology
Mosquito vectors that transmit diseases are often heavily dependent on seasonal rainfall or localized water pools. Field and laboratory research focused on mosquitoes that can spread RVFV have identified two types of vectors. The first is a subset of floodwater Aedes spp mosquitoes that are hypothesized to transmit the virus transovarially (Linthicum et al. 1984; Swanepoel and Coetzer 2004). The eggs are desiccation resistant and believed to be able to survive long periods on the top of the soil until flooding occurs (Linthicum et al. 1985). During periods of abnormally high rainfall it is believed that transovarially infected Aedes mosquitoes hatch and initiate infection primarily in wildlife or domestic ruminants (Linthicum et al. 1984). Once a ruminant host is infected several mosquito species (particularly Culex spp) are capable of transmitting the virus horizontally and play an important role in the amplification and spread of the virus (Meegan et al. 1980). Some RVF outbreak prediction systems were developed based on environmental factors that may affect the hatching of Aedes eggs (Davies et al. 1985; Linthicum et al. 1999). Normalized difference vegetation index, precipitation, and temperature detected via remote sensing are used to predict the environmental conditions that the Aedes require for hatching (Anyamba et al. 2002). At least one outbreak of Rift Valley fever (RVF) has been accurately predicted in East Africa (Anyamba et al. 2006). However, predictions in other regions of Africa are not as accurate (Anyamba et al. 2010). The difficulty in predicting outbreaks using climate and vegetation variables indicates that RVFV is reliant on factors beyond those that predict vector abundances. These external factors may involve a single host reservoir and/or be related to a low-level transmission cycle including wild and domestic ruminant hosts. The ability of Aedes spp to be the sole reservoir for RVFV through transovarial transmission has yet to be demonstrated in a laboratory setting (no isolations from >3138 mosquitoes hatched from eggs laid by infected females [Turell et al. 2008]).
Reservoir Hosts and Systems
No mammalian maintenance hosts have been described for RVFV, although evidence of previous infection (Evans et al. 2008), clinical signs of infection (Davies and Karstad 1981), and, rarely, virus has been detected in wildlife (Capobianco Dondona et al. 2016). Olive et al. (Olive et al. 2012) define the qualities of a “good” reservoir host as a taxon that has an extended viremic period of sufficient viral titer to infect vectors with little or no clinical disease, a population with enough turnover to maintain a stable proportion of susceptible individuals, and that has regular contact with the vector population. In addition to considering a single host species or taxonomic group as the reservoir, it may be important to consider a multispecies framework (Haydon et al. 2002) that incorporates possible (non)maintenance host(s). A multispecies framework involves multiple populations of maintenance and nonmaintenance hosts, which are required for the persistence of the virus; if only one member of the community were to be present the virus would not be able to persist in the ecosystem (Haydon et al. 2002). Using this understanding of reservoir host(s) and systems and the current understanding of the vector ecology, the role of wildlife in the epidemiology of RVF is presented using a systematic approach to assess avenues for future research in wildlife.
Methods
A systematic literature search was conducted as follows: Web of Science and PubMed were queried using the search terms “Rift Valley Fever” and “Wildlife.” Duplicates were excluded, and titles and abstracts were then reviewed. Only publications that contained a reference to RVF and wildlife (or a specific species or taxa that are not domestic animals or mosquitoes) were considered topical, and only publications with an abstract that indicated it investigated the role or status of wildlife with respect to RVFV were included for full review. Finally, publications that did not provide new data (diagnostic, experimental, clinical cases, etc.) regarding the epidemiology of RVF in wildlife species were excluded (e.g., papers that anecdotally made a mention of wildlife being affected or playing a role in the ecology of the virus were excluded).
Given the difficulty in using more specific search terms (e.g., specifying species or genera for all wildlife species that may have been investigated), the references of each publication included for full review were examined and used to identify further references. This allowed the identification of additional publications surrounding a specific species or taxon, when the generic term wildlife was not used. For all papers, serological and testing results were summarized by species, country, and test type irrespective of location within a country or time period.
Results and Discussion
The systematic literature review yielded 84 publications from Web of Science and 136 records from PubMed. Of the 220 records, 38 were duplicates and 90 were excluded as nontopical, and a further 21 records were excluded from full review as nonrelevant. A total 61 records were included in the full review. Following full review, 34 additional publications were excluded for not providing new data regarding epidemiology of RVF in wildlife, were non-English, or were not available to the authors. However, all 61 records were utilized to identify additional references. An additional 85 articles were identified based on references and 30 were included in the full review. In total 57 records were included; there were two additional unpublished sources that were included as they had pertinent results to this review.
Rvfv in Free-Ranging Wildlife
The methods used to investigate RVFV in wildlife have varied greatly between publications, making direct comparison and/or summary statistics difficult to assess. Considering this, we will briefly review various diagnostic assays that can be used and will be discussed below. The World Organisation for Animal Health (OIE) determines international trade standards for terrestrial animals as well as reporting requirements for internationally important diseases (including RVF). The OIE permits the following assays for RVF (OIE 2009):
Virus culture
Agar gel immunodiffusion
Real-time polymerase chain reaction (RT-PCR) assay
Histopathology with immunostaining
Virus neutralization assays including: microneutralization, plaque, reduction neutralization and neutralization in mice. Virus neutralization tests (VNTs) are the prescribed test for international trade.
The following tests are described in the OIE Terrestrial Manual, which may also be conducted, but are not considered prescribed tests for international trade (OIE 2009):
ELISAs: An indirect IgG ELISA based on a whole or recombinant nucleocapsid protein as antigen and an IgM-capture ELISA for diagnosis of recent infection (OIE 2016).
There are several other ELISAs that have been published, including: inhibition ELISA based on a whole antigen detecting either or both IgG and IgM (total antibodies) (Ellis et al. 2014; Paweska et al. 2005) and IgG sandwich ELISA (Paweska et al. 2003a), among many others. Generally hemagglutination inhibition, complement fixation, agar immunodiffusion, and radioimmunoassays are no longer used (OIE 2016). The ELISAs mentioned above depend on detecting host antibodies that bind to recombinant or whole viral antigen. Species-specific differences in antibody creation and other hematological analytes can impact the accuracy of the serological test (OIE 2013). This type of species-dependent interference could cause a significant change in either false-negative or false-positive results by a given test (OIE 2013). Without validation of ELISAs by species, the accuracy of the results remains difficult to interpret. Only limited validation data have been published for the use of ELISA-based assays in wildlife (Paweska et al. 2005, 2003b, 2008, 2010). Neutralization tests are considered the gold standard (OIE 2009). These assays can be very costly and require BSL-3 facilities to work with the live virus, as well as a source of live virus for the assay. The ELISA and hemagglutination tests have been also commonly used in the studies discussed below; however, the lack of validation for wildlife species make their results difficult to interpret.
This review will focus on the results of the neutralization assay-based serosurveys (Table 1), with the other serological assays being included in the Supplementary Information (SI) Table for thoroughness. Performing neutralization assays requires experienced laboratories, since the test methodology is complex and test results dependent on well-standardized in vitro and/or in vivo systems and the reference virus used for the assay. With this understanding, and not accounting for geographic location, time relative to the most recent outbreak, or age of the host (all of which will affect the apparent prevalence), it can still be useful to compare serological results across studies to direct future work toward species that may be affected by RVF and/or may play a role in maintenance of RVFV. Table 1 contains results from species that have had a sample size (cross-study) of at least 60 individuals and used a neutralization assay or rodent inoculation assay for the presence of RVFV antibodies. Cross-study sample sizes range from 60 to 2394 and apparent prevalences range from 0 to 0.65 (Table 1). Of the 29 species that had a cumulative sample size >60, seven (27%) had no antibodies detected and five (17%) had an apparent seroprevalence >10% (Table 1). Additionally, nine other species had a seroprevalence >10% and sample sizes ≧10 individuals (see SI Table). Interpretation of serological data can be nuanced, as it simply identifies exposure and no inferences can be made as to the likelihood of a species being clinically affected by RVFV. Seropositive results may indicate the species acts as a reservoir host; or has high contact rates with vectors. However, regardless of the reason for exposure to RVFV, these data indicate that the species mentioned above and/or habitats these species prefer should be further investigated to understand RVFV ecology and epidemiology.
Species . | Family . | Countries . | Total sampled . | Positive VNT . | Positive Protective titer* . | Total positive . | Percent positive . | Citation . |
---|---|---|---|---|---|---|---|---|
Syncerus caffer | Bovidae | Botswana, Kenya, South Africa, Uganda | 2470 | 1155 | 1155 | 47 | (Beechler et al. 2015a, 2015b; Davies 1975; Davies and Karstad 1981; Evans et al. 2008; Fagbo et al. 2014; Jori et al. 2015; Paweska et al. 2005, 2008; J. Paweska, unpublished) | |
Mastomys natalensis | Muridae | Senegal, South Africa, Zimbabwe | 1130 | 2 | 2 | 0.2 | (Davis 1957; Gora et al. 2000; Pretorius et al. 1997; Swanepoel et al. 1978) | |
Aepyceros melampus | Bovidae | Kenya, South Africa | 380 | 14 | 0 | 14 | 4 | (Davies 1975; Evans et al. 2008; Paweska et al. 2010) |
Giraffa camelopardalis | Giraffidae | Kenya, South Africa | 245 | 3 | 3 | 1 | (Evans et al. 2008; J. Paweska, unpublished) | |
Hippotragus spp. | Bovidae | South Africa | 230 | 13 | 13 | 6 | (J. Paweska, unpublished) | |
Arvicanthis niloticus | Muridae | Senegal, Uganda | 184 | 6 | 6 | 3 | (Gora et al. 2000; Henderson et al. 1972) | |
Phacochoerus africanus | Suidae | Kenya, South Africa | 158 | 8 | 8 | 5 | (Evans et al. 2008; Paweska et al. 2010) | |
Loxodonta africana | Elephantidae | Kenya | 156 | 9 | 9 | 6 | (Evans et al. 2008; Paweska et al. 2010) | |
Panthera leo | Felidae | Kenya, South Africa, Tanzania | 147 | 12 | 12 | 8 | (Evans et al. 2008; House et al. 1996) | |
Eudorcas thomsonii | Bovidae | Kenya | 140 | 7 | 1 | 8 | 6 | (Davies 1975; Evans et al. 2008) |
Hippotragus equinus | Bovidae | South Africa | 132 | 6 | 6 | 5 | (J. Paweska, unpublished) | |
Equus quagga | Equidae | Kenya, South Africa | 126 | 1 | 1 | 0.8 | (Evans et al. 2008; Paweska et al. 2010) | |
Damaliscus lunatus | Bovidae | Kenya, South Africa | 122 | 3 | 3 | 2 | (Davies 1975; J. Paweska, unpublished) | |
Rhabdomys pumilio | Muridae | East Africa, South Africa, Zimbabwe | 116 | 0 | 0 | 0 | 0 | (Gear et al. 1955; Scott and Heisch 1959;,Swanepoel et al. 1978) |
Kobus ellipsiprymnus | Bovidae | Kenya, South Africa | 105 | 11 | 1 | 1 | 9 | (Davies 1975; Evans et al. 2008) |
Aethomys chrysophilus | Muridae | South Africa, Zimbabwe | 101 | 0 | 0 | 0 | (Davis 1957; Swanepoel et al. 1978) | |
Connochaetes taurinus | Bovidae | Kenya, South Africa | 97 | 1 | 2 | 3 | 3 | (Davies 1975; Evans et al. 2008; J. Paweska, unpublished) |
Gerbilliscus leucogaster | Muridae | Zimbabwe | 93 | 0 | 0 | 0 | (Swanepoel et al. 1978) | |
Tragelaphus oryx | Bovidae | Kenya, South Africa | 87 | 3 | 0 | 3 | 3 | (Davies 1975; Evans et al. 2008; Paweska et al. 2010) |
Otomys angoniensis | Muridae | East Africa | 85 | 0 | 0 | 0 | (Scott and Heisch 1959) | |
Mastomys erythroleucus | Muridae | Senegal | 84 | 2 | 2 | 2 | (Gora et al. 2000) | |
Equus greyvi | Equidae | Kenya, South Africa | 78 | 1 | 1 | 1 | (Paweska et al. 2010) | |
Ploceus weynsi | Ploeceidae | Kenya | 76 | 0 | 0 | 0 | (Davies and Addy 1979) | |
Tragelaphus spp. | Bovidae | Kenya, South Africa | 73 | 7 | 7 | 10 | (Paweska et al. 2010) | |
Lophuromys aquilus | Muridae | East Africa | 73 | 0 | 0 | 0 | (Scott and Heisch 1959) | |
Aethomys namaquensis | Muridae | South Africa | 72 | 47 | 47 | 65 | (Pretorius et al. 1997) | |
Alcelaphus buselaphus | Bovidae | Kenya, South Africa | 68 | 0 | 1 | 1 | 1 | (Davies and Addy 1979; Evans et al. 2008; J. Paweska, unpublished) |
Antidorcas marsupialis | Bovidae | South Africa | 62 | 11 | 11 | 18 | (J. Paweska, unpublished) | |
Acinonyx jubatus | Felidae | Tanzania | 60 | 0 | 0 | 0 | (House et al. 1996) |
Species . | Family . | Countries . | Total sampled . | Positive VNT . | Positive Protective titer* . | Total positive . | Percent positive . | Citation . |
---|---|---|---|---|---|---|---|---|
Syncerus caffer | Bovidae | Botswana, Kenya, South Africa, Uganda | 2470 | 1155 | 1155 | 47 | (Beechler et al. 2015a, 2015b; Davies 1975; Davies and Karstad 1981; Evans et al. 2008; Fagbo et al. 2014; Jori et al. 2015; Paweska et al. 2005, 2008; J. Paweska, unpublished) | |
Mastomys natalensis | Muridae | Senegal, South Africa, Zimbabwe | 1130 | 2 | 2 | 0.2 | (Davis 1957; Gora et al. 2000; Pretorius et al. 1997; Swanepoel et al. 1978) | |
Aepyceros melampus | Bovidae | Kenya, South Africa | 380 | 14 | 0 | 14 | 4 | (Davies 1975; Evans et al. 2008; Paweska et al. 2010) |
Giraffa camelopardalis | Giraffidae | Kenya, South Africa | 245 | 3 | 3 | 1 | (Evans et al. 2008; J. Paweska, unpublished) | |
Hippotragus spp. | Bovidae | South Africa | 230 | 13 | 13 | 6 | (J. Paweska, unpublished) | |
Arvicanthis niloticus | Muridae | Senegal, Uganda | 184 | 6 | 6 | 3 | (Gora et al. 2000; Henderson et al. 1972) | |
Phacochoerus africanus | Suidae | Kenya, South Africa | 158 | 8 | 8 | 5 | (Evans et al. 2008; Paweska et al. 2010) | |
Loxodonta africana | Elephantidae | Kenya | 156 | 9 | 9 | 6 | (Evans et al. 2008; Paweska et al. 2010) | |
Panthera leo | Felidae | Kenya, South Africa, Tanzania | 147 | 12 | 12 | 8 | (Evans et al. 2008; House et al. 1996) | |
Eudorcas thomsonii | Bovidae | Kenya | 140 | 7 | 1 | 8 | 6 | (Davies 1975; Evans et al. 2008) |
Hippotragus equinus | Bovidae | South Africa | 132 | 6 | 6 | 5 | (J. Paweska, unpublished) | |
Equus quagga | Equidae | Kenya, South Africa | 126 | 1 | 1 | 0.8 | (Evans et al. 2008; Paweska et al. 2010) | |
Damaliscus lunatus | Bovidae | Kenya, South Africa | 122 | 3 | 3 | 2 | (Davies 1975; J. Paweska, unpublished) | |
Rhabdomys pumilio | Muridae | East Africa, South Africa, Zimbabwe | 116 | 0 | 0 | 0 | 0 | (Gear et al. 1955; Scott and Heisch 1959;,Swanepoel et al. 1978) |
Kobus ellipsiprymnus | Bovidae | Kenya, South Africa | 105 | 11 | 1 | 1 | 9 | (Davies 1975; Evans et al. 2008) |
Aethomys chrysophilus | Muridae | South Africa, Zimbabwe | 101 | 0 | 0 | 0 | (Davis 1957; Swanepoel et al. 1978) | |
Connochaetes taurinus | Bovidae | Kenya, South Africa | 97 | 1 | 2 | 3 | 3 | (Davies 1975; Evans et al. 2008; J. Paweska, unpublished) |
Gerbilliscus leucogaster | Muridae | Zimbabwe | 93 | 0 | 0 | 0 | (Swanepoel et al. 1978) | |
Tragelaphus oryx | Bovidae | Kenya, South Africa | 87 | 3 | 0 | 3 | 3 | (Davies 1975; Evans et al. 2008; Paweska et al. 2010) |
Otomys angoniensis | Muridae | East Africa | 85 | 0 | 0 | 0 | (Scott and Heisch 1959) | |
Mastomys erythroleucus | Muridae | Senegal | 84 | 2 | 2 | 2 | (Gora et al. 2000) | |
Equus greyvi | Equidae | Kenya, South Africa | 78 | 1 | 1 | 1 | (Paweska et al. 2010) | |
Ploceus weynsi | Ploeceidae | Kenya | 76 | 0 | 0 | 0 | (Davies and Addy 1979) | |
Tragelaphus spp. | Bovidae | Kenya, South Africa | 73 | 7 | 7 | 10 | (Paweska et al. 2010) | |
Lophuromys aquilus | Muridae | East Africa | 73 | 0 | 0 | 0 | (Scott and Heisch 1959) | |
Aethomys namaquensis | Muridae | South Africa | 72 | 47 | 47 | 65 | (Pretorius et al. 1997) | |
Alcelaphus buselaphus | Bovidae | Kenya, South Africa | 68 | 0 | 1 | 1 | 1 | (Davies and Addy 1979; Evans et al. 2008; J. Paweska, unpublished) |
Antidorcas marsupialis | Bovidae | South Africa | 62 | 11 | 11 | 18 | (J. Paweska, unpublished) | |
Acinonyx jubatus | Felidae | Tanzania | 60 | 0 | 0 | 0 | (House et al. 1996) |
*Serum from the sampled animal was inoculated into a mouse and was protective against a challenge with RVFV. Percent positive was calculated by combining all reports for that species across countries and time.
