Abstract

OBJECTIVES

Driveline infection (DLI) is a common complication in patients with left ventricular assist devices. This complication can seriously undermine quality of life while on left ventricular assist devices. Current diagnosis of a DLI in the outpatient setting is based on clinical examination and later bacteria isolation. The Moleculight i:XTM is a handheld fluorescence imaging device capable to visualize bacterial colonization in real-time. We here evaluated the performance of the Moleculight i:XTM for diagnosis of DLIs as this device may have the potential advantage to rapidly identify infection and therefore promptly influence therapy.

METHODS

A total of 107 examinations in patients with suspected DLIs were prospectively included in this study. All examinations took place in the outpatient setting. In addition to the standard treatment, Moleculight fluorescence images were captured and swabs were taken at the area of maximal luminosity. Wounds and pictures were reviewed and classified as positive or negative by a wound specialist and two heart surgeons independently from microbiological results.

RESULTS

The Moleculight i:XTM showed positive results (red fluorescence) in 19 cases (17.76%), whereas microbiological examination was positive for microorganisms in 74 cases (69.16%). The most common bacteria was Staphylococcus aureus. The findings resulted in a sensitivity of 13.51% and a specificity of 72.73%. The positive predictive value was 52.63% and the negative predictive value was 27.27%. Sub-analyses of different wound dressings or previous antibiotic treatment did not show any relevant difference.

CONCLUSIONS

The results of the Moleculight i:X show a low sensitivity and specificity when being used to detect DLIs in the outpatient setting. Clinical examination and swabs should remain the gold standard despite the delay for bacteria isolation and consequent antibiotic treatment. Sensitivity and specificity of the Moleculight i:X in open wounds after surgical revision of the driveline remain to be clarified.

INTRODUCTION

Driveline infection (DLI) is a frequent complication undermining quality of life of patients on left ventricular assist devices (LVADs). Latest literature reports an incidence of DLIs from 14% to 59% in the first 2 years after implantation [1–4]. Current classification of VAD specific infections differentiates deep from superficial DLIs according to the depth of infection [5]. While Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) [6] is progressively becoming an additional tool for assessing the extent of infection to the deep layers, the standard diagnosis of superficial infection is based on clinical inspection of the driveline (DL) and late bacteria isolation [5, 7]. In this setting, if there is the suspicion of infection at the piercing site of the DL, swabs are generally taken. In case of bacteria isolation, specific antibiotic treatment can be started [8]. The Moleculight i:XTM (Moleculight Inc, Toronto, Canada) is a fluorescence real-time camera capable of identifying bacterial colonization (Fig. 1). It may provide the potential advantage to rapidly identify infection and therefore promptly influence therapy. The potential use of this tool for the diagnosis of DLI has been suggested in a case report [9] and its usefulness has been postulated in various other medical and surgical fields [10–17]. We here aimed to assess the sensitivity and specificity of Moleculight i:XTM for DLI in our outpatient collective of LVAD patients recruited between March 2020 and May 2022.

The Moleculight i:X in the outpatient setting. The fluorescence light around the entry side of the driveline is a sign for infection.
Figure 1:

The Moleculight i:X in the outpatient setting. The fluorescence light around the entry side of the driveline is a sign for infection.

DEVICE, PATIENTS AND METHODS

Ethics statement

The study was approved by the ethical committee (Approval Number: 2020–530-f-S), and patients gave their verbal and written consent prior to the examination.

The Moleculight i:XTM

The Moleculight i:XTM uses an iPod Touch® by Apple® (Apple Inc, Cupertino CA, United States) as a camera and for image storage. The iPod is embedded in a casing with a built-in safe ultraviolet light (405 nm) that can be turned on and off by a toggle switch. Two lights indicate whether the distance to take a picture is enough (approximately 10 cm) and whether the room is dark enough to take a fluorescence image [18]. The device is able to detect bacterial colonization in real-time at a minimum bacterial load of 104 CFU/g. The ultraviolet light triggers the emission of red fluorescence from porphyrines as they are generally produced by bacteria (Fig. 1). Tissues such as collagen appear green whereas Pseudomonas species appear in a cyan shade [18, 19]. In vitro, the Moleculight is supposed to be able to detect 28/32 bacteria that are common in wounds, including one of the most common bacteria found in wounds, Staphylococcus aureus, and one of four yeasts [20]. Bacterial microorganisms that could not be identified by the Moleculight in vitro are all non-porphyrin producing and include Enterococcus faecalis, Finegoldia magna, Streptococcus agalactiae and Streptococcus mitis. Species seems to be more essential for the intensity of red fluorescence than the bacterial load. The red fluorescence could not be detected on biofilms when ALA was not used whereas all samples that were supplemented with ALA showed red fluorescence [20].

Study population

This prospective study was conducted in the Department of Heart Surgery of the University Hospital of Muenster (Germany).

The sample size was calculated by the Clinical Institute of Biometrics and Clinical Research of the University of Muenster using the point estimator for sensitivity and specificity. All patients with suspected infections of the DL were included. An infection was suspected when the piercing site was reddened or pus was visible. Exclusion criteria was the presence of psoriasis around the piercing site of the DL as skin conditions can per se alter the colour and luminosity of the pictures.

Standard treatment and study design

Our standard treatment consists of routine visits every 6 weeks for bridge-to-transplantation and up to 3 months for definitive therapy (DT) patients. Wound dressing change is recommended once to thrice a week under sterile conditions [21]. After removing the dressing and inspecting the entry site during outpatient care, swabs are taken if an infection is suspected [7]. The exit site of the DL is then cleaned with hypochlorite rinsing solutions (ActiMaris; AG, Buchs, Switzerland), and if an infection was suspected or proven, oral antibiotics were started [8, 21–23]. In case of a systemic infection, the patient was hospitalized [23–25].

Dressing material includes Metalline® drainage pads or Kerrasol™ Gel along with sterile wound dressing.

