Summary

We present a simple notation for performing differential vector operations in orthogonal curvilinear coordinates, and for easily obtaining partial differential expressions in terms of the physical components. We express nth-order tensors as the summed products of the physical components and nth-order polyads of unit vectors (an extension of Gibbs dyadic notation convenient for a summation convention). By defining a gradient operator with partial derivatives balanced by the inverse scale factors, differential vector (or tensor) operations in orthogonal coordinates do not require the covariant/contravariant notation. Our primary focus is on spherical-polar coordinates, but we also derive formulae which may be applied to arbitrary orthogonal coordinate systems. The simpler case of cylindrical-polar coordinates is briefly discussed. We also offer a compact form for the gradient and divergence of general second-order tensors in orthogonal curvilinear coordinates, which are generally unavailable in standard handbooks. We show how our notation relates to that of tensor analysis/differential geometry. As the analysis is not restricted to Euclidean geometry, our notation may be extended to Riemannian surfaces, such as spherical surfaces, so long as an orthogonal coordinate system is utilized. We discuss the Navier-Stokes equation for the case of spatially variable viscosity coefficients.

References

Aki
K.
Richards
P. G.
,
1980
.
Quantitative Seismology: Theory and Methods
, Vol.
1
,
W. H. Freeman & Co.
,
San Francisco
.

Arfken
G.
,
1970
.
Mathematical Methods for Physicists
, Mathematical Methods for Physicistsnd edn,
Academic Press
,
New York
.

Aris
R.
,
1962
.
Vectors, Tensors, and the Basic Equations of Fluid Mechanics
,
Dover
,
New York
.

Backus
G.
,
1958
.
A class of self-sustaining dissipative spherical dynamos
,
Ann. Phys.
,
4
,
372
447
.

Backus
G. E.
,
1967
.
Converting vector and tensor equations to scalar equations in spherical coordinates
,
Geophys. J. R. astr. Soc.
,
13
,
71
101
.

Batchelor
G. K.
,
1967
.
An Introduction to Fluid Mechanics
,
Cambridge University Press
,
Cambridge, UK
.

Bolton
E. W.
Busse
F. H.
,
1985
.
Stability of convection rolls in a layer with stress-free boundaries
,
J. Fluid Mech.
,
150
,
487
498
.

Busse
F. H.
,
1970
.
Thermal instabilities in rapidly rotating systems
,
J. Fluid Mech.
,
44
,
441
460
.

Clever
R. M.
Busse
F. H.
,
1974
.
Transition to time-dependent convection
,
J. Fluid Mech.
,
65
,
625
645
.

Edwards
D. A.
Brenner
H.
Wasan
D. T.
,
1991
.
Interfacial Transport Processes and Rheology
,
Butterworth-Heinemann
,
Boston
.

Flügge
W.
,
1972
.
Tensor Analysis and Continuum Mechanics
,
Springer-Verlag
,
New York
.

Gibbs
J. W.
Wilson
E. B.
,
1925
.
Vector Analysis
,
Yale University Press
,
New Haven
.

Happel
J.
Brenner
H.
,
1986
.
Low Reynolds Number Hydrodynamics, with Special Applications to Particulate Media
,
Martinus Nijhoff Publishers
,
Boston
.

Liebermann
L. N.
,
1949
.
The second viscosity of liquids
,
Phys. Rev.
,
75
,
1415
1422
.

Mase
G. E.
,
1970
.
Schaum's Outline of Theory and Problems in Continuum Mechanics
,
McGraw-Hill Book Co.
,
New York
.

Morse
P. M.
Feshbach
H.
,
1953
.
Methods of Theoretical Physics
, Vol.
1
,
McGraw-Hill Book Co.
,
New York
.

Moon
P. H.
Spencer
D. E.
,
1961
.
Field Theory for Engineers
,
Van Nostrand
,
Princeton, NJ
.

Rosner
D. E.
,
1986
.
Transport Processes in Chemically Reacting Flow Systems
,
Butterworths
,
Boston
.

Schmitt
B. J.
Von Wahl
W.
,
1992
.
Decomposition of solenoidal fields into poloidal fields, toroidal fields and the mean flow. Applications to the Boussenesq equations
,
Proc. Conf. Navier-Stokes Eq. II: Theory and Numerical Methods, Oberwolfach: 1991, Lecture Notes in Mathematics
, pp.
291
305
, eds
Heywood
J. G.
et al.
,
Springer-Verlag
,
New York
.

Sokolnikoff
I. S.
,
1964
.
Tensors Analysis: Theory and Applications to Geometry and Mechanics of Continua
, Tensors Analysis: Theory and Applications to Geometry and Mechanics of Continuand edn,
John Wiley & Sons Inc.
,
New York
.

Synge
J. L.
Schild
A.
,
1949
.
Tensor Calculus
,
University of Toronto Press
,
Toronto
.

Truesdell
C.
,
1953
.
The physical components of vectors and tensors
,
Z. angew. Math. Mech.
,
33
,
345
356
.

Zhang
K.-K.
Busse
F. H.
,
1989
.
Convection driven magnetohydrodynamic dynamics in rotating spherical shells
,
Geophys. Astrophys. Fluid Dyn.
,
49
,
97
116
.

This content is only available as a PDF.