Species . | Family . | Countries . | Total sampled . | Positive VNT . | Positive Protective titer* . | Total positive . | Percent positive . | Citation . |
---|---|---|---|---|---|---|---|---|
Syncerus caffer | Bovidae | Botswana, Kenya, South Africa, Uganda | 2470 | 1155 | 1155 | 47 | (Beechler et al. 2015a, 2015b; Davies 1975; Davies and Karstad 1981; Evans et al. 2008; Fagbo et al. 2014; Jori et al. 2015; Paweska et al. 2005, 2008; J. Paweska, unpublished) | |
Mastomys natalensis | Muridae | Senegal, South Africa, Zimbabwe | 1130 | 2 | 2 | 0.2 | (Davis 1957; Gora et al. 2000; Pretorius et al. 1997; Swanepoel et al. 1978) | |
Aepyceros melampus | Bovidae | Kenya, South Africa | 380 | 14 | 0 | 14 | 4 | (Davies 1975; Evans et al. 2008; Paweska et al. 2010) |
Giraffa camelopardalis | Giraffidae | Kenya, South Africa | 245 | 3 | 3 | 1 | (Evans et al. 2008; J. Paweska, unpublished) | |
Hippotragus spp. | Bovidae | South Africa | 230 | 13 | 13 | 6 | (J. Paweska, unpublished) | |
Arvicanthis niloticus | Muridae | Senegal, Uganda | 184 | 6 | 6 | 3 | (Gora et al. 2000; Henderson et al. 1972) | |
Phacochoerus africanus | Suidae | Kenya, South Africa | 158 | 8 | 8 | 5 | (Evans et al. 2008; Paweska et al. 2010) | |
Loxodonta africana | Elephantidae | Kenya | 156 | 9 | 9 | 6 | (Evans et al. 2008; Paweska et al. 2010) | |
Panthera leo | Felidae | Kenya, South Africa, Tanzania | 147 | 12 | 12 | 8 | (Evans et al. 2008; House et al. 1996) | |
Eudorcas thomsonii | Bovidae | Kenya | 140 | 7 | 1 | 8 | 6 | (Davies 1975; Evans et al. 2008) |
Hippotragus equinus | Bovidae | South Africa | 132 | 6 | 6 | 5 | (J. Paweska, unpublished) | |
Equus quagga | Equidae | Kenya, South Africa | 126 | 1 | 1 | 0.8 | (Evans et al. 2008; Paweska et al. 2010) | |
Damaliscus lunatus | Bovidae | Kenya, South Africa | 122 | 3 | 3 | 2 | (Davies 1975; J. Paweska, unpublished) | |
Rhabdomys pumilio | Muridae | East Africa, South Africa, Zimbabwe | 116 | 0 | 0 | 0 | 0 | (Gear et al. 1955; Scott and Heisch 1959;,Swanepoel et al. 1978) |
Kobus ellipsiprymnus | Bovidae | Kenya, South Africa | 105 | 11 | 1 | 1 | 9 | (Davies 1975; Evans et al. 2008) |
Aethomys chrysophilus | Muridae | South Africa, Zimbabwe | 101 | 0 | 0 | 0 | (Davis 1957; Swanepoel et al. 1978) | |
Connochaetes taurinus | Bovidae | Kenya, South Africa | 97 | 1 | 2 | 3 | 3 | (Davies 1975; Evans et al. 2008; J. Paweska, unpublished) |
Gerbilliscus leucogaster | Muridae | Zimbabwe | 93 | 0 | 0 | 0 | (Swanepoel et al. 1978) | |
Tragelaphus oryx | Bovidae | Kenya, South Africa | 87 | 3 | 0 | 3 | 3 | (Davies 1975; Evans et al. 2008; Paweska et al. 2010) |
Otomys angoniensis | Muridae | East Africa | 85 | 0 | 0 | 0 | (Scott and Heisch 1959) | |
Mastomys erythroleucus | Muridae | Senegal | 84 | 2 | 2 | 2 | (Gora et al. 2000) | |
Equus greyvi | Equidae | Kenya, South Africa | 78 | 1 | 1 | 1 | (Paweska et al. 2010) | |
Ploceus weynsi | Ploeceidae | Kenya | 76 | 0 | 0 | 0 | (Davies and Addy 1979) | |
Tragelaphus spp. | Bovidae | Kenya, South Africa | 73 | 7 | 7 | 10 | (Paweska et al. 2010) | |
Lophuromys aquilus | Muridae | East Africa | 73 | 0 | 0 | 0 | (Scott and Heisch 1959) | |
Aethomys namaquensis | Muridae | South Africa | 72 | 47 | 47 | 65 | (Pretorius et al. 1997) | |
Alcelaphus buselaphus | Bovidae | Kenya, South Africa | 68 | 0 | 1 | 1 | 1 | (Davies and Addy 1979; Evans et al. 2008; J. Paweska, unpublished) |
Antidorcas marsupialis | Bovidae | South Africa | 62 | 11 | 11 | 18 | (J. Paweska, unpublished) | |
Acinonyx jubatus | Felidae | Tanzania | 60 | 0 | 0 | 0 | (House et al. 1996) |
Species . | Family . | Countries . | Total sampled . | Positive VNT . | Positive Protective titer* . | Total positive . | Percent positive . | Citation . |
---|---|---|---|---|---|---|---|---|
Syncerus caffer | Bovidae | Botswana, Kenya, South Africa, Uganda | 2470 | 1155 | 1155 | 47 | (Beechler et al. 2015a, 2015b; Davies 1975; Davies and Karstad 1981; Evans et al. 2008; Fagbo et al. 2014; Jori et al. 2015; Paweska et al. 2005, 2008; J. Paweska, unpublished) | |
Mastomys natalensis | Muridae | Senegal, South Africa, Zimbabwe | 1130 | 2 | 2 | 0.2 | (Davis 1957; Gora et al. 2000; Pretorius et al. 1997; Swanepoel et al. 1978) | |
Aepyceros melampus | Bovidae | Kenya, South Africa | 380 | 14 | 0 | 14 | 4 | (Davies 1975; Evans et al. 2008; Paweska et al. 2010) |
Giraffa camelopardalis | Giraffidae | Kenya, South Africa | 245 | 3 | 3 | 1 | (Evans et al. 2008; J. Paweska, unpublished) | |
Hippotragus spp. | Bovidae | South Africa | 230 | 13 | 13 | 6 | (J. Paweska, unpublished) | |
Arvicanthis niloticus | Muridae | Senegal, Uganda | 184 | 6 | 6 | 3 | (Gora et al. 2000; Henderson et al. 1972) | |
Phacochoerus africanus | Suidae | Kenya, South Africa | 158 | 8 | 8 | 5 | (Evans et al. 2008; Paweska et al. 2010) | |
Loxodonta africana | Elephantidae | Kenya | 156 | 9 | 9 | 6 | (Evans et al. 2008; Paweska et al. 2010) | |
Panthera leo | Felidae | Kenya, South Africa, Tanzania | 147 | 12 | 12 | 8 | (Evans et al. 2008; House et al. 1996) | |
Eudorcas thomsonii | Bovidae | Kenya | 140 | 7 | 1 | 8 | 6 | (Davies 1975; Evans et al. 2008) |
Hippotragus equinus | Bovidae | South Africa | 132 | 6 | 6 | 5 | (J. Paweska, unpublished) | |
Equus quagga | Equidae | Kenya, South Africa | 126 | 1 | 1 | 0.8 | (Evans et al. 2008; Paweska et al. 2010) | |
Damaliscus lunatus | Bovidae | Kenya, South Africa | 122 | 3 | 3 | 2 | (Davies 1975; J. Paweska, unpublished) | |
Rhabdomys pumilio | Muridae | East Africa, South Africa, Zimbabwe | 116 | 0 | 0 | 0 | 0 | (Gear et al. 1955; Scott and Heisch 1959;,Swanepoel et al. 1978) |
Kobus ellipsiprymnus | Bovidae | Kenya, South Africa | 105 | 11 | 1 | 1 | 9 | (Davies 1975; Evans et al. 2008) |
Aethomys chrysophilus | Muridae | South Africa, Zimbabwe | 101 | 0 | 0 | 0 | (Davis 1957; Swanepoel et al. 1978) | |
Connochaetes taurinus | Bovidae | Kenya, South Africa | 97 | 1 | 2 | 3 | 3 | (Davies 1975; Evans et al. 2008; J. Paweska, unpublished) |
Gerbilliscus leucogaster | Muridae | Zimbabwe | 93 | 0 | 0 | 0 | (Swanepoel et al. 1978) | |
Tragelaphus oryx | Bovidae | Kenya, South Africa | 87 | 3 | 0 | 3 | 3 | (Davies 1975; Evans et al. 2008; Paweska et al. 2010) |
Otomys angoniensis | Muridae | East Africa | 85 | 0 | 0 | 0 | (Scott and Heisch 1959) | |
Mastomys erythroleucus | Muridae | Senegal | 84 | 2 | 2 | 2 | (Gora et al. 2000) | |
Equus greyvi | Equidae | Kenya, South Africa | 78 | 1 | 1 | 1 | (Paweska et al. 2010) | |
Ploceus weynsi | Ploeceidae | Kenya | 76 | 0 | 0 | 0 | (Davies and Addy 1979) | |
Tragelaphus spp. | Bovidae | Kenya, South Africa | 73 | 7 | 7 | 10 | (Paweska et al. 2010) | |
Lophuromys aquilus | Muridae | East Africa | 73 | 0 | 0 | 0 | (Scott and Heisch 1959) | |
Aethomys namaquensis | Muridae | South Africa | 72 | 47 | 47 | 65 | (Pretorius et al. 1997) | |
Alcelaphus buselaphus | Bovidae | Kenya, South Africa | 68 | 0 | 1 | 1 | 1 | (Davies and Addy 1979; Evans et al. 2008; J. Paweska, unpublished) |
Antidorcas marsupialis | Bovidae | South Africa | 62 | 11 | 11 | 18 | (J. Paweska, unpublished) | |
Acinonyx jubatus | Felidae | Tanzania | 60 | 0 | 0 | 0 | (House et al. 1996) |
*Serum from the sampled animal was inoculated into a mouse and was protective against a challenge with RVFV. Percent positive was calculated by combining all reports for that species across countries and time.