Since March 2020, we additionally integrated the Moleculight i:X for the diagnosis of DLI in LVAD outpatient care. In case of a suspected infection [5, 26, 27], images were captured using the Moleculight (Fig. 1) before the wound was cleaned. First, a regular picture of the wound was taken. In addition, the room was darkened and the ultraviolet light of the Moleculight i:X was turned on. As the lamp on the device indicated the room was dark enough, a fluorescence image was captured. Swabs of the wound were taken in the area of maximal luminosity. The pictures were then evaluated by two heart surgeons and a wound specialist unaware of late microbiological results. In a second step, the results of the Moleculight i:X were coupled to the results of the microbiological examinations. Additional sub-analyses of possible influences such as material of the dressing as well as the bacterial species were performed.

Statistical analysis

The caseload planning was done by the Clinical Institute of Biometrics and Clinical Research of the University of Muenster using the point estimator for sensitivity and specificity. Continuous variables are presented as median and interquartile differences. Categorical variables are shown as counts and percentages. Data analysis for the assessment of sensitivity and specificity was performed using SPSS for Windows (Version 23/SPSS Inc., 25 Chicago, IL, USA) and Excel 2010 (Microsoft, Redmond, WA, USA).

RESULTS

A total of 107 examinations in 46 LVAD patients (see Table 1, 40 males and 6 females, mean age 55.87 years, SD 12.09) with suspected DLI were prospectively included. Mean supporting time was 34.82 months (SD 25.06). A total of 27 patients were supported with the Heartmate 3 (Thoratec Corporation, Pleasanton, CA), 2 with a Heartmate II (Thoratec Corporation, Pleasanton, CA) and 17 patients with the HeartWare HVAD (HeartWare International, Framingham, MA). Also, 1 patient was examined 9 times, 3 patients were examined six times, 1 patient was examined five times, 4 patients were examined four times, 5 patients were examined 3 times, 12 patients were examined twice and 20 patients were seen only once. According to the images taken by the Moleculight i:X, 19 examinations (17.76%) were evaluated as positive and 88 cases (82.24%) as negative. Microbiological examinations detected microorganisms in 74 cases (69.16%) including S. aureus in 30 cases; Serratia marcescens in 7 cases; Staphylococcus epidermidis in 6 cases; Corynebacterium amycolatum in 3 cases; Staphylococcus caprae in 3 cases; Staphylococcus lugdunensis in 2 cases; and Corynebacterium striatum, Dermabacter hominis, Escherichia coli, Staphylococcus simulans and S. agalactiae were each found in 1 case. Colonization with more than one microorganism occurred in 18 cases. A total of 23 swabs resulted negative, and 10 swabs showed a physiological flora. Coupling the results of the Moleculight i:X with those of the microbiological cultures, there were 10 true positive and 9 false positive (Fig. 2). Also, 64 false-negative (Fig. 3) and 24 true-negative cases (see Tables 2 and 3). This resulted in a sensitivity of 13.51% and a specificity of 72.73% with a positive predictive value (PPV) and negative predictive value (NPV) of 52.63% and 27.27%, respectively (see Table 4).

False-positive result. Microbiological examination found bacteria of the physiological flora only.
Figure 2:

False-positive result. Microbiological examination found bacteria of the physiological flora only.

False-negative result. Microbiological examination confirmed colonization with Staphylococcus aureus.
Figure 3:

False-negative result. Microbiological examination confirmed colonization with Staphylococcus aureus.

Table 1:

General patient information

PatientSexAgePump type(Months after LVAD implantation)
1M49HM 328
2M42HM 38
3M75HM 310
4M69HM 241
5M39HM 322
6M46HM 320
7F67HM 320
8M53HW94
9F44HM 311
10M64HM 334
11M65HW51
12M64HM 325
13M64HM 323
14M57HW64
15M67HW96
16M60HW42
17M56HW48
18F40HW51
19M49HM 329
20M49HW48
21M65HM 329
22M54HM 322
23M47HW48
24M58HM 215
25M47HW50
26F65HW100
27M21HW23
28M69HM 330
29F56HW16
30M67HM 320
31M49HM 320
32M64HW90
33M48HW21
34M58HM 328
35M70HM 36
36M60HM 38
37M59HM 37
38M57HW63
39F61HM 319
40M25HW71
41M62HM 319
42M29HM 37
43M73HM 38
44M69HM 356
45M54HM 313
46M64HM 348
PatientSexAgePump type(Months after LVAD implantation)
1M49HM 328
2M42HM 38
3M75HM 310
4M69HM 241
5M39HM 322
6M46HM 320
7F67HM 320
8M53HW94
9F44HM 311
10M64HM 334
11M65HW51
12M64HM 325
13M64HM 323
14M57HW64
15M67HW96
16M60HW42
17M56HW48
18F40HW51
19M49HM 329
20M49HW48
21M65HM 329
22M54HM 322
23M47HW48
24M58HM 215
25M47HW50
26F65HW100
27M21HW23
28M69HM 330
29F56HW16
30M67HM 320
31M49HM 320
32M64HW90
33M48HW21
34M58HM 328
35M70HM 36
36M60HM 38
37M59HM 37
38M57HW63
39F61HM 319
40M25HW71
41M62HM 319
42M29HM 37
43M73HM 38
44M69HM 356
45M54HM 313
46M64HM 348
Table 1:

General patient information

PatientSexAgePump type(Months after LVAD implantation)
1M49HM 328
2M42HM 38
3M75HM 310
4M69HM 241
5M39HM 322
6M46HM 320
7F67HM 320
8M53HW94
9F44HM 311
10M64HM 334
11M65HW51
12M64HM 325
13M64HM 323
14M57HW64
15M67HW96
16M60HW42
17M56HW48
18F40HW51
19M49HM 329
20M49HW48
21M65HM 329
22M54HM 322
23M47HW48
24M58HM 215
25M47HW50
26F65HW100
27M21HW23
28M69HM 330
29F56HW16
30M67HM 320
31M49HM 320
32M64HW90
33M48HW21
34M58HM 328
35M70HM 36
36M60HM 38
37M59HM 37
38M57HW63
39F61HM 319
40M25HW71
41M62HM 319
42M29HM 37
43M73HM 38
44M69HM 356
45M54HM 313
46M64HM 348
PatientSexAgePump type(Months after LVAD implantation)
1M49HM 328
2M42HM 38
3M75HM 310
4M69HM 241
5M39HM 322
6M46HM 320
7F67HM 320
8M53HW94
9F44HM 311
10M64HM 334
11M65HW51
12M64HM 325
13M64HM 323
14M57HW64
15M67HW96
16M60HW42
17M56HW48
18F40HW51
19M49HM 329
20M49HW48
21M65HM 329
22M54HM 322
23M47HW48
24M58HM 215
25M47HW50
26F65HW100
27M21HW23
28M69HM 330
29F56HW16
30M67HM 320
31M49HM 320
32M64HW90
33M48HW21
34M58HM 328
35M70HM 36
36M60HM 38
37M59HM 37
38M57HW63
39F61HM 319
40M25HW71
41M62HM 319
42M29HM 37
43M73HM 38
44M69HM 356
45M54HM 313
46M64HM 348
Table 2:

Comparison of the results of fluorescence imaging and microbiological examination

PatientMoleculightMicrobiological examinationDressing
1PositiveCorynebacterium amycolatumGel
2NegativePhysiological floraMetalline
NegativeStaphylococcus simulansMetalline
3NegativeStaphylococcus capraeGel
NegativePhysiological floraGel
NegativeStaphylococcus capraeGel
NegativeStaphylococcus capraeGel
NegativeStaphylococcus caprae, Physiological floraGel
NegativeNegativeGel
NegativeStaphylococcus caprae, Staphylococcus aureusGel
NegativeStaphylococcus epidermidisHoney
NegativeStaphylococcus epidermidisHoney
4NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusGel
NegativeEscherichia coliGel
NegativeEscherichia coli, Staphylococcus epidermidisGel
5NegativeStaphylococcus aureusMetalline
6PositiveCorynebacterium amycolatumGel
NegativeStaphylococcus aureusGel
7NegativeEscherichia coli, Enterococcus faecalisGel
NegativeEscherichia coli, Klebsiella oxytocaMetalline
8PositiveNegativeMetalline
9NegativeNegativeGel
NegativeSerratia marcescens, Staphylococcus aureusGel
NegativeSerratia marcescensGel
10PositiveNegativeMetalline
PositiveNegativeMetalline
11PositivePhysiological floraMetalline
12NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusMetalline
NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusMetalline
NegativeStaphylococcus aureusGel
13NegativeNegativeMetalline
14PositivePhysiological floraGel
PositivePhysiological floraMetalline
15NegativeNegativeMetalline
16NegativePhysiological floraMetalline
17NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusGel
NegativeNegativeGel
PositiveStaphylococcus aureusGel
18NegativeNegativeGel
NegativeNegativeGel
NegativeNegativeMetalline
19NegativeStaphylococcus aureusGel
20NegativeStaphylococcus simulans, Corynebacterium amycolatumMetalline
PositivePhysiological floraGel
21NegativeStaphylococcus aureusMetalline
NegativeStaphylococcus aureusGel
22PositiveCorynebacterium amycolatum, Staphylococcus epidermidisMetalline
PositivePhysiological floraMetalline
23PositiveCorynebacterium amycolatumMetalline
NegativePhysiological floraMetalline
24NegativeStaphylococcus capitis, Staphylococcus epidermidisMetalline
25NegativeStaphylococcus aureusMetalline
NegativeNegativeMetalline
NegativeStaphylococcus lugdunensis, Staphylococcus aureusGel
NegativeStaphylococcus hominis ssp. hominisGel
26NegativeStaphylococcus simulans, Corynebacterium amycolatum, Staphylococcus haemolyticusGel
27PositiveCorynebacterium amycolatumMetalline
28PositiveSerratia marcescensGel
NegativeSerratia marcescensGel
NegativeSerratia marcescensGel
NegativeSerratia marcescensGel
NegativeSerratia marcescensGel
NegativeSerratia marcescensGel
29PositiveStaphylococcus aureusMetalline
30PositiveStaphylococcus aureusMetalline
31NegativePhysiological floraGel
NegativeStreptococcus agalactiaeGel
NegativeDermabacter hominisGel
NegativeStaphylococcus aureusHoney
32NegativeNegativeGel
33NegativeNegativeMetalline
NegativeStaphylococcus aureusGel
34NegativeStaphylococcus epidermidisMetalline
35NegativeNegativeGel
NegativeNegativeGel
NegativeStaphylococcus aureusGel
36NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusGel
NegativeNegativeHoney
NegativeStreptococcus agalactiae, Staphylococcus aureusHoney
37NegativeNegativeGel
PositiveNegativeGel
NegativeNegativeGel
PositiveStaphylococcus aureusGel
38NegativeNegativeGel
NegativeNegativeMetalline
