Summary

Oxygen microelectrodes were used to monitor oxygen concentration and rates of gross photosynthetic activity in Microcystis sp. scums which were formed and incubated under laboratory conditions. The depth of the photic layer, rate of photosynthesis, oxygen concentration and the location of the transition to anoxia in the scum depended on irradiance levels and colony size. Gross photosynthetic activity never extended below 2.5 mm depth in the scum. At high irradiance levels oxygen concentration in the upper 1.5 mm of the scum decreased and the oxygen concentration peak shifted to greater depth. Oxygen concentrations in scums composed of small colonies (<55 µm) were higher than concentrations in large colonies scums (> 300 µm) but small colonies showed stronger indications of photoinhibition. In a natural scum small colonies are presumably shielded from inhibitory intensities by larger colonies which will dominate the upper layers. Accumulation of low-light adapted, smaller colonies in deeper layers likely yielded a second peak in photosynthetic activity. In order to systematically discuss scums and scum formation a distinction is made in three different scum types.

References

[1]

Konopka
A.E.
Brock
T.D.
Walsby
A.E.
(
1978
)
Buoyancy regulation by Aphanizomenon in Lake Mendota
.
Arch. Hydrobiol.
83
,
524
537
.

[2]

Thomas
R.H.
Walsby
A.E.
(
1985
)
Buoyancy regulation in a strain of Microcystis
.
J. Gen. Microbiol.
131
,
799
809
.

[3]

Oliver
R.L.
Walsby
A.E.
(
1988
)
Direct evidence for the role of light mediated gas vesicle collapse in the buoyancy regulation of Anabaena flos aquae (cyanobacteria)
.
Limnol. Oceanogr.
29
,
879
886
.

[4]

Kinsman
R.
Ibelings
B.W.
Walsby
A.E.
(
1991
)
Gas vesicle collapse by turgor pressure and its role in buoyancy regulation by Anabaena flos aquae
.
J. Gen. Microbiol.
137
,
1171
1178
.

[5]

Kromkamp
J.C.
Mur
L.R.
(
1984
)
Bouyant density changes in the cyanobacterium Microcystis aeruginosa due to changes in the cellular carbohydrate content
.
FEMS Microbiol. Lett.
25
,
105
109
.

[6]

Kromkamp
J.C.
Walsby
A.E.
(
1990
)
A computer model of bouyancy and vertical migration in cyanobacteria
.
J. Plankt. Res.
12
,
161
183
.

[7]

Reynolds
C.S.
Walsby
A.E.
(
1975
)
Water blooms
.
Biol. Rev.
50
,
437
481
.

[8]

Walsby
A.E.
Kinsman
R.
Ibelings
B.W.
Reynolds
C.S.
(
1991
)
Highly buoyant colonies of the cyanobacterium Anabaena lemmermannii form persistent surface waterblooms
.
Arch. Hydrobiol.
121
,
261
280
.

[9]

Reynolds
C.S.
(
1987
)
Cyanobacterial water-blooms
.
Adv. Bot. Res.
13
,
67
143
.

[10]

Abeliovich
A.
Shilo
M.
(
1972
)
Photooxidative death in blue green algae
.
J. Bact.
111
,
682
689
.

[11]

Zohary
T.
Pais Madeira
A.M.
(
1990
)
Structural, physical and chemical characteristics of Microcystis aeruginosa hyperscums from a hypertrophic lake
.
Freshw. Biol.
23
,
339
352
.

[12]

Paerl
H.W.
Kellar
P.E.
(
1979
)
N2-fixing Anabaena: Physiological adaptations instrumental in maintaining surface blooms
.
Science
204
,
620
622
.

[13]

Paerl
H.J.W.
Ustach
J.F.
(
1982
)
Blue green algal scums: An explanation for their occurrence during freshwater blooms
.
Limnol. Oceanogr.
27
,
212
217
.

[14]

Lewis
W.M.
(
1983
)
Interception of atmospheric fixed nitrogen as an adaptive advantage of scum formation in blue green algae
.
J. Phycol.
19
,
534
553
.