As with serology, direct viral detection in free-ranging wildlife cannot be used to directly infer the role a species plays in the ecology and epidemiology of the virus. While a significant number of free-ranging wildlife have been tested directly for RVFV (n = 3202), only 31 positive animals of 14 species (8 animals were positive both on RT-PCR and virus isolation [ProMED mail 1999]) have been detected and reported in peer-reviewed literature (Table 2). This includes: springbok (Antidorcas marsupialis), buffalo (Syncerus caffer), waterbuck (Kobus ellipsiprymnus), and giraffe (Giraffa camelopardalis) reported to have aborted or died due to RVFV infection, which was confirmed via virus isolation and RT-PCR (ProMED mail 1999), one field RVFV isolation in buffalo (Bird et al. 2008), and three isolations from bats (Hipposideros abae, Micropteropus pusillus, Hipposideros caffer) (Boiro et al. 1987), ([Oelofsen and van der Ryst 1999] as cited in [Olive et al. 2012]; see Table 2). Of the species identified above as warranting further investigation based on RVFV neutralization results, there have been reports of attempted viral detection in 8 Namaqua rock rats (Swanepoel et al. 1978), 32 buffalo (Bird et al. 2008; ProMED mail 1999), 8 impala (Capobianco Dondona et al. 2016), 8 giraffe (Bird et al. 2008; ProMED mail 1999), and 6 waterbuck (R. Bengis, unpublished data) (ProMED mail 1999). No studies that attempted to detect virus in kudu (lesser or greater), nyala, gemsbok, black wildebeest, black rhinoceros, orange weaver, or Hubert’s Mastomys were identified during this review. The results of the buffalo, waterbuck, and giraffe were given above. No positives were detected in the Namaqua rock rats (n = 8) or gerenuk (n = 5). All other attempts to detect RVFV from free-ranging wildlife has proven unfruitful (as reported by the reviewed publications) (Davies 1975; Henderson et al. 1972; Hoogstraal et al. 1979). Deaths have been reported in springbok, blesbok (Damaliscus pygargus phillipsi), buffalo, sable (Hippotragus niger), nyala (Tragelaphus angasii), eland (Tragelaphus oryx), waterbuck, bontebok (Damaliscus pygargus pygarus), fallow deer (Dama dama), and llamas (Lama glama) during previous RVF outbreaks in South Africa (R. Bengis, unpublished data). Wild springbok and blesbok (Damaliscus pygargus phillipsi) were also reported to have aborted during an RVF outbreak though no diagnostics were reported (Bengis and Erasmus 1988).
Wildlife species that have been tested for RVFV directly through RT-PCR or virus isolation
Species . | Family . | Total sampled . | RtPCR1 . | Virus Isolation . | IgM or RtPCR*1,2 . | Necropsy . | Death . | Sick . | Citation . |
---|---|---|---|---|---|---|---|---|---|
Mastomys natalensis | Muridae | 1844 | 0 | (Davies 1975; Swanepoel et al. 1978) | |||||
Antidorcas marsupialis | Bovidae | 200 | 18 | Reported | (R. Bengis, unpublished; Dondona et al. 2016) | ||||
Rattus rattus | Muridae | 163 | 0 | (Henderson et al. 1972; Hoogstraal et al. 1979) | |||||
Gerbilliscus leucogaster | Muridae | 134 | 0 | (Swanepoel et al. 1978) | |||||
Arvicanthis niloticus niloticus | Muridae | 121 | 0 | (Hoogstraal et al. 1979) | |||||
Aethomys chrysophilus | Muridae | 108 | 0 | (Swanepoel et al. 1978) | |||||
Hipposideros abae | Chiroptera | 94 | 1 | (Boiro et al. 1987) | |||||
Otomys tropicalis | Muridae | 61 | 0 | (Davies 1975) | |||||
Connochaetes taurinus | Bovidae | 50 | 0 | (Dondona et al. 2016) | |||||
Acomys cahirinus | Muridae | 49 | 0 | (Hoogstraal et al. 1979) | |||||
Phacochoerus africanus | Suidae | 44 | 0 | (Bird et al. 2008) | |||||
Rhabdomys pumilio | Muridae | 42 | 0 | (Davies 1975; Swanepoel et al. 1978) | |||||
Saccostomus campestris | Nesomyidae | 41 | 0 | (Swanepoel et al. 1978) | |||||
Syncerus caffer | Bovidae | 32 | 6 | 7 | 4 | Confirmed | (Beechler et al. 2015b, R. Bengis, unpublished; Bird et al. 2008; ProMED mail 1999) | ||
Lemniscomys griselda | Muridae | 28 | 0 | (Swanepoel et al. 1978) | |||||
Mus musculus | Muridae | 24 | 0 | (Hoogstraal et al. 1979; Swanepoel et al. 1978) | |||||
Crocidura hirta | Soricidae | 22 | 0 | (Swanepoel et al. 1978) | |||||
Hipposideros caffer | Chiroptera | 16 | 1 | (Boiro et al. 1987) | |||||
Micropteropus pusillus | Chiroptera | 16 | 1 | (Boiro et al. 1987) | |||||
Arvicanthis niloticus | Muridae | 13 | 0 | (Davies 1975; Henderson et al. 1972) | |||||
Lemniscomys striatus | Muridae | 12 | 0 | (Davies 1975) | |||||
Aepyceros melampus | Bovidae | 8 | 0 | (Dondona et al. 2016) | |||||
Aethomys namaquensis | Muridae | 8 | 0 | (Swanepoel et al. 1978) | |||||
Giraffa camelopardalis | Giraffidae | 8 | 1 | 1 | 0 | (Bird et al. 2008; ProMED mail 1999) | |||
Graphiuris murinus | Gliridae | 7 | 0 | (Swanepoel et al. 1978) | |||||
Praomys jacksonii | Muridae | 7 | 0 | (Davies 1975) | |||||
Kobus ellipsiprymnus | Bovidae | 6 | 1 | 1 | 0 | Confirmed | (R. Bengis, unpublished; Bird et al. 2008; ProMED mail 1999) | ||
Elephantulus brachyrhynchus | Macroscelididae | 5 | 0 | (Swanepoel et al. 1978) | |||||
Litocranius walleri | Bovidae | 5 | 0 | (Bird et al. 2008) | |||||
Lophuromys flavopunctatus | Muridae | 5 | 0 | (Davies 1975) | |||||
Pelomys fallax | Muridae | 5 | 0 | (Swanepoel et al. 1978) | |||||
Steatomys pratensis | Nesomyidae | 4 | 0 | (Swanepoel et al. 1978) | |||||
Equus quagga | Equidae | 3 | 0 | (Bird et al. 2008) | |||||
Lophorumys flavopunctatus Thomas | Muridae | 3 | 0 | (Henderson et al. 1972) | |||||
Rattus rattus alexandrinus | Muridae | 3 | 0 | (Swanepoel et al. 1978) | |||||
Thallomys paedulcus | Muridae | 3 | 0 | (Swanepoel et al. 1978) | |||||
Leggada minutoides | Muridae | 2 | 0 | (Swanepoel et al. 1978) | |||||
Acomys spinosissimus | Muridae | 1 | 0 | (Swanepoel et al. 1978) | |||||
Erinaceinae spp. | Erinaceidae | 1 | 0 | (Findlay 1932c) | |||||
Eudorcas thomsonii | Bovidae | 1 | 0 | (Bird et al. 2008) | |||||
Herpestidae spp. | Herpestidae | 1 | 0 | (Findlay 1932c) | |||||
Lophuromys sikapusi Temminck | Muridae | 1 | 0 | (Henderson et al. 1972) | |||||
Tragelaphus oryx | Bovidae | 1 | 0 | Confirmed | (R. Bengis, unpublished; Bird et al. 2008) | ||||
Amphibia spp. | 0 | (Findlay 1932c) | |||||||
Aves spp. | 0 | (Findlay 1932a) | |||||||
Dama dama | Cervidae | Confirmed | (R. Bengis, unpublished) | ||||||
Damaliscus pygargus | Bovidae | Confirmed | (R. Bengis, unpublished) | ||||||
Damaliscus pygargus phillipsi | Bovidae | Reported | (R. Bengis, unpublished) | ||||||
Lama glama | Camelidae | Confirmed | (R. Bengis, unpublished) | ||||||
Martes zibellina | Mustelidae | Confirmed | (R. Bengis, unpublished) | ||||||
Rattus natalensis | Muridae | All | (R. Bengis, unpublished) | ||||||
Reptilia spp. | 0 | (R. Bengis, unpublished) | |||||||
Tragelaphus angasii | Bovidae | Confirmed | (R. Bengis, unpublished) | ||||||
Vicugna pacos | Camelidae | Confirmed | (R. Bengis, unpublished) |
Species . | Family . | Total sampled . | RtPCR1 . | Virus Isolation . | IgM or RtPCR*1,2 . | Necropsy . | Death . | Sick . | Citation . |
---|---|---|---|---|---|---|---|---|---|
Mastomys natalensis | Muridae | 1844 | 0 | (Davies 1975; Swanepoel et al. 1978) | |||||
Antidorcas marsupialis | Bovidae | 200 | 18 | Reported | (R. Bengis, unpublished; Dondona et al. 2016) | ||||
Rattus rattus | Muridae | 163 | 0 | (Henderson et al. 1972; Hoogstraal et al. 1979) | |||||
Gerbilliscus leucogaster | Muridae | 134 | 0 | (Swanepoel et al. 1978) | |||||
Arvicanthis niloticus niloticus | Muridae | 121 | 0 | (Hoogstraal et al. 1979) | |||||
Aethomys chrysophilus | Muridae | 108 | 0 | (Swanepoel et al. 1978) | |||||
Hipposideros abae | Chiroptera | 94 | 1 | (Boiro et al. 1987) | |||||
Otomys tropicalis | Muridae | 61 | 0 | (Davies 1975) | |||||
Connochaetes taurinus | Bovidae | 50 | 0 | (Dondona et al. 2016) | |||||
Acomys cahirinus | Muridae | 49 | 0 | (Hoogstraal et al. 1979) | |||||
Phacochoerus africanus | Suidae | 44 | 0 | (Bird et al. 2008) | |||||
Rhabdomys pumilio | Muridae | 42 | 0 | (Davies 1975; Swanepoel et al. 1978) | |||||
Saccostomus campestris | Nesomyidae | 41 | 0 | (Swanepoel et al. 1978) | |||||
Syncerus caffer | Bovidae | 32 | 6 | 7 | 4 | Confirmed | (Beechler et al. 2015b, R. Bengis, unpublished; Bird et al. 2008; ProMED mail 1999) | ||
Lemniscomys griselda | Muridae | 28 | 0 | (Swanepoel et al. 1978) | |||||
Mus musculus | Muridae | 24 | 0 | (Hoogstraal et al. 1979; Swanepoel et al. 1978) | |||||
Crocidura hirta | Soricidae | 22 | 0 | (Swanepoel et al. 1978) | |||||
Hipposideros caffer | Chiroptera | 16 | 1 | (Boiro et al. 1987) | |||||
Micropteropus pusillus | Chiroptera | 16 | 1 | (Boiro et al. 1987) | |||||
Arvicanthis niloticus | Muridae | 13 | 0 | (Davies 1975; Henderson et al. 1972) | |||||
Lemniscomys striatus | Muridae | 12 | 0 | (Davies 1975) | |||||
Aepyceros melampus | Bovidae | 8 | 0 | (Dondona et al. 2016) | |||||
Aethomys namaquensis | Muridae | 8 | 0 | (Swanepoel et al. 1978) | |||||
Giraffa camelopardalis | Giraffidae | 8 | 1 | 1 | 0 | (Bird et al. 2008; ProMED mail 1999) | |||
Graphiuris murinus | Gliridae | 7 | 0 | (Swanepoel et al. 1978) | |||||
Praomys jacksonii | Muridae | 7 | 0 | (Davies 1975) | |||||
Kobus ellipsiprymnus | Bovidae | 6 | 1 | 1 | 0 | Confirmed | (R. Bengis, unpublished; Bird et al. 2008; ProMED mail 1999) | ||
Elephantulus brachyrhynchus | Macroscelididae | 5 | 0 | (Swanepoel et al. 1978) | |||||
Litocranius walleri | Bovidae | 5 | 0 | (Bird et al. 2008) | |||||
Lophuromys flavopunctatus | Muridae | 5 | 0 | (Davies 1975) | |||||
Pelomys fallax | Muridae | 5 | 0 | (Swanepoel et al. 1978) | |||||
Steatomys pratensis | Nesomyidae | 4 | 0 | (Swanepoel et al. 1978) | |||||
Equus quagga | Equidae | 3 | 0 | (Bird et al. 2008) | |||||
Lophorumys flavopunctatus Thomas | Muridae | 3 | 0 | (Henderson et al. 1972) | |||||
Rattus rattus alexandrinus | Muridae | 3 | 0 | (Swanepoel et al. 1978) | |||||
Thallomys paedulcus | Muridae | 3 | 0 | (Swanepoel et al. 1978) | |||||
Leggada minutoides | Muridae | 2 | 0 | (Swanepoel et al. 1978) | |||||
Acomys spinosissimus | Muridae | 1 | 0 | (Swanepoel et al. 1978) | |||||
Erinaceinae spp. | Erinaceidae | 1 | 0 | (Findlay 1932c) | |||||
Eudorcas thomsonii | Bovidae | 1 | 0 | (Bird et al. 2008) | |||||
Herpestidae spp. | Herpestidae | 1 | 0 | (Findlay 1932c) | |||||
Lophuromys sikapusi Temminck | Muridae | 1 | 0 | (Henderson et al. 1972) | |||||
Tragelaphus oryx | Bovidae | 1 | 0 | Confirmed | (R. Bengis, unpublished; Bird et al. 2008) | ||||
Amphibia spp. | 0 | (Findlay 1932c) | |||||||
Aves spp. | 0 | (Findlay 1932a) | |||||||
Dama dama | Cervidae | Confirmed | (R. Bengis, unpublished) | ||||||
Damaliscus pygargus | Bovidae | Confirmed | (R. Bengis, unpublished) | ||||||
Damaliscus pygargus phillipsi | Bovidae | Reported | (R. Bengis, unpublished) | ||||||
Lama glama | Camelidae | Confirmed | (R. Bengis, unpublished) | ||||||
Martes zibellina | Mustelidae | Confirmed | (R. Bengis, unpublished) | ||||||
Rattus natalensis | Muridae | All | (R. Bengis, unpublished) | ||||||
Reptilia spp. | 0 | (R. Bengis, unpublished) | |||||||
Tragelaphus angasii | Bovidae | Confirmed | (R. Bengis, unpublished) | ||||||
Vicugna pacos | Camelidae | Confirmed | (R. Bengis, unpublished) |
Also shown are animals that were diagnosed on necropsy (Necropsy) or reported to have died (Death) or had clinical signs during a RVF outbreak. *The authors did not indicate which animals were positive on PCR or IgM antibodies.