NegativeCorynebacterium striatumGel
39NegativeStaphylococcus epidermidis, Corynebacterium amycolatumGel
40NegativeStaphylococcus aureusMetalline
NegativeNegativeMetalline
NegativeStaphylococcus aureusHoney
41NegativeStaphylococcus epidermidisGel
NegativeStaphylococcus aureusGel
42NegativeStaphylococcus epidermidisMetalline
43NegativeStaphylococcus epidermidisMetalline
NegativeStaphylococcus lugdunensisMetalline
44NegativeStaphylococcus lugdunensisMetalline
45NegativeEnterococcus cloacae, Klebsiella oxytoca, Staphylococcus lugdunensisMetalline
46NegativeStaphylococcus caprae, Staphylococcus lugdunensisMetalline
PatientMoleculightMicrobiological examinationDressing
1PositiveCorynebacterium amycolatumGel
2NegativePhysiological floraMetalline
NegativeStaphylococcus simulansMetalline
3NegativeStaphylococcus capraeGel
NegativePhysiological floraGel
NegativeStaphylococcus capraeGel
NegativeStaphylococcus capraeGel
NegativeStaphylococcus caprae, Physiological floraGel
NegativeNegativeGel
NegativeStaphylococcus caprae, Staphylococcus aureusGel
NegativeStaphylococcus epidermidisHoney
NegativeStaphylococcus epidermidisHoney
4NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusGel
NegativeEscherichia coliGel
NegativeEscherichia coli, Staphylococcus epidermidisGel
5NegativeStaphylococcus aureusMetalline
6PositiveCorynebacterium amycolatumGel
NegativeStaphylococcus aureusGel
7NegativeEscherichia coli, Enterococcus faecalisGel
NegativeEscherichia coli, Klebsiella oxytocaMetalline
8PositiveNegativeMetalline
9NegativeNegativeGel
NegativeSerratia marcescens, Staphylococcus aureusGel
NegativeSerratia marcescensGel
10PositiveNegativeMetalline
PositiveNegativeMetalline
11PositivePhysiological floraMetalline
12NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusMetalline
NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusMetalline
NegativeStaphylococcus aureusGel
13NegativeNegativeMetalline
14PositivePhysiological floraGel
PositivePhysiological floraMetalline
15NegativeNegativeMetalline
16NegativePhysiological floraMetalline
17NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusGel
NegativeNegativeGel
PositiveStaphylococcus aureusGel
18NegativeNegativeGel
NegativeNegativeGel
NegativeNegativeMetalline
19NegativeStaphylococcus aureusGel
20NegativeStaphylococcus simulans, Corynebacterium amycolatumMetalline
PositivePhysiological floraGel
21NegativeStaphylococcus aureusMetalline
NegativeStaphylococcus aureusGel
22PositiveCorynebacterium amycolatum, Staphylococcus epidermidisMetalline
PositivePhysiological floraMetalline
23PositiveCorynebacterium amycolatumMetalline
NegativePhysiological floraMetalline
24NegativeStaphylococcus capitis, Staphylococcus epidermidisMetalline
25NegativeStaphylococcus aureusMetalline
NegativeNegativeMetalline
NegativeStaphylococcus lugdunensis, Staphylococcus aureusGel
NegativeStaphylococcus hominis ssp. hominisGel
26NegativeStaphylococcus simulans, Corynebacterium amycolatum, Staphylococcus haemolyticusGel
27PositiveCorynebacterium amycolatumMetalline
28PositiveSerratia marcescensGel
NegativeSerratia marcescensGel
NegativeSerratia marcescensGel
NegativeSerratia marcescensGel
NegativeSerratia marcescensGel
NegativeSerratia marcescensGel
29PositiveStaphylococcus aureusMetalline
30PositiveStaphylococcus aureusMetalline
31NegativePhysiological floraGel
NegativeStreptococcus agalactiaeGel
NegativeDermabacter hominisGel
NegativeStaphylococcus aureusHoney
32NegativeNegativeGel
33NegativeNegativeMetalline
NegativeStaphylococcus aureusGel
34NegativeStaphylococcus epidermidisMetalline
35NegativeNegativeGel
NegativeNegativeGel
NegativeStaphylococcus aureusGel
36NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusGel
NegativeNegativeHoney
NegativeStreptococcus agalactiae, Staphylococcus aureusHoney
37NegativeNegativeGel
PositiveNegativeGel
NegativeNegativeGel
PositiveStaphylococcus aureusGel
38NegativeNegativeGel
NegativeNegativeMetalline
NegativeCorynebacterium striatumGel
39NegativeStaphylococcus epidermidis, Corynebacterium amycolatumGel
40NegativeStaphylococcus aureusMetalline
NegativeNegativeMetalline
NegativeStaphylococcus aureusHoney
41NegativeStaphylococcus epidermidisGel
NegativeStaphylococcus aureusGel
42NegativeStaphylococcus epidermidisMetalline
43NegativeStaphylococcus epidermidisMetalline
NegativeStaphylococcus lugdunensisMetalline
44NegativeStaphylococcus lugdunensisMetalline
45NegativeEnterococcus cloacae, Klebsiella oxytoca, Staphylococcus lugdunensisMetalline
46NegativeStaphylococcus caprae, Staphylococcus lugdunensisMetalline
Table 2:

