Abstract

The growth rate of a tree at any time relates to its size and the level of competition exerted by its neighbors for the resources it needs for growth. This work describes the development of a model to predict the maximum growth rate in stem basal area of Eucalyptus pilularis Smith trees in native and plantation forests of subtropical eastern Australia. It shows maximum growth rates increasing with size until the tree reaches a stem diameter at breast height of 27 cm. Thereafter, maximum growth rates decline progressively as the tree grows larger. Physiological reasons that might describe this growth pattern are discussed. The maxima are shown to be independent of tree age, stand stocking density or average tree size, and the productive capacity of the site on which the forest is growing.

This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://dbpia.nl.go.kr/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
You do not currently have access to this article.