Summary

Methods of global spherical harmonic analysis of discrete data on a sphere are placed in a historical context. The paper concentrates on the loss of orthogonality in the direction of latitude, due to the transition from continuous to discretized functions. Special attention is paid to Neumann's (1838) solution to this problem. By recasting the formulae of spherical harmonic analysis into matrix-vector notation, both least-squares solutions and quadrature methods are represented in a general framework of weighted least squares. It is also shown that the two-step formulation of global spherical harmonic computation was applied already by Neumann (1838) and Gauss (1839). Computational modifications to Neumann's method are reviewed as well.

References

Abramowitz
M.
Stegun
I.A.
,
1970
.
Handbook of Mathematical Functions
,
Dover
,
New York
.

Colombo
O.L.
,
1981
.
Numerical methods for harmonic analysis on the sphere
,
Department of Geodetic Science and Surveying
, Rep. No. 310,
The Ohio State University
,
Columbus, Ohio
.

Ellsaesser
H.W.
,
1966
.
Expansion of hemispheric meteorological data in antisymmetric surface spherical harmonic (Laplace) series
,
J. appl. Meteorol.
,
5
,
263
276
.

Gauss
C.F.
,
1814
.
Methodus nova integralium valores per approximationem inveniendi, in
Werke
, Vol.
3
(1866), pp.
163
196
, Konigliche Gesellschaft der Wissenschaften, Göttingen.

Gauss
C.F.
,
1839
.
Allgemeine Theorie des Erdmagnetismus, in Resultate aus den Beobachtungen des Magnetischen Vereins im Jahre 1838
, eds
Gauss
C.F.
&
Weber
W.
,
Gottingen und Leipzig. (Reprinted in Werke)
,
5
,
121
193
.).

Gleason
D.M.
,
1898
.
Obtaining minimally aliased geopotential coefficients from discrete data forms
,
Man. Geod.
,
14
,
149
162
.

Hajela
D.P.
,
1984
.
Optimal estimation of high degree gravity field from a global set of 1 × 1 anomalies to degree and order 250
,
Department of Geodetic Science and Surveying
, Rep. No. 358,
The Ohio State University
,
Columbus, Ohio
.

Hofsommer
D.J.
,
1957
.
On the expansion of a function in a series of spherical harmonics
,
Computation Department of the Mathematical Centre
, Rep. No. R344A,
Amsterdam
.

Krylov
V.I.
,
1962
.
Approximate Calculation of Integrals
,
MacMillan
,
New York
.

Lanczos
C.
,
1956
.
Applied Analysis
,
Prentice Hall
,
Englewood Cliffs, NJ
.

Lense
J.
,
1954
.
Kugelfunktionen
, pp.
230
242
,
Geest & Portig
,
Leipzig
.

Neumann
F.
,
1838
.
Über eine neue Eigenschaft der Laplaceschen Y(n) und ihre Anwendung zur analytischen Darstellung derjenigen Phänomene, welche Functionen der geographischen Länge und Breite sind
,
Schumachers astr. Nachr.
,
15
,
313
325
. (Reprinted in Math. Ann., 14, p. 567.).

Neumann
F.
,
1887
.
Vorlesungen über die Theorie des Potentials und der Kugelfunctionen
, pp.
135
154
,
Teubner
,
Leipzig
.

Pavlis
N.K.
,
1988
.
Modeling and estimation of a low degree geopotential model from terrestrial gravity data
,
Department of Geodetic Science and Surveying
, Rep. No. 386,
The Ohio State University
,
Columbus, Ohio
.

Payne
M.H.
,
1971
.
Truncation Effects in Geopotential Modelling
,
Analytical Mechanics Associates
,
Seabrood, MD
.

Pellinen
L.P.
,
1966
.
A method for expanding the gravity potential of the earth in spherical functions
,
Transactions of the Central Scientific Research Institute of Geodesy, Aerial Survey and Cartography
,
171
,
65
116
, Nedra, Moscow (transl. ACIC-TC-1282).

Press
W.H.
Teukolsky
S.A.
Vetterling
W.T.
Flannery
B.P.
,
1992
.
Numerical Recipes
,
Cambridge University Press
,
Cambridge
.

Prey
A.
,
1922
.
Darstellung der Höhen- und Tiefenverhältnisse der Erde durch eine Entwicklung nach Kugelfunktionen bis zur 16. Ordnung
,
Abb. d Kgl. Ges. d Wiss. zu Göttingen. Math.-Phys. Kl. Neue Folge.
,
11
, (
1
).

Rapp
R.H.
Wang
Y.M.
Pavlis
N.K.
,
1991
.
The Ohio State 1991 geopotential and sea surface topography harmonic coefficient models
,
Department of Geodetic Science and Surveying
, Rep. No. 410,
The Ohio State University
,
Columbus, Ohio
.

Rizos
C.
,
1979
.
An efficient computer technique for the evaluation of geopotential from spherical harmonic models
,
Aust. J. Geod. Photo. Surv.
,
31
,
161
169
.

Strang
G.
,
1986
.
Introduction to Applied Mathematics
,
Wellesley-Cambridge Press
,
Cambridge, MA
.

Stroud
A.H.
Secrest
D.
,
1966
.
Gaussian Quadrature Formulas
,
Prentice-Hall
,
Englewood Cliffs, NJ
.

Tscherning
C.C.
Poder
K.
,
1982
.
Some geodetic applications of Clenshaw summation
,
Boll. Geod. Sci. Aff.
,
4
,
349
364
.

Tscherning
C.C.
Rapp
R.H.
Goad
C.
,
1983
.
A comparison of methods for computing gravimetric quantities from high degree spherical harmonic expansions
,
Man. Geod.
,
8
,
249
272
.

Vening-Meinsesz
F.A.
,
1959
.
The results of the development of the earth's topography in spherical harmonics up to the 31st Order; Provisional conclusions
,
KNAW Proceed. Series B
,
62
(
2
).

Wenzel
H.G.
,
1985
.
Hochauflösende Kugelfunktionsmodelle für das Gravitationspotential der Erde
,
Wissenschaftliche Arbeiten Fachrichtung Vermessungswesen der Universität Hannover
, Rep. No. 137,
Universität Hannover
.

This content is only available as a PDF.

Author notes

*

Now at: Technische Universität München, Institut für Astronomische und Physikalische Geodäsie, Arcisstraße 21, D-80290 München, Germany.