1(Bird et al. 2007).
Wildlife species that have been tested for RVFV directly through RT-PCR or virus isolation
Species . | Family . | Total sampled . | RtPCR1 . | Virus Isolation . | IgM or RtPCR*1,2 . | Necropsy . | Death . | Sick . | Citation . |
---|---|---|---|---|---|---|---|---|---|
Mastomys natalensis | Muridae | 1844 | 0 | (Davies 1975; Swanepoel et al. 1978) | |||||
Antidorcas marsupialis | Bovidae | 200 | 18 | Reported | (R. Bengis, unpublished; Dondona et al. 2016) | ||||
Rattus rattus | Muridae | 163 | 0 | (Henderson et al. 1972; Hoogstraal et al. 1979) | |||||
Gerbilliscus leucogaster | Muridae | 134 | 0 | (Swanepoel et al. 1978) | |||||
Arvicanthis niloticus niloticus | Muridae | 121 | 0 | (Hoogstraal et al. 1979) | |||||
Aethomys chrysophilus | Muridae | 108 | 0 | (Swanepoel et al. 1978) | |||||
Hipposideros abae | Chiroptera | 94 | 1 | (Boiro et al. 1987) | |||||
Otomys tropicalis | Muridae | 61 | 0 | (Davies 1975) | |||||
Connochaetes taurinus | Bovidae | 50 | 0 | (Dondona et al. 2016) | |||||
Acomys cahirinus | Muridae | 49 | 0 | (Hoogstraal et al. 1979) | |||||
Phacochoerus africanus | Suidae | 44 | 0 | (Bird et al. 2008) | |||||
Rhabdomys pumilio | Muridae | 42 | 0 | (Davies 1975; Swanepoel et al. 1978) | |||||
Saccostomus campestris | Nesomyidae | 41 | 0 | (Swanepoel et al. 1978) | |||||
Syncerus caffer | Bovidae | 32 | 6 | 7 | 4 | Confirmed | (Beechler et al. 2015b, R. Bengis, unpublished; Bird et al. 2008; ProMED mail 1999) | ||
Lemniscomys griselda | Muridae | 28 | 0 | (Swanepoel et al. 1978) | |||||
Mus musculus | Muridae | 24 | 0 | (Hoogstraal et al. 1979; Swanepoel et al. 1978) | |||||
Crocidura hirta | Soricidae | 22 | 0 | (Swanepoel et al. 1978) | |||||
Hipposideros caffer | Chiroptera | 16 | 1 | (Boiro et al. 1987) | |||||
Micropteropus pusillus | Chiroptera | 16 | 1 | (Boiro et al. 1987) | |||||
Arvicanthis niloticus | Muridae | 13 | 0 | (Davies 1975; Henderson et al. 1972) | |||||
Lemniscomys striatus | Muridae | 12 | 0 | (Davies 1975) | |||||
Aepyceros melampus | Bovidae | 8 | 0 | (Dondona et al. 2016) | |||||
Aethomys namaquensis | Muridae | 8 | 0 | (Swanepoel et al. 1978) | |||||
Giraffa camelopardalis | Giraffidae | 8 | 1 | 1 | 0 | (Bird et al. 2008; ProMED mail 1999) | |||
Graphiuris murinus | Gliridae | 7 | 0 | (Swanepoel et al. 1978) | |||||
Praomys jacksonii | Muridae | 7 | 0 | (Davies 1975) | |||||
Kobus ellipsiprymnus | Bovidae | 6 | 1 | 1 | 0 | Confirmed | (R. Bengis, unpublished; Bird et al. 2008; ProMED mail 1999) | ||
Elephantulus brachyrhynchus | Macroscelididae | 5 | 0 | (Swanepoel et al. 1978) | |||||
Litocranius walleri | Bovidae | 5 | 0 | (Bird et al. 2008) | |||||
Lophuromys flavopunctatus | Muridae | 5 | 0 | (Davies 1975) | |||||
Pelomys fallax | Muridae | 5 | 0 | (Swanepoel et al. 1978) | |||||
Steatomys pratensis | Nesomyidae | 4 | 0 | (Swanepoel et al. 1978) | |||||
Equus quagga | Equidae | 3 | 0 | (Bird et al. 2008) | |||||
Lophorumys flavopunctatus Thomas | Muridae | 3 | 0 | (Henderson et al. 1972) | |||||
Rattus rattus alexandrinus | Muridae | 3 | 0 | (Swanepoel et al. 1978) | |||||
Thallomys paedulcus | Muridae | 3 | 0 | (Swanepoel et al. 1978) | |||||
Leggada minutoides | Muridae | 2 | 0 | (Swanepoel et al. 1978) | |||||
Acomys spinosissimus | Muridae | 1 | 0 | (Swanepoel et al. 1978) | |||||
Erinaceinae spp. | Erinaceidae | 1 | 0 | (Findlay 1932c) | |||||
Eudorcas thomsonii | Bovidae | 1 | 0 | (Bird et al. 2008) | |||||
Herpestidae spp. | Herpestidae | 1 | 0 | (Findlay 1932c) | |||||
Lophuromys sikapusi Temminck | Muridae | 1 | 0 | (Henderson et al. 1972) | |||||
Tragelaphus oryx | Bovidae | 1 | 0 | Confirmed | (R. Bengis, unpublished; Bird et al. 2008) | ||||
Amphibia spp. | 0 | (Findlay 1932c) | |||||||
Aves spp. | 0 | (Findlay 1932a) | |||||||
Dama dama | Cervidae | Confirmed | (R. Bengis, unpublished) | ||||||
Damaliscus pygargus | Bovidae | Confirmed | (R. Bengis, unpublished) | ||||||
Damaliscus pygargus phillipsi | Bovidae | Reported | (R. Bengis, unpublished) | ||||||
Lama glama | Camelidae | Confirmed | (R. Bengis, unpublished) | ||||||
Martes zibellina | Mustelidae | Confirmed | (R. Bengis, unpublished) | ||||||
Rattus natalensis | Muridae | All | (R. Bengis, unpublished) | ||||||
Reptilia spp. | 0 | (R. Bengis, unpublished) | |||||||
Tragelaphus angasii | Bovidae | Confirmed | (R. Bengis, unpublished) | ||||||
Vicugna pacos | Camelidae | Confirmed | (R. Bengis, unpublished) |
Species . | Family . | Total sampled . | RtPCR1 . | Virus Isolation . | IgM or RtPCR*1,2 . | Necropsy . | Death . | Sick . | Citation . |
---|---|---|---|---|---|---|---|---|---|
Mastomys natalensis | Muridae | 1844 | 0 | (Davies 1975; Swanepoel et al. 1978) | |||||
Antidorcas marsupialis | Bovidae | 200 | 18 | Reported | (R. Bengis, unpublished; Dondona et al. 2016) | ||||
Rattus rattus | Muridae | 163 | 0 | (Henderson et al. 1972; Hoogstraal et al. 1979) | |||||
Gerbilliscus leucogaster | Muridae | 134 | 0 | (Swanepoel et al. 1978) | |||||
Arvicanthis niloticus niloticus | Muridae | 121 | 0 | (Hoogstraal et al. 1979) | |||||
Aethomys chrysophilus | Muridae | 108 | 0 | (Swanepoel et al. 1978) | |||||
Hipposideros abae | Chiroptera | 94 | 1 | (Boiro et al. 1987) | |||||
Otomys tropicalis | Muridae | 61 | 0 | (Davies 1975) | |||||
Connochaetes taurinus | Bovidae | 50 | 0 | (Dondona et al. 2016) | |||||
Acomys cahirinus | Muridae | 49 | 0 | (Hoogstraal et al. 1979) | |||||
Phacochoerus africanus | Suidae | 44 | 0 | (Bird et al. 2008) | |||||
Rhabdomys pumilio | Muridae | 42 | 0 | (Davies 1975; Swanepoel et al. 1978) | |||||
Saccostomus campestris | Nesomyidae | 41 | 0 | (Swanepoel et al. 1978) | |||||
Syncerus caffer | Bovidae | 32 | 6 | 7 | 4 | Confirmed | (Beechler et al. 2015b, R. Bengis, unpublished; Bird et al. 2008; ProMED mail 1999) | ||
Lemniscomys griselda | Muridae | 28 | 0 | (Swanepoel et al. 1978) | |||||
Mus musculus | Muridae | 24 | 0 | (Hoogstraal et al. 1979; Swanepoel et al. 1978) | |||||
Crocidura hirta | Soricidae | 22 | 0 | (Swanepoel et al. 1978) | |||||
Hipposideros caffer | Chiroptera | 16 | 1 | (Boiro et al. 1987) | |||||
Micropteropus pusillus | Chiroptera | 16 | 1 | (Boiro et al. 1987) | |||||
Arvicanthis niloticus | Muridae | 13 | 0 | (Davies 1975; Henderson et al. 1972) | |||||
Lemniscomys striatus | Muridae | 12 | 0 | (Davies 1975) | |||||
Aepyceros melampus | Bovidae | 8 | 0 | (Dondona et al. 2016) | |||||
Aethomys namaquensis | Muridae | 8 | 0 | (Swanepoel et al. 1978) | |||||
Giraffa camelopardalis | Giraffidae | 8 | 1 | 1 | 0 | (Bird et al. 2008; ProMED mail 1999) | |||
Graphiuris murinus | Gliridae | 7 | 0 | (Swanepoel et al. 1978) | |||||
Praomys jacksonii | Muridae | 7 | 0 | (Davies 1975) | |||||
Kobus ellipsiprymnus | Bovidae | 6 | 1 | 1 | 0 | Confirmed | (R. Bengis, unpublished; Bird et al. 2008; ProMED mail 1999) | ||
Elephantulus brachyrhynchus | Macroscelididae | 5 | 0 | (Swanepoel et al. 1978) | |||||
Litocranius walleri | Bovidae | 5 | 0 | (Bird et al. 2008) | |||||
Lophuromys flavopunctatus | Muridae | 5 | 0 | (Davies 1975) | |||||
Pelomys fallax | Muridae | 5 | 0 | (Swanepoel et al. 1978) | |||||
Steatomys pratensis | Nesomyidae | 4 | 0 | (Swanepoel et al. 1978) | |||||
Equus quagga | Equidae | 3 | 0 | (Bird et al. 2008) | |||||
Lophorumys flavopunctatus Thomas | Muridae | 3 | 0 | (Henderson et al. 1972) | |||||
Rattus rattus alexandrinus | Muridae | 3 | 0 | (Swanepoel et al. 1978) | |||||
Thallomys paedulcus | Muridae | 3 | 0 | (Swanepoel et al. 1978) | |||||
Leggada minutoides | Muridae | 2 | 0 | (Swanepoel et al. 1978) | |||||
Acomys spinosissimus | Muridae | 1 | 0 | (Swanepoel et al. 1978) | |||||
Erinaceinae spp. | Erinaceidae | 1 | 0 | (Findlay 1932c) | |||||
Eudorcas thomsonii | Bovidae | 1 | 0 | (Bird et al. 2008) | |||||
Herpestidae spp. | Herpestidae | 1 | 0 | (Findlay 1932c) | |||||
Lophuromys sikapusi Temminck | Muridae | 1 | 0 | (Henderson et al. 1972) | |||||
Tragelaphus oryx | Bovidae | 1 | 0 | Confirmed | (R. Bengis, unpublished; Bird et al. 2008) | ||||
Amphibia spp. | 0 | (Findlay 1932c) | |||||||
Aves spp. | 0 | (Findlay 1932a) | |||||||
Dama dama | Cervidae | Confirmed | (R. Bengis, unpublished) | ||||||
Damaliscus pygargus | Bovidae | Confirmed | (R. Bengis, unpublished) | ||||||
Damaliscus pygargus phillipsi | Bovidae | Reported | (R. Bengis, unpublished) | ||||||
Lama glama | Camelidae | Confirmed | (R. Bengis, unpublished) | ||||||
Martes zibellina | Mustelidae | Confirmed | (R. Bengis, unpublished) | ||||||
Rattus natalensis | Muridae | All | (R. Bengis, unpublished) | ||||||
Reptilia spp. | 0 | (R. Bengis, unpublished) | |||||||
Tragelaphus angasii | Bovidae | Confirmed | (R. Bengis, unpublished) | ||||||
Vicugna pacos | Camelidae | Confirmed | (R. Bengis, unpublished) |
Also shown are animals that were diagnosed on necropsy (Necropsy) or reported to have died (Death) or had clinical signs during a RVF outbreak. *The authors did not indicate which animals were positive on PCR or IgM antibodies.
1(Bird et al. 2007).