Comparison of the results of fluorescence imaging and microbiological examination

PatientMoleculightMicrobiological examinationDressing
1PositiveCorynebacterium amycolatumGel
2NegativePhysiological floraMetalline
NegativeStaphylococcus simulansMetalline
3NegativeStaphylococcus capraeGel
NegativePhysiological floraGel
NegativeStaphylococcus capraeGel
NegativeStaphylococcus capraeGel
NegativeStaphylococcus caprae, Physiological floraGel
NegativeNegativeGel
NegativeStaphylococcus caprae, Staphylococcus aureusGel
NegativeStaphylococcus epidermidisHoney
NegativeStaphylococcus epidermidisHoney
4NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusGel
NegativeEscherichia coliGel
NegativeEscherichia coli, Staphylococcus epidermidisGel
5NegativeStaphylococcus aureusMetalline
6PositiveCorynebacterium amycolatumGel
NegativeStaphylococcus aureusGel
7NegativeEscherichia coli, Enterococcus faecalisGel
NegativeEscherichia coli, Klebsiella oxytocaMetalline
8PositiveNegativeMetalline
9NegativeNegativeGel
NegativeSerratia marcescens, Staphylococcus aureusGel
NegativeSerratia marcescensGel
10PositiveNegativeMetalline
PositiveNegativeMetalline
11PositivePhysiological floraMetalline
12NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusMetalline
NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusMetalline
NegativeStaphylococcus aureusGel
13NegativeNegativeMetalline
14PositivePhysiological floraGel
PositivePhysiological floraMetalline
15NegativeNegativeMetalline
16NegativePhysiological floraMetalline
17NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusGel
NegativeNegativeGel
PositiveStaphylococcus aureusGel
18NegativeNegativeGel
NegativeNegativeGel
NegativeNegativeMetalline
19NegativeStaphylococcus aureusGel
20NegativeStaphylococcus simulans, Corynebacterium amycolatumMetalline
PositivePhysiological floraGel
21NegativeStaphylococcus aureusMetalline
NegativeStaphylococcus aureusGel
22PositiveCorynebacterium amycolatum, Staphylococcus epidermidisMetalline
PositivePhysiological floraMetalline
23PositiveCorynebacterium amycolatumMetalline
NegativePhysiological floraMetalline
24NegativeStaphylococcus capitis, Staphylococcus epidermidisMetalline
25NegativeStaphylococcus aureusMetalline
NegativeNegativeMetalline
NegativeStaphylococcus lugdunensis, Staphylococcus aureusGel
NegativeStaphylococcus hominis ssp. hominisGel
26NegativeStaphylococcus simulans, Corynebacterium amycolatum, Staphylococcus haemolyticusGel
27PositiveCorynebacterium amycolatumMetalline
28PositiveSerratia marcescensGel
NegativeSerratia marcescensGel
NegativeSerratia marcescensGel
NegativeSerratia marcescensGel
NegativeSerratia marcescensGel
NegativeSerratia marcescensGel
29PositiveStaphylococcus aureusMetalline
30PositiveStaphylococcus aureusMetalline
31NegativePhysiological floraGel
NegativeStreptococcus agalactiaeGel
NegativeDermabacter hominisGel
NegativeStaphylococcus aureusHoney
32NegativeNegativeGel
33NegativeNegativeMetalline
NegativeStaphylococcus aureusGel
34NegativeStaphylococcus epidermidisMetalline
35NegativeNegativeGel
NegativeNegativeGel
NegativeStaphylococcus aureusGel
36NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusGel
NegativeNegativeHoney
NegativeStreptococcus agalactiae, Staphylococcus aureusHoney
37NegativeNegativeGel
PositiveNegativeGel
NegativeNegativeGel
PositiveStaphylococcus aureusGel
38NegativeNegativeGel
NegativeNegativeMetalline
NegativeCorynebacterium striatumGel
39NegativeStaphylococcus epidermidis, Corynebacterium amycolatumGel
40NegativeStaphylococcus aureusMetalline
NegativeNegativeMetalline
NegativeStaphylococcus aureusHoney
41NegativeStaphylococcus epidermidisGel
NegativeStaphylococcus aureusGel
42NegativeStaphylococcus epidermidisMetalline
43NegativeStaphylococcus epidermidisMetalline
NegativeStaphylococcus lugdunensisMetalline
44NegativeStaphylococcus lugdunensisMetalline
45NegativeEnterococcus cloacae, Klebsiella oxytoca, Staphylococcus lugdunensisMetalline
46NegativeStaphylococcus caprae, Staphylococcus lugdunensisMetalline
PatientMoleculightMicrobiological examinationDressing
1PositiveCorynebacterium amycolatumGel
2NegativePhysiological floraMetalline
NegativeStaphylococcus simulansMetalline
3NegativeStaphylococcus capraeGel
NegativePhysiological floraGel
NegativeStaphylococcus capraeGel
NegativeStaphylococcus capraeGel
NegativeStaphylococcus caprae, Physiological floraGel
NegativeNegativeGel
NegativeStaphylococcus caprae, Staphylococcus aureusGel
NegativeStaphylococcus epidermidisHoney
NegativeStaphylococcus epidermidisHoney
4NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusGel
NegativeEscherichia coliGel
NegativeEscherichia coli, Staphylococcus epidermidisGel
5NegativeStaphylococcus aureusMetalline
6PositiveCorynebacterium amycolatumGel
NegativeStaphylococcus aureusGel
7NegativeEscherichia coli, Enterococcus faecalisGel
NegativeEscherichia coli, Klebsiella oxytocaMetalline
8PositiveNegativeMetalline
9NegativeNegativeGel
NegativeSerratia marcescens, Staphylococcus aureusGel
NegativeSerratia marcescensGel
10PositiveNegativeMetalline
PositiveNegativeMetalline
11PositivePhysiological floraMetalline
12NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusMetalline
NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusMetalline
NegativeStaphylococcus aureusGel
13NegativeNegativeMetalline
14PositivePhysiological floraGel
PositivePhysiological floraMetalline
15NegativeNegativeMetalline
16NegativePhysiological floraMetalline
17NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusGel
NegativeNegativeGel
PositiveStaphylococcus aureusGel
18NegativeNegativeGel
NegativeNegativeGel
NegativeNegativeMetalline
19NegativeStaphylococcus aureusGel
20NegativeStaphylococcus simulans, Corynebacterium amycolatumMetalline
PositivePhysiological floraGel
21NegativeStaphylococcus aureusMetalline
NegativeStaphylococcus aureusGel
22PositiveCorynebacterium amycolatum, Staphylococcus epidermidisMetalline
PositivePhysiological floraMetalline
23PositiveCorynebacterium amycolatumMetalline
NegativePhysiological floraMetalline
24NegativeStaphylococcus capitis, Staphylococcus epidermidisMetalline
25NegativeStaphylococcus aureusMetalline
NegativeNegativeMetalline
NegativeStaphylococcus lugdunensis, Staphylococcus aureusGel
NegativeStaphylococcus hominis ssp. hominisGel
26NegativeStaphylococcus simulans, Corynebacterium amycolatum, Staphylococcus haemolyticusGel
27PositiveCorynebacterium amycolatumMetalline
28PositiveSerratia marcescensGel
NegativeSerratia marcescensGel
NegativeSerratia marcescensGel
NegativeSerratia marcescensGel
NegativeSerratia marcescensGel
NegativeSerratia marcescensGel
29PositiveStaphylococcus aureusMetalline
30PositiveStaphylococcus aureusMetalline
31NegativePhysiological floraGel
NegativeStreptococcus agalactiaeGel
NegativeDermabacter hominisGel
NegativeStaphylococcus aureusHoney
32NegativeNegativeGel
33NegativeNegativeMetalline
NegativeStaphylococcus aureusGel
34NegativeStaphylococcus epidermidisMetalline
35NegativeNegativeGel
NegativeNegativeGel
NegativeStaphylococcus aureusGel
36NegativeStaphylococcus aureusGel
NegativeStaphylococcus aureusGel
NegativeNegativeHoney
NegativeStreptococcus agalactiae, Staphylococcus aureusHoney
37NegativeNegativeGel
PositiveNegativeGel
NegativeNegativeGel
PositiveStaphylococcus aureusGel
38NegativeNegativeGel
NegativeNegativeMetalline
NegativeCorynebacterium striatumGel
39NegativeStaphylococcus epidermidis, Corynebacterium amycolatumGel
40NegativeStaphylococcus aureusMetalline
NegativeNegativeMetalline
NegativeStaphylococcus aureusHoney
41NegativeStaphylococcus epidermidisGel
NegativeStaphylococcus aureusGel
42NegativeStaphylococcus epidermidisMetalline
43NegativeStaphylococcus epidermidisMetalline
NegativeStaphylococcus lugdunensisMetalline
44NegativeStaphylococcus lugdunensisMetalline
45NegativeEnterococcus cloacae, Klebsiella oxytoca, Staphylococcus lugdunensisMetalline
46NegativeStaphylococcus caprae, Staphylococcus lugdunensisMetalline
Table 3:

Overview of the positive and negative results using the Moleculight and microbiological swabs

MoleculightMicrobiology
Positive19 (17.76%)74 (69.16%)
10 (Physiological flora)
Negative88 (82.24%)23
MoleculightMicrobiology
Positive19 (17.76%)74 (69.16%)
10 (Physiological flora)
Negative88 (82.24%)23

Bold values indicate microbiological and bedside results in cases with a suspected driveline infection.

Table 3:

Overview of the positive and negative results using the Moleculight and microbiological swabs

MoleculightMicrobiology
Positive19 (17.76%)74 (69.16%)
10 (Physiological flora)
Negative88 (82.24%)23
MoleculightMicrobiology
Positive19 (17.76%)74 (69.16%)
10 (Physiological flora)
Negative88 (82.24%)23

Bold values indicate microbiological and bedside results in cases with a suspected driveline infection.

Table 4:

Statistical analysis

Positive microbiological swapNegative microbiological swap/Physiological flora
Positive result of the Moleculight10 (True positive)9 (False positive)PPV 52.63%
Negative result of the Moleculight64 (False negative)24 (True negative)NPV 27.27%
Sensitivity 13.51%Specificity 72.73%
Positive microbiological swapNegative microbiological swap/Physiological flora
Positive result of the Moleculight10 (True positive)9 (False positive)PPV 52.63%
Negative result of the Moleculight64 (False negative)24 (True negative)NPV 27.27%
Sensitivity 13.51%Specificity 72.73%

Bold values indicate sensitivity and specificity of the moleculight i:X.

Table 4:

Statistical analysis

Positive microbiological swapNegative microbiological swap/Physiological flora
Positive result of the Moleculight10 (True positive)9 (False positive)PPV 52.63%
Negative result of the Moleculight64 (False negative)24 (True negative)NPV 27.27%
Sensitivity 13.51%Specificity 72.73%
Positive microbiological swapNegative microbiological swap/Physiological flora
Positive result of the Moleculight10 (True positive)9 (False positive)PPV 52.63%
Negative result of the Moleculight64 (False negative)24 (True negative)NPV 27.27%
Sensitivity 13.51%Specificity 72.73%

Bold values indicate sensitivity and specificity of the moleculight i:X.

In 10 cases, microbiological examination resulted in microorganisms of the physiological flora that could be found in the area of the entry site of the DL. In five cases (50%), the Moleculight has shown a positive result (Fig. 2).

Sub-analyses of different wound dressings yielded the following results. Of the 38 DLs covered with Metalline drainage pads, the Moleculight detected 11 wounds as positive, of which 5 cases were true positive and 10 cases were true negative. There were 6 false-positive and 17 false-negative cases resulting in a sensitivity and specificity of 22.73% and 62.5% with PPV of 45.45% and NPV of 37.04%, respectively. Of the 62 cases in which the DL was covered with Kerrasol Gel and sterile wound dressing, the Moleculight detected eight wounds as positive while the microbiological examination was positive in 46 cases. There were 5 true-positive and 13 true-negative cases, 3 false-positive and 41 false-negative cases. The sensitivity and specificity of DLIs treated with Kerrasol gel were 10.87% and 81.25% with a PPV and NPV of 62.5% and 24.07%, respectively. In patients who were treated with medical honey, we could see that the Moleculight i:X was not able to create a proper fluorescence image in cases where a thick layer of honey was surrounding the entry site of the DL. In seven patients, the layer of honey was thin or absorbed already, and therefore, the images could be used for our study. Yet, in all seven cases, the Moleculight has shown no positive signal, whereas swab results showed that microorganisms could be found in six cases (see Fig. 2). Using the Moleculight, it was not possible to differentiate between colonization and infection, whereas microbiological results showed the difference between these two.

DISCUSSION

The present study showed that the Moleculight is not suitable for the detection of DLIs as the sensitivity and specificity were 13.51% and 72.73% with PPV and NPVs of 52.63% and 27.27%, respectively.

In contrast with the aforementioned results, recent literature has shown a PPV of up to 100% for wound infections in vivo [10]. Blumenthal et al. reported promising results in the diagnosis of infection for burn [15] and military trauma wounds [14]. Burn wounds were also examined by Farhan et al. who found the use of fluorescence imaging in paediatric burn wounds promising [16] despite its limitations such as the need of complete darkness and difficulties while evaluating fluorescence images [17]. A larger study on diabetic foot ulcers shows a sensitivity and specificity of 78% but a lower PPV of 64% [28]. Another study including wounds with moderate to high bacterial load only (106–1010 CFU/g) reported low sensitivity (55%) on high colonization but a high PPV (up to 100%) [11]. In the outpatient setting of patients who underwent plastic surgeries, the device performed with a sensitivity of 100% and a specificity of 78% at a PPV of 95.4% [12].