[15]

Paerl
H.W.
Tucker
J.
Bland
P.T.
(
1983
)
Carotenoid enhancement and its role in maintaining blue-green algal (Microcystis aeruginosa) surface blooms
.
Limnol. Oceanogr.
28
,
847
857
.

[16]

Paerl
H.W.
Bland
P.T.
Powles
N.D.
Haibach
M.E.
(
1985
)
Adaptation to high-intensity, low-wavelength light among surface blooms of the cyanobacterium Microcystis aeruginosa
.
Appl. Env. Microbiol.
49
,
1046
1052
.

[17]

Paerl
H.W.
(
1983
)
Partitioning of CO2 fixation in the colonial cyanobacterium Microcystis aeruginosa: Mechanism promoting formation of surface scums
.
Appl. Environm. Microbiol.
46
,
252
259
.

[18]

Revsbech
N.P.
Ward
D.M.
(
1983
)
Oxygen microelectrode that is insensitive to medium chemical composition: used in an acid microbial mat dominated by Cyanidium caldarium
.
Appl. Environm. Microbiol.
45
,
755
759
.

[19]

Revsbech
N.P.
Jørgensen
B.B.
(
1986
)
Microelectrodes: Their use in microbial ecology
. In:
Advances in Microbial Ecology
, vol.
9
, (
Marshall
K.C.
, Ed), pp.
239
352
.
Plenum
,
New York
.

[20]

Revsbech
N.P.
Jørgensen
B.B.
Brix
O.
(
1981
)
Primary production of microalgae in sediments measured by oxygen microprofile, H[14CO3] fixation and oxygen exchange methods
.
Limnol. Oceanogr.
26
,
717
730
.

[21]

Nusch
E.A.
(
1980
)
Comparison of different methods for chlorophyll and phaeopigment determination
.
Archiv für Hydrobiol., Beiheft Ergebnisse der Limnologie
14
,
14
36
.

[22]

Herbert
D.
Phipps
P.J.
Strange
R.E.
(
1971
)
Chemical analysis of microbial cells
. In:
Methods in Microbiology
, (
Norris
J.R.
Ribbons
D.W.
, Eds.), pp.
209
234
.
Academic Press
,
London
.

[23]

Zohary
T.
(
1989
)
Cyanobacterial hyperscums of hypertrophic waterbodies
. In:
Microbial Mats: Physiological Ecology of Benthic Microbial Communities
. (
Cohen
Y.
Rosenberg
E.
, Eds.),
American Society for Microbiology
,
Washington, DC
.

[24]

Jensen
J.
Revsbech
N.P.
(
1989
)
Photosynthesis and respiration of a diatom biofilm cultured in a new gradient growth chamber
.
FEMS Microb. Ecol.
62
,
29
38
.

[25]

Revsbech
N.P.
Jørgensen
B.B.
(
1983
)
Photosynthesis of benthic microflora measured with high spatial resolution by the oxygen microprofile method: Capabilities and limitations of the method
.
Limnol. Oceanogr.
28
,
1075
1093
.

[26]

Robarts
R.D.
Zohary
T.
(
1984
)
Microcystis aeruginosa and underwater light attenuation in a hypertrophic lake (Hartbeespoort Dam, South Africa)
.
J. Ecol.
72
,
1001
1017
.

[27]

Uehlinger
U.
(
1981
)
Ecology of the planktonic blue green alga Aphanizomenon flos aquae in alpine lakes
.
Schw. Z. Hydr.
43
,
69
88
.

[28]

Ibelings
B.W.
Mur
L.R.
Walsby
A.E.
(
1991
)
Diurnal changes in buoyancy and vertical distribution in Microcystis populations in two shallow lakes
.
J. Plankt. Res.
13
,
419
436
.

[29]

Zevenboom
W.
Mur
L.R.
(
1984
)
Growth and photosynthetic response of the cyanobacterium Microcystis aeruginosa in relation to photoperiodicity and irradiance
.
Arch. Microbiol.
139
,
232
239
.

[30]

Post
A.F.
Dubinsky
Z.
Wyman
K.
Falkowski
P.G.
(
1985
)
Physiological responses of a marine planktonic diatom to transitions in growth irradiance
.
Mar. Ecol. Prog. Ser.
25
,
141
149
.

This content is only available as a PDF.