Experimental Infections Conducted in Wildlife
The search for a wildlife reservoir species for RVFV has been ongoing since it was first discovered by Daubney et al. (Daubney et al. 1931) in 1930. For a species to be identified as a reservoir, the following host characteristics are generally assessed: minimal clinical signs and/or mortality associated with a high and long-lasting viremia, range overlap with enzootic regions, detection of the virus in free-ranging members of the species, and relatively high or constant seroprevalence levels across populations (Olive et al. 2012). Experimental infection of wildlife seems to have been restricted primarily to rodents, primates, and other laboratory animals (rabbits, guinea pigs, rats, mice, and ferrets), with an occasional study on buffalo, bats, and birds. Death following inoculation (subcutaneous, intraperitoneal, intradermal, and/or intracranial) with RVFV occurred in wood mice (10/10, Apodemus sylvaticus [Findlay 1932c]), voles (6/6, Cricetidae [Findlay 1932c]), dormice (3/3, Gliridae [Findlay 1932c]), golden hamster (2/2, Mesocricetus auratus [Findlay 1932c]), rats (35/57, Rattus sp [Findlay 1932c]), squirrels (1/2, Sciurus sp [Findlay 1932c]), African pouched rats (1/2, the other was euthanized, Saccostomus sp [McIntosh 1961]), Abyssinian grass rats (19/57, Arvicanthis abyssinicus nairobae [Daubney and Hudson 1932]) and 27/91, (Arvicanthis abyssinicus nubilans [Weinbren and Mason 1957]), and the southern multimammate mice (6/35, Mastomys coucha [Daubney and Hudson 1932]). Nearly all primate species had clinical signs postinoculation (Davies et al. 1972; Findlay 1932a); however, mortalities were reported only in macaques (9/49 died, 19/49 had clinical signs, Macaca mulatta [Findlay 1932b, 1932c; Morrill et al. 1990; Peters et al. 1988]). Of the buffalo, most (4/6) had subclinical disease similar to subclinical RVF in cattle, one (of two pregnant buffalo) aborted and one buffalo had clinical signs of RVFV (Daubney and Hudson 1932; Davies and Karstad 1981). None of the other 23 species/genera that were inoculated had clinical signs or signs were not reported post-RVFV inoculation (Davies and Addy 1979; Davies and Linthicum 1986; Findlay 1932b; Francis and Magill 1935; Gora et al. 2000; Hoogstraal et al. 1979; Oelofsen and van der Ryst 1999; Pretorius et al. 1997; Swanepoel et al. 1978). Of 43 species/genera that were inoculated, 16 species were tested for and produced neutralizing antibodies, 23 species had a detectable viremia, and three species seroconverted as measured on nonneutralizing assays (see Table 3 for details). The longest period of time an animal remained viremic was 13 days (or the longest period in which viremia was assessed) in rhesus macaques (Findlay 1932c). It was also noted that the macaques that had clinical signs and/or more severe illness remained viremic longer (Findlay 1932c).
Wildlife species that have been experimentally inoculated with RVFV given by study, species, and family
Species . | Family . | Total Inoculated . | Experi-mental Strain . | Infectious Dose* . | Inoc-ulati-on Route§ . | Sandwich ELISA1 . | VNT . | IFA . | Positive Protective Titer*** . | Death . | Sick . | Abort . | Viremia Detected . | Maximum Viremia . | Number of Days Viremia Detected . | Citation . |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acomys cahirinus | Muridae | 2 | NR | 2,000 MIC LD50 | SC | Y | 10^2 | NR | (Hoogstraal et al. 1979) | |||||||
Aethomys spp. | Muridae | 5 | AN2327 (from lamb) | 10^1.9 | NR | 0 | Y | 10^4.2 | 3 | (McIntosh 1961) | ||||||
Aethomys namaquensis | Muridae | 12 | RVFV 763/70 | 10^3 | SC | Y | 10^4.6 | 2–5 | (Swanepoel et al. 1978) | |||||||
Aethomys namaquensis | Muridae | 6 | AN 1830 | 10^3 TICD50** | SC | Y | 10^8.5 | 2–3 | (Pretorius et al. 1997) | |||||||
Apodemus sylvaticus | Muridae | 10 | RVFV (from mice) | NR | SC | 10 | (Findlay 1932c) | |||||||||
Arvicanthis abyssinicus nairobae | Muridae | 57 | RVFV (from sheep, white mice) | NR | NR | 19 | (Daubney and Hudson 1932) | |||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^8 | IP | 3 | 0 | 0 | (Weinbren and Mason 1957) | |||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^8 | IC | 0 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^8 | SC | 0 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^7.6 | IP | 3 | 1 | 1 | 1 | Y | 10^2.4–10^4.8 | NR | (Weinbren and Mason 1957) | |||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^6 | IP | 1 | 3 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^6 | IP | 5 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^5.6 | IP | 3 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^4.6 | IP | 4 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^4 | IP | 2 | 1 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^3.6 | IP | 5 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^3 | IP | 1 | 1 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^2.6 | IP | 4 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^2 | IP | 0 | (Weinbren and Mason 1957) | |||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^1.6 | IP | 1 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^0.6 | IP | 0 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 4 | RVFV (from Eretinapodites spp.) | 10^5.3 | IP | Y | 10^2.5 | 1 | (Weinbren and Mason 1957) | |||||||
Arvicanthis abyssinicus nubilans | Muridae | 4 | RVFV (from Eretinapodites spp.) | 10^4.3 | IP | Y | 10^3.7 | 3 | (Weinbren and Mason 1957) | |||||||
Arvicanthis abyssinicus nubilans | Muridae | 4 | RVFV (from Eretinapodites spp.) | 10^3.3 | IP | Y | 10^3.8 | 5 | (Weinbren and Mason 1957) | |||||||
Arvicanthis abyssinicus nubilans | Muridae | 4 | RVFV (from Eretinapodites spp.) | 10^2.3 | IP | Y | 10^5.0 | 4 | (Weinbren and Mason 1957) | |||||||
Arvicanthis niloticus | Muridae | 22 | AnD100286 (from Aedes dalzielli) | 10^5.5 | IP | 3 | N | (Gora et al. 2000) | ||||||||
Arvicanthis niloticus | Muridae | 6 | ArD38661 (from sheep) | 10^7.7 | SC | 4 | Y | NR | 1 | (Gora et al. 2000) | ||||||
Arvicanthis niloticus niloticus | Muridae | 2 | NR | 2,000 MIC† LD50 | SC | Y | 10^2 | NR | (Hoogstraal et al. 1979) | |||||||
Callithrix jacchus | Callitrichidae | 2 | RVFV (from mice) | NR | SC | 2 | 2 | Y | NR | NR | (Findlay 1932a) | |||||
Callithrix penicillata | Callitrichidae | 1 | RVFV (from mice) | NR | SC | 1 | 1 | Y | NR | NR | (Findlay 1932a) | |||||
Cavia porcellus | Caviidae | 25 | RVFV (from mice) | NR | ID, IP, IV, SC | 0 | 0 | (Findlay 1932c) | ||||||||
Cebus chrysopus | Cebidae | 1 | RVFV (from mice) | NR | SC | 1 | 0 | Y | NR | NR | (Findlay 1932a) | |||||
Cebus fatuellus | Cebidae | 2 | RVFV (from mice) | NR | SC | 2 | 0 | Y | NR | NR | (Findlay 1932a) | |||||
Cercocebus atys | Cercopithecidae | 2 | RVFV (from mice) | NR | SC | 2 | 0 | Y | NR | NR | (Findlay 1932a) | |||||
Chlorocebus sabaeus | Cercopithecidae | 2 | RVFV (from mice) | NR | SC | 2 | 0 | (Findlay 1932a) | ||||||||
Cricetidae | Cricetidae | 6 | RVFV (from mice) | NR | SC | 6 | (Findlay 1932c) | |||||||||
Eptesicus capensis | Vespertilionidae | 2 | NR | 10^6 TCID50** | IM | 1 | 0 | (Oelofsen and van der Ryst 1999) | ||||||||
Eptesicus capensis | Vespertilionidae | 1 | NR | 10^6 TCID50** | PO | 0 | 0 | (Oelofsen and van der Ryst 1999) | ||||||||
Erythrocebus patas | Cercopithecidae | 2 | RVFV (from mice) | NR | SC | 0 | Y | NR | 6 | (Findlay 1932a) | ||||||
Gallus gallus domesticus | Phasianidae | 6 | NR | 10^7 | NR | 0 | N | (Davies and Addy 1979) | ||||||||
Gerbilliscus leucogaster | Muridae | 19 | RVFV 763/70 | 10^3 | SC | Y | Trace | 3–6 | (Swanepoel et al. 1978) | |||||||
Gliridae spp. | Gliridae | 3 | RVFV (from mice) | NR | IP | 3 | (Findlay 1932c) | |||||||||
Leggada bella | Leporidae | 1 | RVFV (from goat kid) | NR | NR | 0 | 1 | (Daubney and Hudson 1932) | ||||||||
Leporidae spp. | Leporidae | 12 | RVFV (from mice) | NR | ID, IP, IV, SC | 0 | 0 | Y | NR | NR | (Findlay 1932c) | |||||
Leporidae spp. | Leporidae | RVFV (from ferret) | NR | IC, ID, IP | All | 0 | 0 | (Francis and Magill 1935) | ||||||||
Macaca mulatta | Cercopithecidae | 17 | ZH-501 | 10^5 PFU‡ | IV | 15 | 3 | 7 | Y | 10^7.5 PFU | 1–6 | (Morrill et al. 1990) | ||||
Macaca mulatta | Cercopithecidae | 14 | RVFV (from human, rodent, monkey) | NR | IC, IN, IP, SC | 4 | 8 | Y | NR | 1–13 | (Findlay 1932c) | |||||
Macaca mulatta | Cercopithecidae | 5 | ZH-501 FRhL2 | 10^4.8 PFU‡ | NR | 1 | NR | (Peters et al. 1988) | ||||||||
Macaca mulatta | Cercopithecidae | 4 | ZH-501 FRhL2 | 10^4.7 PFU‡ | IV | 1 | Y | NR | NR | (Peters et al. 1988) | ||||||
Macaca mulatta | Cercopithecidae | 3 | RVFV (from mice) | NR | SC | 3 | Y | NR | NR | (Findlay 1932b) | ||||||
Macaca mulatta | Cercopithecidae | 3 | ZH-501 FRhL2 | 10^4.1 PFU‡ | IV | 1 | Y | NR | NR | (Peters et al. 1988) | ||||||
Macaca mulatta | Cercopithecidae | 2 | ZH-501 FRhL1 | 10^5.3 PFU‡ | SC | Y | 3.6^10 PFU | 1 | (Peters et al. 1988) | |||||||
Macaca mulatta | Cercopithecidae | 1 | ZH-501 FRhL2 | 10^5.3 PFU‡ | SC | Y | 10^6.8 PFU | 2 | (Peters et al. 1988) | |||||||
Mastomys | Muridae | 5 | AN2327 (from lamb) | 10^1.9 | NR | 1 | Y | 10^1.5 | 1 | (McIntosh 1961) | ||||||
Mastomys coucha | Muridae | 35 | RVFV (from sheep, white mice, Arvicanthis spp.) | NR | NR | 6 | (Daubney and Hudson 1932) | |||||||||
Mastomys erythroleucus | Muridae | 13 | AnD100286 (from Aedes dalzielli) | 10^5.5 | IP | 2 | N | (Gora et al. 2000) | ||||||||
Mastomys erythroleucus | Muridae | 6 | ArD38661 (from sheep) | 10^7.7 | SC | 3 | N | (Gora et al. 2000) | ||||||||
Mastomys natalensis | Muridae | 21 | RVFV 763/70 | 10^3 | SC | N | (Swanepoel et al. 1978) | |||||||||
Mesocricetus auratus | Cricetidae | 2 | RVFV (from mice) | NR | IP | 2 | (Findlay 1932c) | |||||||||
Miniopterus schreibersii | Miniopteridae | 1 | NR | 10^6 TCID50** | PO | 1 | 0 | (Oelofsen and van der Ryst 1999) | ||||||||
Mus musculus | Muridae | 40 | ArD38661 (from sheep) | 10^7.7 | SC | 40 | Y | NR | 1–6 | (Gora et al. 2000) | ||||||
Mus musculus | Muridae | 40 | AnD100286 (from Aedes dalzielli) | 10^5.5 | IP | 2 | 38 | Y | NR | 1–6 | (Gora et al. 2000) | |||||
Mus spp. | Muridae | RVFV (from human, rodent, monkey) | NR | NR | All | (Findlay 1932c) | ||||||||||
Mustela putorius | Mustelidae | RVFV (from human) | NR | NR | All | Most | All | (Francis and Magill 1935) | ||||||||
Mystromys | Nesomyidae | 4 | AN2327 (from lamb) | 10^3.2 | NR | 4 | Y | 10^3.3 | 3 | (McIntosh 1961) | ||||||
Papio sp | Cercopithecidae | 4 | van Wyk | 10^6 | NR | 4 | 1 | Y | NR | 3–4 | (Davies et al. 1972) | |||||