For the VAD-specific infections, Keenan et al. presented one case of DLI diagnosed through the Moleculight. Of note, using the Moleculight, they found a margin of red fluorescence around the DL entry side and through this guidance they could extend the area of debridement [9]. Similarly, Moelleken et al. examined chronic leg ulcers and demonstrated that the Moleculight was particularly useful in guiding the extend of surgical debridement [13]. Those findings were supported by Raizman et al. who performed wound debridement and afterwards acquired fluorescence images of the wounds. In cases of remaining red fluorescence signals, the Moleculight was used to target the areas of bacterial burden and enlarge the debridement area [29]. Despite the encouraging results in literature and the promising case study of Keenan et al., we were not able to confirm those results for the diagnosis of DLI.

Possible explanations for this performance failure can reside in many reasons. First, our series deals with suspicion of DLIs and no wound underwent surgical debridement. Thus, lower bacterial concentration could have played an important role. Second, interactions with dressing material could have reduced the fluorescence signal. In fact, silver, which is a component of Metalline drainage pads, makes the signal darker. The element absorbs or completely blocks the fluorescence light [18]. The pads were removed before taking the images in our study but as we did not clean the wounds before acquiring an image, it cannot be ruled out that parts of the silver were still on the entry site. Yet, the difference between the different types of dressings was not relevant.

Finally, the physiological flora could have altered the interpretation of the results as well, as those bacteria also produce porphyrins and may result in positive results using the Moleculight (Fig. 2). This phenomenon can explain the fact that the Moleculight has shown a positive signal in 50% of those cases. In this regard, most DLIs in our study resulted to be colonized by Staphylococcal species, which represents a common bacteria of microflora of the skin [30].

In summary, the Moleculight shows a low sensitivity and specificity when being used to detect DLIs in the outpatient setting. Therefore, according to our study, the Moleculight i:X cannot help physicians decide whether to start a broad antibiotical treatment before swab results. Given the low prediction performance the tool is not even recommended for a first screening in an outpatient setting due to very high proportion of false negatives. Clinical examination and swabs should remain the gold standard despite delay of microbiological workup. Sensitivity and specificity of the Moleculight in open wounds after surgical revision of DLs remains to be clarified.

FUNDING

No funding was required.

Conflict of interest: None declared.

DATA AVAILABILITY

Raw data were generated at the Department of Cardiac- and Thoracic Surgery at the University Hospital Münster, Germany. Derived data supporting the findings of this study are available from the corresponding author on request.

Author contributions

Angelina Olbrich: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Validation; Visualization; Writing—original draft; Writing—review & editing. Arash Motekallemi: Conceptualization; Writing—review & editing. Heinz Deschka: Conceptualization; Writing—review & editing. Heinrich Rotering: Conceptualization; Investigation; Methodology; Resources; Writing—review & editing. Jürgen Sindermann: Conceptualization; Investigation; Writing—review & editing. Nana-Maria Wagner: Visualization; Writing—review & editing. Henryk Welp: Conceptualization; Data curation; Investigation; Methodology; Supervision; Writing—review & editing. Angelo Maria Dell’Aquila: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Supervision; Writing—review & editing.

Reviewer information

Interactive CardioVascular and Thoracic Surgery thanks Giovanni Alfonso Chiariello, Suvitesh Luthra and the other anonymous reviewers for their contribution to the peer review process of this article.

REFERENCES

1

Slaughter
MS
,
Rogers
JG
,
Milano
CA
 et al. ;
HeartMate II Investigators
.
Advanced heart failure treated with continuous-flow left ventricular assist device
.
N Engl J Med
 
2009
;
361
:
2241
51
. doi:.

2

Gordon
RJ
,
Weinberg
AD
,
Pagani
FD
 et al. ;
Ventricular Assist Device Infection Study Group
.
Prospective, multicenter study of ventricular assist device infections
.
Circulation
 
2013
;
127
:
691
702
. doi:.

3

Goldstein
DJ
,
Naftel
D
,
Holman
W
 et al.  
Continuous-flow devices and percutaneous site infections: clinical outcomes
.
J Heart Lung Transplant
 
2012
;
31
:
1151
7
. doi:.

4

Hannan
MM
,
Xie
R
,
Cowger
J
 et al.  
Epidemiology of infection in mechanical circulatory support: a global analysis from the ISHLT Mechanically Assisted Circulatory Support Registry
.
J Heart Lung Transplant
 
2019
;
38
:
364
73
. doi:.

5

Hannan
MM
,
Husain
S
,
Mattner
F
 et al. ;
International Society for Heart and Lung Transplantation
.
Working formulation for the standardization of definitions of infections in patients using ventricular assist devices
.
J Heart Lung Transplant
 
2011
;
30
:
375
84
. doi:.

6

Dell’Aquila
AM
,
Avramovic
N
,
Mastrobuoni
S
 et al.  
Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography for improving diagnosis of infection in patients on CF-LVAD: longing for more ‘insights’
.
Eur Heart J Cardiovasc Imaging
 
2018
;
19
:
532
43
. doi:.

7

Kusne
S
,
Mooney
M
,
Danziger-Isakov
L
 et al.  
An ISHLT consensus document for prevention and management strategies for mechanical circulatory support infection
.
J Heart Lung Transplant
 
2017
;
36
:
1137
53
. doi:.

8

Rotering
H
,
Al Shakaki
M
,
Welp
H
,
Dell’Aquila
AM.
 
Preliminary results of a new treatment strategy for relapsed left ventricular assist device-specific infections
.
Ann Thorac Surg
 
2020
;
110
:
1302
7
. doi:.

9

Keenan
JB
,
Rajab
TK
,
Armstrong
DG
,
Khalpey
Z.
 
Real-time autofluorescence imaging to diagnose LVAD driveline infections
.
Ann Thorac Surg
 
2017
;
103
:
e493
e495
. doi:.

10

Rennie
MY
,
Lindvere-Teene
L
,
Tapang
K
,
Linden
R.
 
Point-of-care fluorescence imaging predicts the presence of pathogenic bacteria in wounds: a clinical study
.
J Wound Care
 
2017
;
26
:
452
60
. doi:.

