Abstract

Let E/Q be an elliptic curve. For a prime p of good reduction, let E(Fp) be the set of rational points defined over the finite field Fp. Denote by ω(#E(Fp)) the number of distinct prime divisors of #E(Fp). For an elliptic curve with complex multiplication, the normal order of ω(#E(Fp)) is shown to be log log p. The normal order of the number of distinct prime factors of the exponent of E(Fp) is also studied. 2000 Mathematics Subject Classification 11N37, 11G20.

This content is only available as a PDF.
You do not currently have access to this article.