Quelea quelea aethiopica | Ploceidae | 36 | RVFV (from Aedes lineatobennis) | 10^5.5 TCID50** | IM, SC | N | (Davies and Linthicum 1986) | |||||||||
Rattus rattus | Muridae | 2 | NR | 2,000 MIC† LD50 | SC | Y | 10^3 | NR | (Hoogstraal et al. 1979) | |||||||
Rattus rattus kijabius | Muridae | 6 | RVFV (from sheep, white mice, Arvicanthis spp.) | NR | NR | 0 | (Daubney and Hudson 1932) | |||||||||
Rattus spp. | Muridae | 43 | RVFV (from mice) | NR | IP, SC | 22 | (Findlay 1932c) | |||||||||
Rattus spp. | Muridae | 10 | RVFV (from mice) | NR | IT | 9 | (Findlay 1932c) | |||||||||
Rattus spp. | Muridae | 4 | RVFV (from mice) | NR | IC | 4 | (Findlay 1932c) | |||||||||
Saccostomus | Nesomyidae | 3 | AN2327 (from lamb) | 10^1.9 | NR | 1 | 1 | Y | 10^6.0 | 2 | (McIntosh 1961) | |||||
Sciurus sp | Sciuridae | 2 | RVFV (from mice) | NR | IP | 1 | Y | NR | NR | (Findlay 1932c) | ||||||
Syncerus caffer | Bovidae | 5 | Kabete | 10^7.7 TCID50** | ID | 4 | 1 | Y | 10^4.4 TCID50** | 2–4 | (Davies and Karstad 1981) | |||||
Syncerus caffer | Bovidae | 1 | RVFV (from sheep, white mice, Arvicanthis spp.) | NR | NR | 1 | (Daubney and Hudson 1932) | |||||||||
Tatera | Muridae | 5 | AN2327 (from lamb) | 10^3.7 | NR | 0 | N | (McIntosh 1961) |
Species . | Family . | Total Inoculated . | Experi-mental Strain . | Infectious Dose* . | Inoc-ulati-on Route§ . | Sandwich ELISA1 . | VNT . | IFA . | Positive Protective Titer*** . | Death . | Sick . | Abort . | Viremia Detected . | Maximum Viremia . | Number of Days Viremia Detected . | Citation . |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acomys cahirinus | Muridae | 2 | NR | 2,000 MIC LD50 | SC | Y | 10^2 | NR | (Hoogstraal et al. 1979) | |||||||
Aethomys spp. | Muridae | 5 | AN2327 (from lamb) | 10^1.9 | NR | 0 | Y | 10^4.2 | 3 | (McIntosh 1961) | ||||||
Aethomys namaquensis | Muridae | 12 | RVFV 763/70 | 10^3 | SC | Y | 10^4.6 | 2–5 | (Swanepoel et al. 1978) | |||||||
Aethomys namaquensis | Muridae | 6 | AN 1830 | 10^3 TICD50** | SC | Y | 10^8.5 | 2–3 | (Pretorius et al. 1997) | |||||||
Apodemus sylvaticus | Muridae | 10 | RVFV (from mice) | NR | SC | 10 | (Findlay 1932c) | |||||||||
Arvicanthis abyssinicus nairobae | Muridae | 57 | RVFV (from sheep, white mice) | NR | NR | 19 | (Daubney and Hudson 1932) | |||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^8 | IP | 3 | 0 | 0 | (Weinbren and Mason 1957) | |||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^8 | IC | 0 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^8 | SC | 0 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^7.6 | IP | 3 | 1 | 1 | 1 | Y | 10^2.4–10^4.8 | NR | (Weinbren and Mason 1957) | |||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^6 | IP | 1 | 3 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^6 | IP | 5 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^5.6 | IP | 3 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^4.6 | IP | 4 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^4 | IP | 2 | 1 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^3.6 | IP | 5 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^3 | IP | 1 | 1 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^2.6 | IP | 4 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^2 | IP | 0 | (Weinbren and Mason 1957) | |||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^1.6 | IP | 1 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^0.6 | IP | 0 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 4 | RVFV (from Eretinapodites spp.) | 10^5.3 | IP | Y | 10^2.5 | 1 | (Weinbren and Mason 1957) | |||||||
Arvicanthis abyssinicus nubilans | Muridae | 4 | RVFV (from Eretinapodites spp.) | 10^4.3 | IP | Y | 10^3.7 | 3 | (Weinbren and Mason 1957) | |||||||
Arvicanthis abyssinicus nubilans | Muridae | 4 | RVFV (from Eretinapodites spp.) | 10^3.3 | IP | Y | 10^3.8 | 5 | (Weinbren and Mason 1957) | |||||||
Arvicanthis abyssinicus nubilans | Muridae | 4 | RVFV (from Eretinapodites spp.) | 10^2.3 | IP | Y | 10^5.0 | 4 | (Weinbren and Mason 1957) | |||||||
Arvicanthis niloticus | Muridae | 22 | AnD100286 (from Aedes dalzielli) | 10^5.5 | IP | 3 | N | (Gora et al. 2000) | ||||||||
Arvicanthis niloticus | Muridae | 6 | ArD38661 (from sheep) | 10^7.7 | SC | 4 | Y | NR | 1 | (Gora et al. 2000) | ||||||
Arvicanthis niloticus niloticus | Muridae | 2 | NR | 2,000 MIC† LD50 | SC | Y | 10^2 | NR | (Hoogstraal et al. 1979) | |||||||
Callithrix jacchus | Callitrichidae | 2 | RVFV (from mice) | NR | SC | 2 | 2 | Y | NR | NR | (Findlay 1932a) | |||||
Callithrix penicillata | Callitrichidae | 1 | RVFV (from mice) | NR | SC | 1 | 1 | Y | NR | NR | (Findlay 1932a) | |||||
Cavia porcellus | Caviidae | 25 | RVFV (from mice) | NR | ID, IP, IV, SC | 0 | 0 | (Findlay 1932c) | ||||||||
Cebus chrysopus | Cebidae | 1 | RVFV (from mice) | NR | SC | 1 | 0 | Y | NR | NR | (Findlay 1932a) | |||||
Cebus fatuellus | Cebidae | 2 | RVFV (from mice) | NR | SC | 2 | 0 | Y | NR | NR | (Findlay 1932a) | |||||
Cercocebus atys | Cercopithecidae | 2 | RVFV (from mice) | NR | SC | 2 | 0 | Y | NR | NR | (Findlay 1932a) | |||||
Chlorocebus sabaeus | Cercopithecidae | 2 | RVFV (from mice) | NR | SC | 2 | 0 | (Findlay 1932a) | ||||||||
Cricetidae | Cricetidae | 6 | RVFV (from mice) | NR | SC | 6 | (Findlay 1932c) | |||||||||
Eptesicus capensis | Vespertilionidae | 2 | NR | 10^6 TCID50** | IM | 1 | 0 | (Oelofsen and van der Ryst 1999) | ||||||||
Eptesicus capensis | Vespertilionidae | 1 | NR | 10^6 TCID50** | PO | 0 | 0 | (Oelofsen and van der Ryst 1999) | ||||||||
Erythrocebus patas | Cercopithecidae | 2 | RVFV (from mice) | NR | SC | 0 | Y | NR | 6 | (Findlay 1932a) | ||||||
Gallus gallus domesticus | Phasianidae | 6 | NR | 10^7 | NR | 0 | N | (Davies and Addy 1979) | ||||||||
Gerbilliscus leucogaster | Muridae | 19 | RVFV 763/70 | 10^3 | SC | Y | Trace | 3–6 | (Swanepoel et al. 1978) | |||||||
Gliridae spp. | Gliridae | 3 | RVFV (from mice) | NR | IP | 3 | (Findlay 1932c) | |||||||||
Leggada bella | Leporidae | 1 | RVFV (from goat kid) | NR | NR | 0 | 1 | (Daubney and Hudson 1932) | ||||||||
Leporidae spp. | Leporidae | 12 | RVFV (from mice) | NR | ID, IP, IV, SC | 0 | 0 | Y | NR | NR | (Findlay 1932c) | |||||
Leporidae spp. | Leporidae | RVFV (from ferret) | NR | IC, ID, IP | All | 0 | 0 | (Francis and Magill 1935) | ||||||||
Macaca mulatta | Cercopithecidae | 17 | ZH-501 | 10^5 PFU‡ | IV | 15 | 3 | 7 | Y | 10^7.5 PFU | 1–6 | (Morrill et al. 1990) | ||||
Macaca mulatta | Cercopithecidae | 14 | RVFV (from human, rodent, monkey) | NR | IC, IN, IP, SC | 4 | 8 | Y | NR | 1–13 | (Findlay 1932c) | |||||
Macaca mulatta | Cercopithecidae | 5 | ZH-501 FRhL2 | 10^4.8 PFU‡ | NR | 1 | NR | (Peters et al. 1988) | ||||||||
Macaca mulatta | Cercopithecidae | 4 | ZH-501 FRhL2 | 10^4.7 PFU‡ | IV | 1 | Y | NR | NR | (Peters et al. 1988) | ||||||
Macaca mulatta | Cercopithecidae | 3 | RVFV (from mice) | NR | SC | 3 | Y | NR | NR | (Findlay 1932b) | ||||||
Macaca mulatta | Cercopithecidae | 3 | ZH-501 FRhL2 | 10^4.1 PFU‡ | IV | 1 | Y | NR | NR | (Peters et al. 1988) | ||||||
Macaca mulatta | Cercopithecidae | 2 | ZH-501 FRhL1 | 10^5.3 PFU‡ | SC | Y | 3.6^10 PFU | 1 | (Peters et al. 1988) | |||||||
Macaca mulatta | Cercopithecidae | 1 | ZH-501 FRhL2 | 10^5.3 PFU‡ | SC | Y | 10^6.8 PFU | 2 | (Peters et al. 1988) | |||||||
Mastomys | Muridae | 5 | AN2327 (from lamb) | 10^1.9 | NR | 1 | Y | 10^1.5 | 1 | (McIntosh 1961) | ||||||
Mastomys coucha | Muridae | 35 | RVFV (from sheep, white mice, Arvicanthis spp.) | NR | NR | 6 | (Daubney and Hudson 1932) | |||||||||
Mastomys erythroleucus | Muridae | 13 | AnD100286 (from Aedes dalzielli) | 10^5.5 | IP | 2 | N | (Gora et al. 2000) | ||||||||
Mastomys erythroleucus | Muridae | 6 | ArD38661 (from sheep) | 10^7.7 | SC | 3 | N | (Gora et al. 2000) | ||||||||
Mastomys natalensis | Muridae | 21 | RVFV 763/70 | 10^3 | SC | N | (Swanepoel et al. 1978) | |||||||||
Mesocricetus auratus | Cricetidae | 2 | RVFV (from mice) | NR | IP | 2 | (Findlay 1932c) | |||||||||
Miniopterus schreibersii | Miniopteridae | 1 | NR | 10^6 TCID50** | PO | 1 | 0 | (Oelofsen and van der Ryst 1999) | ||||||||
Mus musculus | Muridae | 40 | ArD38661 (from sheep) | 10^7.7 | SC | 40 | Y | NR | 1–6 | (Gora et al. 2000) | ||||||
Mus musculus | Muridae | 40 | AnD100286 (from Aedes dalzielli) | 10^5.5 | IP | 2 | 38 | Y | NR | 1–6 | (Gora et al. 2000) | |||||
Mus spp. | Muridae | RVFV (from human, rodent, monkey) | NR | NR | All | (Findlay 1932c) | ||||||||||
Mustela putorius | Mustelidae | RVFV (from human) | NR | NR | All | Most | All | (Francis and Magill 1935) | ||||||||
Mystromys | Nesomyidae | 4 | AN2327 (from lamb) | 10^3.2 | NR | 4 | Y | 10^3.3 | 3 | (McIntosh 1961) | ||||||
Papio sp | Cercopithecidae | 4 | van Wyk | 10^6 | NR | 4 | 1 | Y | NR | 3–4 | (Davies et al. 1972) | |||||
Quelea quelea aethiopica | Ploceidae | 36 | RVFV (from Aedes lineatobennis) | 10^5.5 TCID50** | IM, SC | N | (Davies and Linthicum 1986) | |||||||||
Rattus rattus | Muridae | 2 | NR | 2,000 MIC† LD50 | SC | Y | 10^3 | NR | (Hoogstraal et al. 1979) | |||||||
Rattus rattus kijabius | Muridae | 6 | RVFV (from sheep, white mice, Arvicanthis spp.) | NR | NR | 0 | (Daubney and Hudson 1932) | |||||||||
Rattus spp. | Muridae | 43 | RVFV (from mice) | NR | IP, SC | 22 | (Findlay 1932c) | |||||||||
Rattus spp. | Muridae | 10 | RVFV (from mice) | NR | IT | 9 | (Findlay 1932c) | |||||||||
Rattus spp. | Muridae | 4 | RVFV (from mice) | NR | IC | 4 | (Findlay 1932c) | |||||||||
Saccostomus | Nesomyidae | 3 | AN2327 (from lamb) | 10^1.9 | NR | 1 | 1 | Y | 10^6.0 | 2 | (McIntosh 1961) | |||||
Sciurus sp | Sciuridae | 2 | RVFV (from mice) | NR | IP | 1 | Y | NR | NR | (Findlay 1932c) | ||||||
Syncerus caffer | Bovidae | 5 | Kabete | 10^7.7 TCID50** | ID | 4 | 1 | Y | 10^4.4 TCID50** | 2–4 | (Davies and Karstad 1981) | |||||
Syncerus caffer | Bovidae | 1 | RVFV (from sheep, white mice, Arvicanthis spp.) | NR | NR | 1 | (Daubney and Hudson 1932) | |||||||||
Tatera | Muridae | 5 | AN2327 (from lamb) | 10^3.7 | NR | 0 | N | (McIntosh 1961) |
Where available the inoculation route, dose, and viral strain are given as well as the result of the infection including seroconversion, viremia detected, and clinical signs or cases of mortality. Viremia is indicated by detection, highest titer, and the longest viremic period amongst the animals in the experimental group. NR = not reported.
*Infectious dose LD50 (lethal dose) unless otherwise stated.
**Tissue cultural infective dose.
†MIC not defined.
‡Plaque forming units.
§IC, intracerbral; ID, intradermal; IM, intramuscular; IN, intranasal; IP, intraperitoneal; IT, intratesticular; IV, intravenous; PO, peroral; SC, subcutaneous.