11

Serena
TE
,
Harrell
K
,
Serena
L
,
Yaakov
RA.
 
Real-time bacterial fluorescence imaging accurately identifies wounds with moderate-to-heavy bacterial burden
.
J Wound Care
 
2019
;
28
:
346
57
. doi:.

12

Hurley
CM
,
McClusky
P
,
Sugrue
RM
,
Clover
JA
,
Kelly
JE.
 
Efficacy of a bacterial fluorescence imaging device in an outpatient wound care clinic: a pilot study
.
J Wound Care
 
2019
;
28
:
438
43
. doi:.

13

Moelleken
M
,
Jockenhöfer
F
,
Benson
S
,
Dissemond
J.
 
Prospective clinical study on the efficacy of bacterial removal with mechanical debridement in and around chronic leg ulcers assessed with fluorescence imaging
.
Int Wound J
 
2020
;
17
:
1011
8
. doi:.

14

Blumenthal
E
,
Jeffery
S.
 
Autofluorescence imaging for evaluating debridement in military and trauma wounds
.
Mil Med
 
2018
;
183
:
429
32
. doi:.

15

Blumenthal
E
,
Jeffery
SLA.
 
The use of the MolecuLight i:X in managing burns: a pilot study
.
J Burn Care Res
 
2018
;
39
:
154
61
. doi:.

16

Farhan
N
,
Jeffery
S.
 
Utility of MolecuLight i:X for managing bacterial burden in pediatric burns
.
J Burn Care Res
 
2020
;
41
:
328
38
. doi:.

17

Farhan
N
,
Jeffery
S.
 
Diagnosing burn wounds infection: the practice gap & advances with MolecuLight bacterial imaging
.
Diagnostics (Basel)
 
2021
;
11
:
268
. doi:.

18

Rennie
MY
,
Dunham
D
,
Lindvere-Teene
L
,
Raizman
R
,
Hill
R
,
Linden
R.
 
Understanding real-time fluorescence signals from bacteria and wound tissues observed with the MolecuLight i:XTM
.
Diagnostics (Basel)
 
2019
;
9
:
22
. doi:.

19

DaCosta
RS
,
Kulbatski
I
,
Lindvere-Teene
L
 et al.  
Point-of-care autofluorescence imaging for real-time sampling and treatment guidance of bioburden in chronic wounds: first-in-human results
.
PLoS One
 
2015
;
10
:
e0116623
. doi:.

20

Jones
LM
,
Dunham
D
,
Rennie
MY
 et al.  
in vitro detection of porphyrin-producing wound bacteria with real-time fluorescence imaging
.
Future Microbiol
 
2020
;
15
:
319
32
. doi:.

21

Bernhardt
AM
,
Schlöglhofer
T
,
Lauenroth
V
 et al. ;
Driveline Expert STagINg and carE DESTINE study group, a Ventricular Assist Device Driveline Infection Study Group
.
Prevention and early treatment of driveline infections in ventricular assist device patients—the DESTINE staging proposal and the first standard of care protocol
.
J Crit Care
 
2020
;
56
:
106
12
. doi:.

22

Al Shakaki
M
,
Rotering
H
,
Mastrobuoni
S
,
Welp
H
,
Dell’Aquila
AM.
 
Current management and perspectives in the treatment of ventricular assist device-specific infections
.
J Thorac Dis
 
2019
;
11
:
2111
6
. doi:.

23

Hernandez
GA
,
Breton
JDN
,
Chaparro
SV.
 
Driveline infection in ventricular assist devices and its implication in the present era of destination therapy
.
Open J Cardiovasc Surg
 
2017
;
9
:
1179065217714216
. doi:.

24

Cikirikcioglu
M
,
Ponchant
K
,
Murith
N
,
Meyer
P
,
Yilmaz
N
,
Huber
C.
 
Treatment of HeartMate III-LVAD driveline infection by negative pressure wound therapy: result of our case series
.
Int J Artif Organs
 
2021
;
44
:
912
6
. doi:.

25

Lumish
HS
,
Cagliostro
B
,
Braghieri
L
 et al.  
Driveline infection in left ventricular assist device patients: effect of standardized protocols, pathogen type, and treatment strategy
.
ASAIO J
 
2022
;
68
:
1450
8
. doi:.

26

Cutting
KF
,
Harding
KG.
 
Criteria for identifying wound infection
.
J Wound Care
 
1994
;
3
:
198
201
. doi:.

27

Edwards
R
,
Harding
KG.
 
Bacteria and wound healing
.
Curr Opin Infect Dis
 
2004
;
17
:
91
6
. doi:.

28

Ottolino-Perry
K
,
Chamma
E
,
Blackmore
KM
 et al.  
Improved detection of clinically relevant wound bacteria using autofluorescence image-guided sampling in diabetic foot ulcers
.
Int Wound J
 
2017
;
14
:
833
41
. doi:.

29

Raizman
R
,
Dunham
D
,
Lindvere-Teene
L
 et al.  
Use of a bacterial fluorescence imaging device: wound measurement, bacterial detection and targeted debridement
.
J Wound Care
 
2019
;
28
:
824
34
. doi:.

30

Chiller
K
,
Selkin
BA
,
Murakawa
GJ.
 
Skin microflora and bacterial infections of the skin
.
J Investig Dermatol Symp Proc
 
2001
;
6
:
170
4
. doi:.

ABBREVIATIONS

    ABBREVIATIONS
     
  • DL

    Driveline

  •  
  • DLI

    Driveline infection

  •  
  • DT

    Definitive therapy

  •  
  • HM 2

    Heart Mate 2

  •  
  • HM 3

    Heart Mate 3

  •  
  • HW

    Heartware

  •  
  • ISHLT

    International Society for Heart and Lung Transplantation

  •  
  • LVAD

    Left ventricular assist device

  •  
  • VAC

    Vacuum-assisted closure

Author notes

Henryk Welp and Angelo M. Dell’Aquila contributed equally to this work.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected] for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact [email protected].