Summary

Seismic waves in a random medium (with standard deviation ∈ and correlation distance a of the relative slowness fluctuations) prefer fast paths, and therefore the apparent velocity of wave propagation is larger than the velocity which corresponds to the volume average of slowness. This velocity shift can be determined by ray perturbation theory (Snieder & Sambridge 1992), by the Huygens method (Podvin & Lecomte 1991) and by wave theory (Müller, Roth & Korn 1992). We apply all three methods to plane-wave propagation through a 2-D acoustic medium with Gaussian or exponential autocorrelation function of the slowness fluctuations. Ray perturbation theory gives numerical and analytical results, but has path-length (L) limitations. The Huygens method, which also gives the ray-theoretical velocity shift, can be used for L/a ratios of seismological interest. Wave theory shows that the velocity shift also depends on the wavelength λ and that for λ/a less than about 0.1 the velocity shift agrees with the result of the Huygens method. For λ/a = 1 the wave-theoretical (i.e. true) shift is lower than the Huygens-method shift by a factor of 0.25 to 0.5. Simple formulae for the e dependence of the Huygens-method shift at long path lengths (L/a≥ 80) are given, and a correction factor is derived which approximately transforms plane-wave 2-D into spherical-wave 3-D velocity shifts; the latter correspond to 3-D two-point ray tracing.

For short-period seismic waves, propagating to teleseismic distances, mantle heterogeneity with ∈=1 per cent and a = 100 km produces a velocity shift of about 0.2 per cent. Shifts of this order can explain the difference in earth models, derived from free oscillations on the one hand and from short-period body waves on the other. A velocity shift (or velocity dispersion) due to anelasticity would be additional.

References

Ben-Menahem
A.
Singh
S. J.
,
1981
.
Seismic waves and sources
.
Springer
,
New York
.

Chernov
L. A.
,
1960
.
Wave propagation in a random medium
,
McGraw-Hill
,
New York
.

Frankel
A.
Wennerberg
L.
,
1987
.
Energy-flux model of seismic coda: separation of scattering and intrinsic attenuation
,
Bull seism. Soc. Am.
,
77
,
1223
1251
.

Herrin
E.
et al. ,
1968
.
1968 Seismological Tables for P Phases
,
Bull. seism. Soc. Am.
,
58
,
1193
1241
.

Karato
S.
Spetzler
H. A.
,
1990
.
Defect microdynamics in minerals and solid-state mechanisms of seismic wave attenuation and velocity dispersion in the mantle
,
Rev. Geophys.
,
28
,
399
421
.

Kennett
B. L. N.
(ed.),
1991
.
IASPEI 1991 Seismological Tables
.
Research School of Earth Sciences, Australian National University
.

Korn
M.
,
1993
.
Determination of site-dependent scattering Q from P-wave coda analysis with an energy-flux model
,
Geophys. J. Int.
,
113
,
54
72
.

Menke
W.
,
1983
.
On the effect of P-S coupling on the apparent attenuation of elastic waves in randomly layered media
.
Geophys. Res. Lett.
,
10
,
1145
1147
.

Morelli
A.
Dziewonski
A. M.
,
1993
.
Body wave traveltimes and a spherically symmetric P- and S-wave velocity model
,
Geophys. J. Int.
,
112
,
178
194
.

Moser
T. J.
,
1991
.
Shortest path calculation of seismic rays
,
Geophysics
,
56
,
59
67
.

Muiler
G.
Roth
M.
Korn
M.
,
1992
.
Seismic-wave traveltimes in random media
,
Geophys. J. Int.
110
,
29
41
.

Nolet
G.
Moser
T.-J.
,
1993
.
Teleseismic delay times in a 3-D earth and a new look at the S discrepancy
,
Geophys. J. Int.
,
114
,
185
195
.

Nowack
R. L.
,
1992
.
Wavefronts and solutions of the eikonal equation
,
Geophys. J. Int.
,
110
,
55
62
.

Petersen
N. V.
,
1990
.
Inverse kinematic problem for a random gradient medium in geometric optics approximation
.
Pure appl. Geophys.
,
132
,
417
437
.

Podvin
P.
Lecomte
I.
,
1991
.
Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools
,
Geophys. J. Int.
,
105
,
271
284
.

Roth
M.
Korn
M.
1993
.
Single scattering theory versus numerical modeling in two-dimensional random media
,
Geophys. J. Int.
,
112
,
124
140
.

Sambridge
M.
Snieder
R.
,
1993
.
The applicability of ray perturbation theory to mantle tomography
.
Geophys. Res. Lett.
,
20
,
73
76
.

Snieder
R.
Sambridge
M.
,
1992
.
Ray perturbation theory for traveltimes and ray paths in 3-D heterogeneous media
,
Geophys. J. Int.
,
109
,
294
322
.

van Trier
J.
Symes
W. W.
,
1991
.
Upwind finite-difference calculation of traveltimes
,
Geophysics
,
56
,
812
821
.

Vidale
J.
,
1988
.
Finite-difference calculation of traveltimes
,
Bull. seism. Soc. Am.
,
78
,
2062
2076
.

Vidale
J.
,
1990
.
Finite-difference calculation of traveltimes in 3D
,
Geophysics
,
55
,
1504
1507
.

Wielandt
E.
,
1987
.
On the validity of the ray approximation for interpreting delay times
, in
Seismic Tomography
, pp.
85
98
, ed.
Nolet
G.
,
G. Reidel
,
Dordrecht
.

Widmer
R.
Masters
G.
Gilbert
F.
,
1992
.
Observably split multiplets-data analysis and interpretation of large-scale aspherical structure
,
Geophys. J. Int.
,
111
,
559
576
.

Woodhouse
J. H.
Dahlen
F. A.
,
1978
.
The effect of a general aspherical perturbation on the free oscillations of the earth
,
Geophys. J. R. astr. Soc.
,
53
,
335
354
.

This content is only available as a PDF.