*** Serum from the sampled animal was inoculated into a mouse and was protective against a challenge with RVFV.
Wildlife species that have been experimentally inoculated with RVFV given by study, species, and family
Species . | Family . | Total Inoculated . | Experi-mental Strain . | Infectious Dose* . | Inoc-ulati-on Route§ . | Sandwich ELISA1 . | VNT . | IFA . | Positive Protective Titer*** . | Death . | Sick . | Abort . | Viremia Detected . | Maximum Viremia . | Number of Days Viremia Detected . | Citation . |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acomys cahirinus | Muridae | 2 | NR | 2,000 MIC LD50 | SC | Y | 10^2 | NR | (Hoogstraal et al. 1979) | |||||||
Aethomys spp. | Muridae | 5 | AN2327 (from lamb) | 10^1.9 | NR | 0 | Y | 10^4.2 | 3 | (McIntosh 1961) | ||||||
Aethomys namaquensis | Muridae | 12 | RVFV 763/70 | 10^3 | SC | Y | 10^4.6 | 2–5 | (Swanepoel et al. 1978) | |||||||
Aethomys namaquensis | Muridae | 6 | AN 1830 | 10^3 TICD50** | SC | Y | 10^8.5 | 2–3 | (Pretorius et al. 1997) | |||||||
Apodemus sylvaticus | Muridae | 10 | RVFV (from mice) | NR | SC | 10 | (Findlay 1932c) | |||||||||
Arvicanthis abyssinicus nairobae | Muridae | 57 | RVFV (from sheep, white mice) | NR | NR | 19 | (Daubney and Hudson 1932) | |||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^8 | IP | 3 | 0 | 0 | (Weinbren and Mason 1957) | |||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^8 | IC | 0 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^8 | SC | 0 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^7.6 | IP | 3 | 1 | 1 | 1 | Y | 10^2.4–10^4.8 | NR | (Weinbren and Mason 1957) | |||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^6 | IP | 1 | 3 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^6 | IP | 5 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^5.6 | IP | 3 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^4.6 | IP | 4 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^4 | IP | 2 | 1 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^3.6 | IP | 5 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^3 | IP | 1 | 1 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^2.6 | IP | 4 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^2 | IP | 0 | (Weinbren and Mason 1957) | |||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^1.6 | IP | 1 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^0.6 | IP | 0 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 4 | RVFV (from Eretinapodites spp.) | 10^5.3 | IP | Y | 10^2.5 | 1 | (Weinbren and Mason 1957) | |||||||
Arvicanthis abyssinicus nubilans | Muridae | 4 | RVFV (from Eretinapodites spp.) | 10^4.3 | IP | Y | 10^3.7 | 3 | (Weinbren and Mason 1957) | |||||||
Arvicanthis abyssinicus nubilans | Muridae | 4 | RVFV (from Eretinapodites spp.) | 10^3.3 | IP | Y | 10^3.8 | 5 | (Weinbren and Mason 1957) | |||||||
Arvicanthis abyssinicus nubilans | Muridae | 4 | RVFV (from Eretinapodites spp.) | 10^2.3 | IP | Y | 10^5.0 | 4 | (Weinbren and Mason 1957) | |||||||
Arvicanthis niloticus | Muridae | 22 | AnD100286 (from Aedes dalzielli) | 10^5.5 | IP | 3 | N | (Gora et al. 2000) | ||||||||
Arvicanthis niloticus | Muridae | 6 | ArD38661 (from sheep) | 10^7.7 | SC | 4 | Y | NR | 1 | (Gora et al. 2000) | ||||||
Arvicanthis niloticus niloticus | Muridae | 2 | NR | 2,000 MIC† LD50 | SC | Y | 10^2 | NR | (Hoogstraal et al. 1979) | |||||||
Callithrix jacchus | Callitrichidae | 2 | RVFV (from mice) | NR | SC | 2 | 2 | Y | NR | NR | (Findlay 1932a) | |||||
Callithrix penicillata | Callitrichidae | 1 | RVFV (from mice) | NR | SC | 1 | 1 | Y | NR | NR | (Findlay 1932a) | |||||
Cavia porcellus | Caviidae | 25 | RVFV (from mice) | NR | ID, IP, IV, SC | 0 | 0 | (Findlay 1932c) | ||||||||
Cebus chrysopus | Cebidae | 1 | RVFV (from mice) | NR | SC | 1 | 0 | Y | NR | NR | (Findlay 1932a) | |||||
Cebus fatuellus | Cebidae | 2 | RVFV (from mice) | NR | SC | 2 | 0 | Y | NR | NR | (Findlay 1932a) | |||||
Cercocebus atys | Cercopithecidae | 2 | RVFV (from mice) | NR | SC | 2 | 0 | Y | NR | NR | (Findlay 1932a) | |||||
Chlorocebus sabaeus | Cercopithecidae | 2 | RVFV (from mice) | NR | SC | 2 | 0 | (Findlay 1932a) | ||||||||
Cricetidae | Cricetidae | 6 | RVFV (from mice) | NR | SC | 6 | (Findlay 1932c) | |||||||||
Eptesicus capensis | Vespertilionidae | 2 | NR | 10^6 TCID50** | IM | 1 | 0 | (Oelofsen and van der Ryst 1999) | ||||||||
Eptesicus capensis | Vespertilionidae | 1 | NR | 10^6 TCID50** | PO | 0 | 0 | (Oelofsen and van der Ryst 1999) | ||||||||
Erythrocebus patas | Cercopithecidae | 2 | RVFV (from mice) | NR | SC | 0 | Y | NR | 6 | (Findlay 1932a) | ||||||
Gallus gallus domesticus | Phasianidae | 6 | NR | 10^7 | NR | 0 | N | (Davies and Addy 1979) | ||||||||
Gerbilliscus leucogaster | Muridae | 19 | RVFV 763/70 | 10^3 | SC | Y | Trace | 3–6 | (Swanepoel et al. 1978) | |||||||
Gliridae spp. | Gliridae | 3 | RVFV (from mice) | NR | IP | 3 | (Findlay 1932c) | |||||||||
Leggada bella | Leporidae | 1 | RVFV (from goat kid) | NR | NR | 0 | 1 | (Daubney and Hudson 1932) | ||||||||
Leporidae spp. | Leporidae | 12 | RVFV (from mice) | NR | ID, IP, IV, SC | 0 | 0 | Y | NR | NR | (Findlay 1932c) | |||||
Leporidae spp. | Leporidae | RVFV (from ferret) | NR | IC, ID, IP | All | 0 | 0 | (Francis and Magill 1935) | ||||||||
Macaca mulatta | Cercopithecidae | 17 | ZH-501 | 10^5 PFU‡ | IV | 15 | 3 | 7 | Y | 10^7.5 PFU | 1–6 | (Morrill et al. 1990) | ||||
Macaca mulatta | Cercopithecidae | 14 | RVFV (from human, rodent, monkey) | NR | IC, IN, IP, SC | 4 | 8 | Y | NR | 1–13 | (Findlay 1932c) | |||||
Macaca mulatta | Cercopithecidae | 5 | ZH-501 FRhL2 | 10^4.8 PFU‡ | NR | 1 | NR | (Peters et al. 1988) | ||||||||
Macaca mulatta | Cercopithecidae | 4 | ZH-501 FRhL2 | 10^4.7 PFU‡ | IV | 1 | Y | NR | NR | (Peters et al. 1988) | ||||||
Macaca mulatta | Cercopithecidae | 3 | RVFV (from mice) | NR | SC | 3 | Y | NR | NR | (Findlay 1932b) | ||||||
Macaca mulatta | Cercopithecidae | 3 | ZH-501 FRhL2 | 10^4.1 PFU‡ | IV | 1 | Y | NR | NR | (Peters et al. 1988) | ||||||
Macaca mulatta | Cercopithecidae | 2 | ZH-501 FRhL1 | 10^5.3 PFU‡ | SC | Y | 3.6^10 PFU | 1 | (Peters et al. 1988) | |||||||
Macaca mulatta | Cercopithecidae | 1 | ZH-501 FRhL2 | 10^5.3 PFU‡ | SC | Y | 10^6.8 PFU | 2 | (Peters et al. 1988) | |||||||
Mastomys | Muridae | 5 | AN2327 (from lamb) | 10^1.9 | NR | 1 | Y | 10^1.5 | 1 | (McIntosh 1961) | ||||||
Mastomys coucha | Muridae | 35 | RVFV (from sheep, white mice, Arvicanthis spp.) | NR | NR | 6 | (Daubney and Hudson 1932) | |||||||||
Mastomys erythroleucus | Muridae | 13 | AnD100286 (from Aedes dalzielli) | 10^5.5 | IP | 2 | N | (Gora et al. 2000) | ||||||||
Mastomys erythroleucus | Muridae | 6 | ArD38661 (from sheep) | 10^7.7 | SC | 3 | N | (Gora et al. 2000) | ||||||||
Mastomys natalensis | Muridae | 21 | RVFV 763/70 | 10^3 | SC | N | (Swanepoel et al. 1978) | |||||||||
Mesocricetus auratus | Cricetidae | 2 | RVFV (from mice) | NR | IP | 2 | (Findlay 1932c) | |||||||||
Miniopterus schreibersii | Miniopteridae | 1 | NR | 10^6 TCID50** | PO | 1 | 0 | (Oelofsen and van der Ryst 1999) | ||||||||
Mus musculus | Muridae | 40 | ArD38661 (from sheep) | 10^7.7 | SC | 40 | Y | NR | 1–6 | (Gora et al. 2000) | ||||||
Mus musculus | Muridae | 40 | AnD100286 (from Aedes dalzielli) | 10^5.5 | IP | 2 | 38 | Y | NR | 1–6 | (Gora et al. 2000) | |||||
Mus spp. | Muridae | RVFV (from human, rodent, monkey) | NR | NR | All | (Findlay 1932c) | ||||||||||
Mustela putorius | Mustelidae | RVFV (from human) | NR | NR | All | Most | All | (Francis and Magill 1935) | ||||||||
Mystromys | Nesomyidae | 4 | AN2327 (from lamb) | 10^3.2 | NR | 4 | Y | 10^3.3 | 3 | (McIntosh 1961) | ||||||
Papio sp | Cercopithecidae | 4 | van Wyk | 10^6 | NR | 4 | 1 | Y | NR | 3–4 | (Davies et al. 1972) | |||||
Quelea quelea aethiopica | Ploceidae | 36 | RVFV (from Aedes lineatobennis) | 10^5.5 TCID50** | IM, SC | N | (Davies and Linthicum 1986) | |||||||||
Rattus rattus | Muridae | 2 | NR | 2,000 MIC† LD50 | SC | Y | 10^3 | NR | (Hoogstraal et al. 1979) | |||||||
Rattus rattus kijabius | Muridae | 6 | RVFV (from sheep, white mice, Arvicanthis spp.) | NR | NR | 0 | (Daubney and Hudson 1932) | |||||||||
Rattus spp. | Muridae | 43 | RVFV (from mice) | NR | IP, SC | 22 | (Findlay 1932c) | |||||||||
Rattus spp. | Muridae | 10 | RVFV (from mice) | NR | IT | 9 | (Findlay 1932c) | |||||||||
Rattus spp. | Muridae | 4 | RVFV (from mice) | NR | IC | 4 | (Findlay 1932c) | |||||||||
Saccostomus | Nesomyidae | 3 | AN2327 (from lamb) | 10^1.9 | NR | 1 | 1 | Y | 10^6.0 | 2 | (McIntosh 1961) | |||||
Sciurus sp | Sciuridae | 2 | RVFV (from mice) | NR | IP | 1 | Y | NR | NR | (Findlay 1932c) | ||||||
Syncerus caffer | Bovidae | 5 | Kabete | 10^7.7 TCID50** | ID | 4 | 1 | Y | 10^4.4 TCID50** | 2–4 | (Davies and Karstad 1981) | |||||
Syncerus caffer | Bovidae | 1 | RVFV (from sheep, white mice, Arvicanthis spp.) | NR | NR | 1 | (Daubney and Hudson 1932) | |||||||||
Tatera | Muridae | 5 | AN2327 (from lamb) | 10^3.7 | NR | 0 | N | (McIntosh 1961) |
Species . | Family . | Total Inoculated . | Experi-mental Strain . | Infectious Dose* . | Inoc-ulati-on Route§ . | Sandwich ELISA1 . | VNT . | IFA . | Positive Protective Titer*** . | Death . | Sick . | Abort . | Viremia Detected . | Maximum Viremia . | Number of Days Viremia Detected . | Citation . |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acomys cahirinus | Muridae | 2 | NR | 2,000 MIC LD50 | SC | Y | 10^2 | NR | (Hoogstraal et al. 1979) | |||||||
Aethomys spp. | Muridae | 5 | AN2327 (from lamb) | 10^1.9 | NR | 0 | Y | 10^4.2 | 3 | (McIntosh 1961) | ||||||
Aethomys namaquensis | Muridae | 12 | RVFV 763/70 | 10^3 | SC | Y | 10^4.6 | 2–5 | (Swanepoel et al. 1978) | |||||||
Aethomys namaquensis | Muridae | 6 | AN 1830 | 10^3 TICD50** | SC | Y | 10^8.5 | 2–3 | (Pretorius et al. 1997) | |||||||
Apodemus sylvaticus | Muridae | 10 | RVFV (from mice) | NR | SC | 10 | (Findlay 1932c) | |||||||||
Arvicanthis abyssinicus nairobae | Muridae | 57 | RVFV (from sheep, white mice) | NR | NR | 19 | (Daubney and Hudson 1932) | |||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^8 | IP | 3 | 0 | 0 | (Weinbren and Mason 1957) | |||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^8 | IC | 0 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^8 | SC | 0 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^7.6 | IP | 3 | 1 | 1 | 1 | Y | 10^2.4–10^4.8 | NR | (Weinbren and Mason 1957) | |||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^6 | IP | 1 | 3 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^6 | IP | 5 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^5.6 | IP | 3 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^4.6 | IP | 4 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^4 | IP | 2 | 1 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^3.6 | IP | 5 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^3 | IP | 1 | 1 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^2.6 | IP | 4 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^2 | IP | 0 | (Weinbren and Mason 1957) | |||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^1.6 | IP | 1 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 5 | RVFV (from Eretinapodites spp.) | 10^0.6 | IP | 0 | 0 | (Weinbren and Mason 1957) | ||||||||
Arvicanthis abyssinicus nubilans | Muridae | 4 | RVFV (from Eretinapodites spp.) | 10^5.3 | IP | Y | 10^2.5 | 1 | (Weinbren and Mason 1957) | |||||||
Arvicanthis abyssinicus nubilans | Muridae | 4 | RVFV (from Eretinapodites spp.) | 10^4.3 | IP | Y | 10^3.7 | 3 | (Weinbren and Mason 1957) | |||||||
Arvicanthis abyssinicus nubilans | Muridae | 4 | RVFV (from Eretinapodites spp.) | 10^3.3 | IP | Y | 10^3.8 | 5 | (Weinbren and Mason 1957) | |||||||
Arvicanthis abyssinicus nubilans | Muridae | 4 | RVFV (from Eretinapodites spp.) | 10^2.3 | IP | Y | 10^5.0 | 4 | (Weinbren and Mason 1957) | |||||||
Arvicanthis niloticus | Muridae | 22 | AnD100286 (from Aedes dalzielli) | 10^5.5 | IP | 3 | N | (Gora et al. 2000) | ||||||||
Arvicanthis niloticus | Muridae | 6 | ArD38661 (from sheep) | 10^7.7 | SC | 4 | Y | NR | 1 | (Gora et al. 2000) | ||||||
Arvicanthis niloticus niloticus | Muridae | 2 | NR | 2,000 MIC† LD50 | SC | Y | 10^2 | NR | (Hoogstraal et al. 1979) | |||||||
Callithrix jacchus | Callitrichidae | 2 | RVFV (from mice) | NR | SC | 2 | 2 | Y | NR | NR | (Findlay 1932a) | |||||
Callithrix penicillata | Callitrichidae | 1 | RVFV (from mice) | NR | SC | 1 | 1 | Y | NR | NR | (Findlay 1932a) | |||||
Cavia porcellus | Caviidae | 25 | RVFV (from mice) | NR | ID, IP, IV, SC | 0 | 0 | (Findlay 1932c) | ||||||||
Cebus chrysopus | Cebidae | 1 | RVFV (from mice) | NR | SC | 1 | 0 | Y | NR | NR | (Findlay 1932a) | |||||
Cebus fatuellus | Cebidae | 2 | RVFV (from mice) | NR | SC | 2 | 0 | Y | NR | NR | (Findlay 1932a) | |||||
Cercocebus atys | Cercopithecidae | 2 | RVFV (from mice) | NR | SC | 2 | 0 | Y | NR | NR | (Findlay 1932a) | |||||
Chlorocebus sabaeus | Cercopithecidae | 2 | RVFV (from mice) | NR | SC | 2 | 0 | (Findlay 1932a) | ||||||||
Cricetidae | Cricetidae | 6 | RVFV (from mice) | NR | SC | 6 | (Findlay 1932c) | |||||||||
Eptesicus capensis | Vespertilionidae | 2 | NR | 10^6 TCID50** | IM | 1 | 0 | (Oelofsen and van der Ryst 1999) | ||||||||
Eptesicus capensis | Vespertilionidae | 1 | NR | 10^6 TCID50** | PO | 0 | 0 | (Oelofsen and van der Ryst 1999) | ||||||||
Erythrocebus patas | Cercopithecidae | 2 | RVFV (from mice) | NR | SC | 0 | Y | NR | 6 | (Findlay 1932a) | ||||||
Gallus gallus domesticus | Phasianidae | 6 | NR | 10^7 | NR | 0 | N | (Davies and Addy 1979) | ||||||||
Gerbilliscus leucogaster | Muridae | 19 | RVFV 763/70 | 10^3 | SC | Y | Trace | 3–6 | (Swanepoel et al. 1978) | |||||||
Gliridae spp. | Gliridae | 3 | RVFV (from mice) | NR | IP | 3 | (Findlay 1932c) | |||||||||
Leggada bella | Leporidae | 1 | RVFV (from goat kid) | NR | NR | 0 | 1 | (Daubney and Hudson 1932) | ||||||||
Leporidae spp. | Leporidae | 12 | RVFV (from mice) | NR | ID, IP, IV, SC | 0 | 0 | Y | NR | NR | (Findlay 1932c) | |||||
Leporidae spp. | Leporidae | RVFV (from ferret) | NR | IC, ID, IP | All | 0 | 0 | (Francis and Magill 1935) | ||||||||
Macaca mulatta | Cercopithecidae | 17 | ZH-501 | 10^5 PFU‡ | IV | 15 | 3 | 7 | Y | 10^7.5 PFU | 1–6 | (Morrill et al. 1990) | ||||
Macaca mulatta | Cercopithecidae | 14 | RVFV (from human, rodent, monkey) | NR | IC, IN, IP, SC | 4 | 8 | Y | NR | 1–13 | (Findlay 1932c) | |||||
Macaca mulatta | Cercopithecidae | 5 | ZH-501 FRhL2 | 10^4.8 PFU‡ | NR | 1 | NR | (Peters et al. 1988) | ||||||||
Macaca mulatta | Cercopithecidae | 4 | ZH-501 FRhL2 | 10^4.7 PFU‡ | IV | 1 | Y | NR | NR | (Peters et al. 1988) | ||||||
Macaca mulatta | Cercopithecidae | 3 | RVFV (from mice) | NR | SC | 3 | Y | NR | NR | (Findlay 1932b) | ||||||
Macaca mulatta | Cercopithecidae | 3 | ZH-501 FRhL2 | 10^4.1 PFU‡ | IV | 1 | Y | NR | NR | (Peters et al. 1988) | ||||||
Macaca mulatta | Cercopithecidae | 2 | ZH-501 FRhL1 | 10^5.3 PFU‡ | SC | Y | 3.6^10 PFU | 1 | (Peters et al. 1988) | |||||||
Macaca mulatta | Cercopithecidae | 1 | ZH-501 FRhL2 | 10^5.3 PFU‡ | SC | Y | 10^6.8 PFU | 2 | (Peters et al. 1988) | |||||||
Mastomys | Muridae | 5 | AN2327 (from lamb) | 10^1.9 | NR | 1 | Y | 10^1.5 | 1 | (McIntosh 1961) | ||||||
Mastomys coucha | Muridae | 35 | RVFV (from sheep, white mice, Arvicanthis spp.) | NR | NR | 6 | (Daubney and Hudson 1932) | |||||||||
Mastomys erythroleucus | Muridae | 13 | AnD100286 (from Aedes dalzielli) | 10^5.5 | IP | 2 | N | (Gora et al. 2000) | ||||||||
Mastomys erythroleucus | Muridae | 6 | ArD38661 (from sheep) | 10^7.7 | SC | 3 | N | (Gora et al. 2000) | ||||||||
Mastomys natalensis | Muridae | 21 | RVFV 763/70 | 10^3 | SC | N | (Swanepoel et al. 1978) | |||||||||
Mesocricetus auratus | Cricetidae | 2 | RVFV (from mice) | NR | IP | 2 | (Findlay 1932c) | |||||||||
Miniopterus schreibersii | Miniopteridae | 1 | NR | 10^6 TCID50** | PO | 1 | 0 | (Oelofsen and van der Ryst 1999) | ||||||||
Mus musculus | Muridae | 40 | ArD38661 (from sheep) | 10^7.7 | SC | 40 | Y | NR | 1–6 | (Gora et al. 2000) | ||||||
Mus musculus | Muridae | 40 | AnD100286 (from Aedes dalzielli) | 10^5.5 | IP | 2 | 38 | Y | NR | 1–6 | (Gora et al. 2000) | |||||
Mus spp. | Muridae | RVFV (from human, rodent, monkey) | NR | NR | All | (Findlay 1932c) | ||||||||||
Mustela putorius | Mustelidae | RVFV (from human) | NR | NR | All | Most | All | (Francis and Magill 1935) | ||||||||
Mystromys | Nesomyidae | 4 | AN2327 (from lamb) | 10^3.2 | NR | 4 | Y | 10^3.3 | 3 | (McIntosh 1961) | ||||||
Papio sp | Cercopithecidae | 4 | van Wyk | 10^6 | NR | 4 | 1 | Y | NR | 3–4 | (Davies et al. 1972) | |||||
Quelea quelea aethiopica | Ploceidae | 36 | RVFV (from Aedes lineatobennis) | 10^5.5 TCID50** | IM, SC | N | (Davies and Linthicum 1986) | |||||||||
Rattus rattus | Muridae | 2 | NR | 2,000 MIC† LD50 | SC | Y | 10^3 | NR | (Hoogstraal et al. 1979) | |||||||
Rattus rattus kijabius | Muridae | 6 | RVFV (from sheep, white mice, Arvicanthis spp.) | NR | NR | 0 | (Daubney and Hudson 1932) | |||||||||
Rattus spp. | Muridae | 43 | RVFV (from mice) | NR | IP, SC | 22 | (Findlay 1932c) | |||||||||
Rattus spp. | Muridae | 10 | RVFV (from mice) | NR | IT | 9 | (Findlay 1932c) | |||||||||
Rattus spp. | Muridae | 4 | RVFV (from mice) | NR | IC | 4 | (Findlay 1932c) | |||||||||
Saccostomus | Nesomyidae | 3 | AN2327 (from lamb) | 10^1.9 | NR | 1 | 1 | Y | 10^6.0 | 2 | (McIntosh 1961) | |||||
Sciurus sp | Sciuridae | 2 | RVFV (from mice) | NR | IP | 1 | Y | NR | NR | (Findlay 1932c) | ||||||
Syncerus caffer | Bovidae | 5 | Kabete | 10^7.7 TCID50** | ID | 4 | 1 | Y | 10^4.4 TCID50** | 2–4 | (Davies and Karstad 1981) | |||||
Syncerus caffer | Bovidae | 1 | RVFV (from sheep, white mice, Arvicanthis spp.) | NR | NR | 1 | (Daubney and Hudson 1932) | |||||||||
Tatera | Muridae | 5 | AN2327 (from lamb) | 10^3.7 | NR | 0 | N | (McIntosh 1961) |
Where available the inoculation route, dose, and viral strain are given as well as the result of the infection including seroconversion, viremia detected, and clinical signs or cases of mortality. Viremia is indicated by detection, highest titer, and the longest viremic period amongst the animals in the experimental group. NR = not reported.
*Infectious dose LD50 (lethal dose) unless otherwise stated.
**Tissue cultural infective dose.
†MIC not defined.
‡Plaque forming units.
§IC, intracerbral; ID, intradermal; IM, intramuscular; IN, intranasal; IP, intraperitoneal; IT, intratesticular; IV, intravenous; PO, peroral; SC, subcutaneous.
*** Serum from the sampled animal was inoculated into a mouse and was protective against a challenge with RVFV.
Research reviewed in this article indicates that, thus far, no specific wildlife maintenance host has been identified. The review, by Olive et al. (Olive et al. 2012), suggested that members of the orders Rodentia and Chiroptera should be further investigated as potential maintenance hosts for RVFV. These authors argued this might be especially applicable for Madagascar, where there are no endemic ruminant species but there is endemic RVF. Following that recommendation, Olive et al. (Olive et al. 2013) tested 1610 blood samples from wild rodents and tenrecs (Afrosoricida) in Madagascar, including 1118 samples from Rattus rattus. All samples were found to be negative by IgG ELISA. Liver and spleen samples from an additional 947 animals were tested by RT-PCR and were also negative. The available data do not implicate any single species or taxonomic group as potentially being a “good” reservoir host as defined by Olive et al. (above) (Olive et al. 2012). One of the measures of being a “good” reservoir is a longer than usual viremic period; we have included the measured viremic period (when available) in certain wildlife species that were experimentally infected and became viremic in Table 3. Only one species had a viremia of greater than six days, Macaca mulatta, and this nonhuman primate is not endemic to the African continent, thus demonstrating the difficulty in identifying a single reservoir species. Even so, given the proclivity of Chiroptera to host a wide range of viruses (Brook and Dobson 2015; Olival et al. 2015, 2017), further investigation into their potential role as hosts for RVFV would be prudent.
Currently, there is no evidence to implicate a specific reservoir host for RVFV. Rather than depending solely on the survival of the floodwater Aedes mosquito eggs during the 7- to 15-year inter-epidemic periods, evidence from both domestic animals and wildlife indicates there is low-level circulation of the virus. In Kenya, despite only one case of RVFV clinically diagnosed between 2000 and mid 2006, 18% of sheep born after the 1998 RVF outbreak were seropositive on IgG ELISA (developed for use in sheep) (Rostal et al. 2010). Likewise, Chevalier et. al (Chevalier et al. 2005) measured the incidence of RVFV exposure in sheep and goats to be 2.9% during a 4-month period. In wildlife, LaBeaud et al. (LaBeaud et al. 2011) found that 9 of 126 resampled buffalo seroconverted in the absence of a known outbreak (using hemagglutination assays). Further, Capobianco Dondona et al. (Capobianco Dondona et al. 2016) detected viral RNA in 18 of 200 springbok in Namibia during an inter-epidemic period. This evidence supports the idea that rather than requiring a single reservoir host, RVFV may depend on a reservoir system (Haydon et al. 2002) that involves low-level cycling among wildlife and domestic ruminant species and individuals that may suddenly increase to an epizootic when sufficient vectors are present. Manore and Beechler (Manore and Beechler 2015) developed a mathematical model that simulated RVFV persistence in the system that included transovarial transmission (1–4%), and two host species—one long-lived (15 years) and one short-lived (3–11 years)—with similar transmission rates. They were able to simulate sustained transmission when vector eggs survive only 1 to 3 years after being laid, rather than needing to survive 7 to 15 years until the next epizootic period.
Very little is known about the course of RVFV infection in most wildlife species, particularly ruminants. The only two investigations of experimental infection in wild ruminants involved buffalo. Davies et al. (Davies and Karstad 1981) intradermally inoculated five buffalo; four animals had similar immune, viremic, and clinical responses as those observed in cattle. The fifth animal aborted (one of two pregnant buffalo inoculated). Daubney and Hudson (Daubney and Hudson 1932) infected a seven-month-old buffalo calf, which had clinical signs of RVF following inoculation. Other evidence of infection can be gleaned from reports such as ProMed Mail that reported tissue from one giraffe, one waterbuck, and six aborted buffalo feti were positive for RVFV on RT-PCR and virus isolation (ProMED mail 1999). There has also been evidence of infection with RVFV in springbok, blesbok, buffalo, sable, nyala, eland, waterbuck, bontebok, fallow deer, and llamas during RVF outbreaks in South Africa (Bengis, unpublished data). Similarly, there are anecdotal reports from wildlife veterinarians of fewer calves born during the next season (or unusually high rates of abortions) in buffalo and other wildlife ruminant species (Dr. E. Rambert, Wintershoek Wild, pers.comm., 2015; Dr. D. Zimmermann, SANParks, pers.comm., 2015).
Synthesis and Conclusions
The reservoir of RVFV has been a mystery since the virus was first detected in 1930 (Daubney et al. 1931). A number of the early studies focused on neutralizing serological responses, viral detection in free-ranging rodents, and experimental infections of rodents and primates, whereas later studies have focused more on serological surveys of a wider diversity of wildlife. However, as more cost-effective and safer diagnostics were developed for domestic species, studies began using these ELISA and HI antibody assays without validating the tests for wildlife species, making their results difficult to interpret. The inability of researchers to implicate a reservoir species necessitates continued research of the epidemiology of RVFV in wildlife species, including clinical and subclinical responses. Given the evidence presented, we recommend that future research on RVFV incorporate a more systematic approach to understand the low-level cycling of the virus during inter-epidemic periods in both wildlife and domestic ruminant species. Developing multispecies models to identify potential maintenance systems (where multiple nonmaintenance host species produce a reservoir system, rather than depending on a single reservoir host species [Haydon et al. 2002]) could improve the targeting of wildlife groups that may contribute to the system, based on host traits such as lifespan, etc. (see Manore and Beechler 2015). Additionally, further data are needed to assess the clinical effects of the virus on endemic wildlife species, which are of economic importance in many African countries through tourism and production (e.g., South Africa). Despite several large surveys that have been conducted, our understanding of RVFV ecology and epidemiology in wildlife remains limited.
Supplementary Material
Supplementary material is available at Institute for Laboratory Animal Research Journal online.
Funding
The project depicted was or is sponsored by the Department of the Defense, Defense Threat Reduction Agency. The content of the information does not necessarily reflect the position or the policy of the federal government, and no official endorsement should be inferred.